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Abstract We consider a stochastic perturbation of the Stefan problem. The noise is
Brownian in time and smoothly correlated in space. We prove existence and unique-
ness and characterize the domain of existence.
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1 Introduction

Moving boundary problems are one of the important areas of partial differential equa-
tions. They describe a wide range of physically interesting phenomena where a sys-
tem has two phases. However, since the boundary between these phases is defined
implicitly, they provide deep mathematical challenges.

Our goal here is to study the effect of noise on the Stefan problem, which is one
of the canonical moving boundary value problems. Fix a probability triple (£2, ¥, IP)

This work was supported by NSF grant DMS0705260. R.S. would like to thanks the Departments

of Mathematics and Statistics of Stanford University for their hospitality in the Spring of 2010 during
a sabbatical stay. The authors would like to thank the anonymous referee for his meticulous reading
of the original version of this manuscript.

K. Kim (X)) - Z. Zheng - R.B. Sowers

Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
e-mail: kkim27 @illinois.edu

Z. Zheng

e-mail: zzheng4 @illinois.edu

R.B. Sowers
e-mail: r-sowers @illinois.edu

@ Springer


mailto:kkim27@illinois.edu
mailto:zzheng4@illinois.edu
mailto:r-sowers@illinois.edu

J Theor Probab (2012) 25:1040-1080 1041

and assume that ¢ is a random field which is Brownian in time but which is correlated
in space (we will rigorously define ¢ in Sect. 2). We consider the stochastic partial
differential equation (SPDE)

2

u 0“u
—(t,x)=—,x) +au(t,x) +ul,x)di(x) x> p(1)
at 0x

Ju .
lim —(,x) = —0B(
x\nﬁ% 8x( X) o0B(1)

u,x)=u.(x) xeR

{(t,x) eRy xR |u(t,x) >0} = {(t,x) eRy xR x> B(t)}.
ey
The constant « € R is fixed (we shall later see why it is natural to include this term).
We also assume that the initial condition u, € C(R) satisfies some specific properties:

e u,=00nR_, u, > 0on (0,00), and lim,\ o ‘Z’;" (x) exists.

e u, and its first three derivatives exist on (0, c0) and are square-integrable (on
(0, 00)).

The last requirement in (1) means that the boundary between u =0 and u > 0 is
exactly the graph of 8.

In fact, it is not yet clear that (1) makes sense. Differential equations are pointwise
statements. Stochastic differential equations are in fact shorthand representations of
corresponding integral equations; pointwise statements typically do not make sense.
It will take some work to restate the pointwise stochastic statement in the first line of
(1) as a statement about stochastic integrals.

There has been fairly little written on the effect of noise on moving boundary
problems (see [1, 4], and [15]; see also the work on the stochastic porous medium
equation in [2, 6-8, 14]). We note here that the multiplicative term « in front of the d¢;
places this work slightly outside of the purview of the theory of infinite-dimensional
evolution equations with Gaussian perturbations. The multiplicative term is in fact a
natural nonlinearity. It implies that there is only one interface; bubbles where u > 0
cannot spontaneously nucleate where u = 0, and conversely, bubbles where u = 0
cannot spontaneously nucleate where u# > 0 (see Lemma 5.8).

Our work here follows on [15], where we investigated the structure of a moving
boundary problem driven by a single Brownian motion. The moving boundary prob-
lem of interest there is a model of detonation. We here focus on the Stefan problem,
and consider noise which is spatially correlated. We formulate several techniques
which can (hopefully) be applied to a number of stochastic moving boundary value
problems. In our particular case, where the randomness comes from a noise which
is correlated in space and Brownian in time, several transformations (the transfor-
mations of Lemmas 4.3 and 4.4 and (25)) can transform the problem into a random
nonlinear PDE (see (26)). All of these transformations are not in general available
when the noise is more complicated, but most of the techniques we develop here
should be. Secondly, the irregularity of the Brownian driving force requires some
detailed analysis, no matter what perspective one takes: namely, in the analysis of
Lemma 4.2 and the iterative bounds of Lemma 5.5.
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2 The Noise

Let us start by constructing the noise process. Fix n € C*°(R) N LZ(]R) such that
n™ e C®(R) N L3(R) for all n € {1, 2, 3} and such that

f n*(y)dy = 1. 2)
yeR

Let W be a Brownian sheet. For t > 0 and x € R, define

def

t
cl<x>=/ / n(x — V)W (ds, dy).
s=0JyeR

Then ¢ is a zero-mean Gaussian field with covariance structure given by

E[& ()¢ ()] =t A S)/ . nx—2z)n(y —z2)dz
Z€e

for all s and 7 in Ry and x and y in R. Thus for each x € R, ¢ > ¢;(x) is a Brownian
motion, and for each ¢ > 0, x — ¢ (x) is in C? with derivative given by

t
£ (x) = / f 2™ (x — Y)W (ds. dy)
s=0JyeR

forallt >0and x e R forn € {0, 1, 2}.

3 Weak Formulation

To see what we mean by (1), let us replace é, (x) by a smooth function b : Ry x
R — R; the Wong—Zakai result (cf. [13, Sect. 5.2D]) implies that this is a reasonable
approximation of an SPDE with Stratonovich integration against the noise; we can
then convert this into the desired SPDE with Ito integration. Namely, consider the
PDE

ov 9%

(t,x)

m = 2 +osv(t, x) + v, x)b(t,x) x> Bo(t)

v .
li —(t,x) = —0pB(t
x\%?@ Bx( Xx) 0B,(1)

v(0,x) =u,(x) xelR
{t.x) eRy xR |v(t,x) >0} ={(t,.x) eRy xR |x > o)},
3)
where o o — % (we will see that this corresponds to the Stratonovich analog
of (1)). This will be our starting point.

Let us see what a weak formulation looks like (see [10, Chap. 8]). Fix ¢ €
CX (R4 x R). Assume that 8, is differentiable. Define

o0
U, (0) dzef/ v(t,x)q)(t,x)dx:/ v(t, x)o(t, x) dx.
reR v=Fo(t)
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Differentiating, we get that

U(r)—foo {a—”(r )p(t, x) + vt )3—“’@ )}d
P = a0 o1 , X)p(t, x v(t, x Py , X X

— (1, B ()@ (t, Bo (1)) Bo (1)

and we can use the fact that v(z, S, (t)) = 0 to delete the last term. We can also use
the PDE for v for x > B,(¢) to rewnte 7. Integrating by parts, we have that

o0 82
(t,x)p(t,x)dx
/x .y 0%2

 tim [ a9
_xilg(t){ P (t, )p(t, Bo(1)) + v(t, Bo (1)) e (t, ﬂo(t))}

00 82
+/ v(t,x)—= (t x)dx.
x=Po (1) dx?

Again, we use the fact that v(¢, B, (¢)) = 0, and we can also use the boundary condi-
tion on 3” Recombining things we get the standard formula that

) = 3 ¢
Uy(t) = /xeRv(t,x){ 5 (t,x)+ ) (t,x) +as<p(t,x)} dx

+ f 0906 X) x4 g (1, FoD) o).
xXe

Replacing b by our noise, we should have the following formulation: for any ¢ €
CX(R4+ x R) and any 7 > 0,

/ u(t,x)p(t,x)dx
xeR

- / o ()90, x) dx

/ / u(r, x){—( r,Xx) + (r x) + os0(r, x)}dxdr
r=0JxeR

t

+/ R/ OM(F,X)tp(r,X)O dér(X)derQ/ @(r, Bo(r)) Bo(r) dr.
xeR Jr=l r=

The Ito formulation of this would be

/ u(t,x)p(,x)dx
xeR
- / o (1) (0, ¥) dx
xeR
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t 9 82
+ / / u(r, x) —(p(r, x) + —(p(r, X)+oap(r,x)rdxdr
r=0JxeR or 8)62

t

t
+ / . / Ou(r,xw(r,x)do(x)dxw / o(r, B(r)) Bo(r) dr.
xXe r= r

Remark 3.1 The structure of the SPDE (1) is invariant under Ito and Stratonovich
formulations; this is the motivation for including « in (1).

We can now formally define a weak solution of (1). In this definition, we allow for
blowup. Define F; = o {W (s, y):s <t, y € R} forall £ > 0.

Definition 3.2 A weak solution of (1) is a nonnegative predictable path {u(z,-) |

0<t<t}c CMR)NL(R), where 7 is a predictable stopping time with respect to
{F#}+=0, such that for any ¢ € C°(Ry x R) and any finite stopping time v’ < T,

/ u(t’, x)e(’', x)dx
xeR

- / 4o (1) (0, x) dx
xeR
, “4)
T 2
+/ f u(r,x){a—w(r,x)+a—(p(r,x)—l—ot(p(r,x)}dxdr
r=0 JxeR or dx?

7/

- / . / 0u<r,x)<o(r,x>d;r(x>dx+e / o(r, () B(r)dr
xe r= r

and where
{t.x) €0, 1) xR|u(t,x) >0} ={F,x)€[0,7) xR |x > B(1)}, 3)
where $ is a semimartingale.

Our main existence and uniqueness theorems are the following. The arguments
leading up to these results will come together in Sect. 5.

Theorem 3.3 (Existence) There exists a predictable path {u(t,-) |0 <t <1t} C
C(R) N LY(R) which satisfies (4), and u(t, -) € C'[B(t), 00) for all t € [0, T) and

ou
T §inf{t >0: ‘a(t—,ﬂ(t))‘ =oo}.
Furthermore, if u(t, ) € C2[,3(t), o) for allt € [0, T), then it satisfies (5).
Proof Combine Lemmas 5.9 and 5.10. |
We also have uniqueness.
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Theorem 3.4 (Uniqueness) Suppose that {ui(t,-); 0 <t < 11} and {uz(t,-); 0 <
t < 1} are two solutions of (1). Assume that for i € {1,2}, the map x — u;(t,x +
Bi(t)) has three generalized square-integrable derivatives on (0, 00). Then u(t, ) =
us(t,-) for 0 <t < min{ry, 12}.

Proof The proof follows from Lemma 5.11. O

4 Regularity and a Transformation

The proof of Theorems 3.3 and 3.4 will hinge upon a transformation of (1) into a
nonlinear integral equation on a fixed (as opposed to an implicitly defined) domain;
we will address this in Sect. 4.2. First, however, let us make sure that we understand
a bit about regularity; this will illuminate the assumptions needed.

4.1 Regularity

While regularity of moving boundary value problems is an incredibly challenging
area (see [3]), we can make some headway. Namely, if we assume enough regular-
ity for the boundary, we can get better control of the sense in which the boundary
behavior holds.

We start by rewriting (4) using heat kernels. Define

Do(t, x) &

x2
exp[—z] t>0,xeR

1
VAt
def
pa(t,x,9) = {polt,x —y) £ po(t, x +y)}e
:{po(tv-x_y):l:po(ta_x_y)}eat t>0’x3y€Ra

where the second representation of p4 stems from the fact that p, is even in its

second argument. We then have that
3 a2
PE =20 x ) +apelxy) 1>0.x,yeR

ot 0y? ©6)

limpy(t,x,) =08y £6—y; x€R\ {0}
IAN]

as the relevant distinction between p and p_ is their behavior at x = 0, namely,

2n—1 2n
P+ 7" p—
W(LOJ) = W(I,O, »=0

foralln e N& {1,2,...},allt > 0 and all y € R. This will come up in the arguments

of Lemmas 4.2 and 4.3.
Let us next understand integration against {. Let {8(¢) | t > 0} be an R-valued pre-
dictable and continuous function. Let { f (¢) | # > 0} be a second R-valued predictable
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and continuous function, which is also bounded. We define

[ rora(pe)

Y f%){g(ﬁnm(ﬁ(j/zv))—Q/N(ﬂ(f/N))}

—00
0<j=<ltN|

t
=/ Rf(S)n(ﬂ(S) — y)W(ds,dy),

=0Jye

this being a limit in L2. Due to (2),

t t
/ des(B(s)) =/ / n(B(s) — y)W(ds, dy)
s=0 s=0JyeR

is a Brownian motion. Therefore we can define a Brownian motion B} for each fixed
X as
x def

t
B, _/ Odg“s(x~|—/3(s)). @)

Note also that d¢;(B8(t)) is not the total derivative of ¢;(8(¢)); i.e.,

& (B(1) — ¢0(B(0)) # / B dgs(B(s)).

To understand the total derivative, we must also include the spatial variation of ¢;:

d[e (B1))] = / n(B(t) — y)W(dy. dn)

yeR

t
+ / / (Bt — y)BOW (dy. ds)dt.
s=0JyeR

This implies that

t t

dey
. c(ﬂ(s))+fy

() - co(p) = [

§=|

. s (B(s))B(s) ds. 8)

Lemma 4.1 Suppose that {u(t,-) |0 <t <1} C C(R) N CH([B(t),00)) is a weak
solution of (1) with u(t,o00) =0 for 0 <t < t. Suppose also that B is continuously
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differentiable and {#};>0-adapted. Then u(t, x + B(t)) satisfies the integral equation

o0

u(r, x + B()) =f .

y=
t o0 au .

+/ / P+(t—s,x,y)a—(s,y+ﬂ(S))ﬂ(S)dyds
5s=0Jy=0 X

p+(t?x’ )’)Mo()’) dy

[ee) t
+/ 0/ 0p+(t—s,x,y)u(s,erﬁ(s))d;“s(y+ﬁ(S))dy
y=0Js=

t
+9/ p+(t —5,x,0)B(s)ds
s=0

)

forallt <t andx > 0.

Proof Fixx >0and T > 0. Forr € [0, T A T), define

uT ) déf/ Uty BO)PT 1) d.
y=

Using Definition 3.2, we have
o0
U= / u(t,y+ @) p(T —t.x,y)dy
y

/ u(t. ) pe(T —t.x,y — B(1)) dy
y=B()

—/ u(t, )p(T —t,x,y — B@)) dy
yeR

=UT ) + A (1) + AT ().

where
3 3?
PE(T —rx y — B(r) + afj (T —r.x.y = B()

T ’f {__

Al(t)_frzo yERu(r,y) o7
ap+ ;

+ap+(T—r,x,y—,3(V))—W(T—F,X,y—ﬁ(”))ﬁ(’”)}dyd”

t
+ g/_ p+(T —r.x, B(r) = B))B(r)dr,

t
AT () = / / u(r. ) (T = rox.y — B)) der () dy.
yeR Jr=0

Then
3 92
Prr—txy—Bw) + 85; (T —t,x,y — B(1))

arfor= [ o]
yeR
@ Springer
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ad .
Fape(T = ey =) = TH(T —tx,y = ﬂ(t))ﬁ(t)}dydt

+op(T —t,x,0)5(t) dt

[e’s) P .
=—{/ u(t,y)%(T—t,x,y—ﬂ(t))dy}ﬁ(t)dt
y=p(1) y
+op+(T —t,x,0)8(t)dt
e’} P X
y=B8@) Y

+op(T —t,x,0)5(1) dt

o a .
- /0%(r,y+ﬁ(t))p+(T—t,x,y)dy}ﬁ(f)df
=

+op(T —1t,x,0)8(t)dr.

We have here used the fact that u (¢, 8(t)) = 0. Thus

t e e} 9 .
A{(t):/ {/ p+(T—s,x,y)—u(s,y—I—,B(s))ﬂ(s)dy}ds
K y=0 3y

=0
t
+Q/ P+ (T —5,x,0)8(s)ds.
s=0

Now we consider AZT (#). Using the stochastic Fubini theorem [18, Theorem 2.6], we
obtain

t
A{(I)z/ R/ Ou(r,y)p+(T—r,x,y—ﬂ(r))do(y)dy
ye r=l
t
= [ [ wrpi(rrxy =) [ ne-oWnday
yeR Jr=0 zeR
t
=/ f / u(r,y)p+(T—r,x,y—ﬂ(r))n(y—z)dy}W(dr,dz)
r=0JzeR LJyeR

t e}
=/ / / u(r,y)p+(T—r,x,y—ﬂ(r))n(y—z)dy}W(dr,dz)
r=0JzeR LJy=8(r)

t oo
=/ / f u(r,y+Br))p+(T —r,x,y)
r=0JzeR L Jy=0

< n(y+ B —2) dy}W(dr, d42)

o t
- /—0 /_o“(r’ Y+ BO)p4(T =12, 3)der(y +Br) dy.
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Combine things to get that

t o0 3 .
uT)=u"(0) +/ {f Op+(T — 5, X, y%(s, y + B())B(s) dy} ds

s=0

[ee) t
+/ O/ 0p+(T—s,x,y)u(s,y+/3(s))d§s(y+f3(s))dy
y=0Js=

t
+Qf P+(T—S,X,0),3(s)ds.
s=0

Now let T\ 7 to get the claimed result. g

Note that (9) is not an explicit formula for u since the right-hand side of (9)
depends on u through B. Also, in order that u(f,00) = 0,0 <t < t, it suffices
that {u(z, -), %(r, 9} € L2((B(t), 00)), which is guaranteed in the Picard iteration
part. This can be seen by | f2(c0)| < |/2(M)| + [y 21f1 < | /2D + [37 £2 +
[ar (f)? for M > 0, and liminfy— o0 f2(M) =0.

The value of Lemma 4.1 is in that it implies that if 8 is continuously differentiable,
then the Stefan boundary condition of (1) holds pointwise.

Lemma 4.2 Let {u(t,-) | 0 <t < t} be a solution of (1) with u(t,o00) =0 for 0 <
t < 1, and let u be continuously differentiable in x for x > B(t). Assume also that

o 0"u 2
E sup/ (—(t,x)) dx | < oo. (10)
O<t<t Jx=p(r) \ 9X"
nel0,1}

If B is continuously differentiable, then

ou .
lim —(t,x) =—ppB(t 11
o 8x( ) oB(1) (11)
forallt €0, 7).

Proof To see this, let us rewrite (9) in a slightly more convenient way. If {u(z,-) | 0 <
t < t}is a weak solution of (1) and 0 <t < 7, set

def o0
Al(t,s)=/ p+(t, e, Vus(y)dy,

def [ 5 [ du .
Ax(t,e) = f €a(tﬂ)/ polt —s,y+&)—(s.y+B())B(s)dyds,
s=0 y=0 0x

t o0
As(t,¢) dzef/ / e“(t“‘)/ pot —s,y+e)u(s,y+B(s))
s=0JzeR y=0
xn(y+ B(s) —z)dyW(dsdz),
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t
Aq(t.e) défefo pa(t —s,,0)f(s)ds.
Note that

I

00 P .
/ pa(t —s. e, y)—a“ (5.3 + B())B(s)dyds = Ay(t, &) + Aa(t, —&)
=0Jy=0 X

fOO
y=0

t
/_0 p+(t —s, e, nu(s,y + B(s))dis (v + B(s)) dy = As(t, &) + A3(r, —¢)
Thus

u(t, B) +e) = Ai(t, &) + Ax(t, &) + Aa(t, —&) + A3 (1, &) + A3(1, —&) + Aa(t, €)
and hence

M1 b +e) = e+ 22 )+E(I—)
ox PO e =t e) + . ¢

+ 8 8 1 M
de de de 7
Since 85’—;0, 0,y) =0, we have

9A
lim =Lz, &) =0.

e\0 d¢
Next note that
%(Z, x)= —LL exp[—ﬁ]
dx 2/dx 1312 At
Thus
dA,

—(t £) =

a(t—s) o du 2
e — (=5, y+&)—(s,y+B()B(s)dyds
s=0 y=0 0x dx

_ 2 1—5) foo yte exp| - (v +e)?
24w Js=o y=0 (t —5)3/2 4@t —s)

ou .
X a(s, v+ ﬁ(s)),B(s)dyds
1 t a(t s) 2
2\/_ s=0 /1 y= s/J_yexp[ ]

4
ou
X_

o (s, Vit —s—¢ +,3(s)),3(s)dyds

Dominated convergence then implies that

(x(t s) 2
(r £) = / / yexp[—y—}
e—0 2«/ y=0 4

@ Springer



J Theor Probab (2012) 25:1040-1080 1051

a .
X —Z(s, y/t —s +,B(s)),8(s)dyds.

Turning to A3, we can integrate by parts and using the fact that u(z, 8(¢)) =0, we
get that

A © o
Q(: )—f / e ”/ %ia—s,ymu(s,yw(s))
s=0JzeR y=0 0X

X 77(}’ + B(s) — Z) dyW(dsdz)

t o
—f / =9 / Dot —s,y+¢)
s=0JzeR y=0

3
x {%(s,y + B))n(y + B(s) —z)

+uls, v+ BO)i(y +BE) —z)}dyW(dsdz).
Since

T e8]
sup / / pf(t,y+s)dydt<oo
e€(0,1) Jt=0 J y=0

for all T > 0, we can use dominated convergence and (10) to get that
lim —(t g) = / / e s)/ Dot —5,Y)
e—>0 e s=0JzeR y=0
ou
x { (5 v+ BO)(y+B) —2)

+u(s,y+ B())n(y + B(s) —z) { dy W(ds dz).

Finally, we consider Ay4. Since py(z, x, 0) = 2¢* p.(t, x), we get that

s et=s) x27
—,x)=————=——55exp| —— |-
ax( *) Jax t3/2 p[ 4t |

Therefore

0 4 ! a(t—s) € 2
o= [ e g o

20 [ ae? fu? [ ”2} ; 2,2
=—— e exp| —— |B(t —&“/u”)du.
=l SO 7 |8( )

Since S is continuously differentiable, dominated convergence ensures that

8A4t _ 29,3(0

" ol au=-ab
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Collecting things together, we get the claim. |
4.2 A Transformation

The characterization of 8 given in (11) allows us to rewrite the moving boundary
value problem in a more convenient way. The calculation which gives us some an-
alytical traction is found in [16] (see also [10, Chap. 8]). Let us again return to our
deterministic PDE (3). For all > 0 and x € R, define v(¢, x) = v(z, x + B,(7)); then
v(t,x) =v(t,x — B.(t)). Assuming that B, is differentiable, we have that for x > 0
andt > 0,

ov ov ov .
5, () == (6.5 4 Bo() + = (1, 2 + Bo (1) Bo 1),
3D

W= + Bo(1))
ax(,)C)—ax(,x Bo (1)),

aZ" 2

9%v
S50 = (t X+ Bo(1)).

We can combine these equations and use the PDE for v to rewrite the evolution of v
as

2

9
( )= v(t x4 Bo()) + av(t, x + Bo(t))

><

W x4 Bol®) o) (12)

+o(t, x4+ Bo(0))b(t, x + Bo (1)) + o

2~

97V - v ; ~
= ﬁ(t’ X)+asv(t, x)+ a(r, x)Bo(t) + v(t, x)b(t, x+ ﬂo(t)).

Inserting the boundary condition that —pf,(¢) = lim,~ g, (1) g—§(1, x) back into (12),
we have that

2..,
(t x) = ™ 2(t x) +asv(t, x) — 1 (t 0) (t X)

+ 0(t, x)b(t, x + ﬂo(t)) t>0,x>0
v(t,00=0 >0

(0, x) =u(x) x>0
bty =—2200) 1>0.
0 0x

Replacing b by ¢ and o by «, we should be able to write down a nonlinear SPDE
for i (t, x) def u(t,x + B(r)). We now get the following.

Lemma 4.3 Suppose that {u(t,) |0 <t <t} C C(R) N LY(R) is a solution of (1)
with u(t, 00) = 0 such that u(t,-) € C'([8(t), o)) and d” se(t, ) € LY ([B(1), 0)) for
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each 0 <t < t and (10) holds. Suppose also that B is continuously differentiable and
{F:}i>0-adapted. Then u(t, x) = u(t, x + B(t)) satisfies the integral equation

ﬂ(t,X)=/ p—(t, x, y)uos(y)dy
y=0

1 [t © ou o
__/ / po(t =5, %, V)= (s,00—(s, y)dyds  (13)
0 Js=0 y:() 8.x 3x

oo t
+f 0/ OIL(I—S,x,y)ﬁ(s,y)dzs(y+ﬁ(S))dy
y=0Js=

forallt €0, t) and x > 0 where

1 [ ou
ﬁ(l)Z——/ —(s5,0)ds
0 Js=0 ox
forallt €0, 7).

Proof The proof is very similar to that of Lemma 4.1. Fix x > 0 and 7 > 0. For
t €[0,t AT), define

U (1) déff i(t,y)p—(T —t.x,y)dy = AT (1) + AL (1).
Yy

Using Definition 3.2, we have

ul@ =/ 0u(t,y +B0)p—(T —t,x,y)dy
=

:/ M(l,y)p—(T_tv-xsy_ﬂ(t))dy
y=B(1)

:/ u(t,y)p—(T —t,x,y — B())dy
yeR

=UT )+ AT (1) + AL (1),

where
4 Ip_ 89%p_
T _ _ P . . p . _
Al(t)—/rZO/yGRu(r,y){ 5 (T=rx,y=pm)+ 52 (T —r,x,y—B()
ap_ .
+ap_(T—r,x,y—ﬁ<r>)—g—y(r—r,x,y—ﬂ(m)ﬁ(r)}dydr

t
4 9/ p—(T = r,x, B(r) — B B dr,

r=0
t
AT ()= / / u(r, ) p—(T —r,x,y — B(r)) dg (y)dy.
yeR Jr=0
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Using (6) and the fact that p_(T — ¢, x, 0) =0, we get that

o0 a _ .
dAlT(t)z—{/ u(t,y)aL(T—t,x,y—ﬂ(t))dx}ﬁ(t)dr
y=B() y

©  Ju .
=/ B—(t,y)p_(T—t,x,y—ﬂ(t))dx}ﬂ(t)dt
y=p(@) %Y
© du .
=/ a—(t,y+,3(t))p_(T—t,x,y)dx},B(t)dt
y=0 0y
* 9u .
=/ a—(t,y)p_(T—t,x,y)dx}ﬂ(t)dt.
y=0 0y

We have here used the fact that u(z, 8(¢)) = 0. Combining the characterization of ,3
as in Lemma 4.2, we get that

. 19a
Bt) =———(,0).
0 0x

Thus

=0 [ Jy=0 dx y

T 1 [ o ou o
Aj()=—— p—(T —s5,x,y)—(s5,0)— (s, y)dy ¢ ds.
QJs y a
Now we consider A2T (#). Again, using the stochastic Fubini theorem, we obtain

t
A§<r>=/ / u(r. ) p—(T = rox.y — B()) der(y) dy
yeR Jr=0
t
:/ / u(r,y)p—(T—hx,y—ﬂ(r))/ n(y —2)W(dr,dz)dy
yeR Jr=0 zeR

t
=/ / / u(r, y)p(T—r,x,y—ﬁ(r))n(y—z)dy}W(dr,dz)
r=0JzeR lJyeR

t oo
/ f / u(r, y)p—(T—r,x,y—ﬂ(r))n(y—z)dy}W(dr, dz)
r=0Jzer Jy=pr)

t e}
/ / f u(r,y+Br))p—(T —r,x,y)
r=0JzeR LJy=0

xn(y+ B(r) —z) dy}W(dr, dz)

o) t
:/ 0/ ou(r’erﬂ(r))p—(T_”x’y)d;‘r(erﬁ(r))dy
y=0Jr=

o0 t
= [ (T = x5+ ) .
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Combine things to get that

T T 1 t o0 8
Ul =U (0)—5f O{f e 02 (v V(T — s, x, y)dy}
s= y=

o0 t
[ [ i pi T = s de v+ ) dy
y= §=!
Now lett /' T to get the claimed result. g

We can also obtain an SPDE for &. By (6) and (13), we have that for 0 < <t
and x > 0,

3 ®(32p_
du(t,x)z/ Sk )+ apo(tx,3) fus () dy s

1 t 00 82
__/s=0/: { dx? 4

(s O) (s y)dydsdt

3’p_
+f / { 1’-72 (t—s,x,y)—i—ap_(t—s,x,y)}
y=0Js=0 0x

x (s, y)dis(y + B(s)) dydt
19i
-

—s5,x,y)+oap_(t —s,x,y)}

dii N
(t, O)E(t, x)dt +ii(t, x)dg (x + B(1)).

Since p_(t, 0, y) =0, we have the following SPDE:

2~
dﬁ(t,x):{g 2(tx)+au(tx)—— (tO) (tx)}
—l—ft(t,x)d{,(x—i—ﬂ(t)) O<t<t1,x>0
0(t,00=0 0<t<rt (14)

u0,x) =u.(x) x>0
. 10u
Bty =——(1,0) O<t<r.
0 0x
We can also find a converse to Lemma 4.3.

Lemma 4.4 Suppose that {ii(t,-) |0 <t <t} C C'(RL)NLY(R,) with ii(t, 00) =
for 0 <t < t satisfies (13) and is positive. Set

t
,B(t)_—l/ a—(s 0)ds 0<t<t (15)
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and define

" )dif!ﬁ(t,x—ﬂ(t)) x>B(1),0<t<t 16)
0 x<B@),0<t<rt.

Then {u(t,-) | 0 <t <t} is a weak solution of (1).

Proof Fix ¢ € C°(R4 x R) and define for 0 <r < t,

o]

A() dif/ o(t, X)ult, x) dx =/ (1, X)ii(t, x — B(1)) dx
reR x=B(1)

:/ go(t,x-l-lg(l))ﬂ(t,x)dx.

=0
To see the evolution of A, we fix § > 0 and define
- def [ -
us(t, x) = p-(8,x, yu(t, y)dy x=0,
y=0

¢ )def us(t,x — @) x=p@),0<t<rt
" “lo x<B@®),0<t<r.

Then define

A‘S(t)déf/ o(t,x + B@))iis(t, x)dx = A} (t) + AS(t) + AS(1),
x=0
where

t o0 o
Ai(r):f_of_of o(t,x + B®)) p—(t +8 — s, x, )E(s, y) dydx ds,

y=0
o0 o0 t
A%(t):/ / / (p(t,x+,3(t))p_(t+5—s,x,y)
x=0 =0Js=0
x (s, y)dis(y + B(s)) dydx,

A20) =/ / o(t.x+ BO)p_(t + 8, . )ity dy dx,
x=0Jy

=0Jy=0
where

1
§(1,x)=— (f 0) (l x).

We also note that we can rewrite the evolution of 8 as
1 du
Bty = —5—( B() 1€l0,7).
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Thus

dA?(t)—(/ f/ —(ptx+/3(t))p_(t+8—s,x,y)
s=0Jx=0Jy=0 ot

+8_(z X+ BO)p—(t+8—s5,x, B

+o(r,x +,3(t))—_(t +68—s,x, y)}é(s, y) dydxds) dt

</ / t x—i—ﬂ(t) p—(8,x, )&, y)dydx)dt
x=0

(/ / / { tx+,3(t))p t+d8—s,x,y)
s=0 Jx=0 ot

+<p(t x+,3(t))a 2 —(t+68—s,x,y)

+ot<p(t,x +,8(t))p_(t +6—s,x, y)}s(s, y)dydxds

t o0 o0 8(/)
+/ / / —(tx+BD)p_(t+8—s5,x.y)
5s=0Jx=0Jy=0 0x

x E(s, y)dydx ds,B(t)) dt

(/ O/ o1, x + BD) p_ (8. x. Y)E(L, y)dydx)d

Similar calculations show that

dA‘S(t)_</ Of 0/0{8—(ptx+ﬂ(t))p_(t+5—s,x,y)
x=0Jy=0Js

92
+(p(t X —l—,B(t)) 85

+ap(t,x +BO)p-(t+8—s,x, y)}ﬁ(s, Y)des(y + B(s)) dydx

[e¢] o0 t a(p
+/ / / —(t.x+BO)p-(t+5—s5,x,y)
x=0Jy=0Js=0 90X

X ii(s, y) d&s(y + B(s)) dy de(t)> dt

/ 0/ (t.x +B@®) p—(8,x, y)i(t, y)d&; (y + B()) dy dx,
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and finally,

(t)_</ / { tx+/3(t))p (t+36,x,y)
x=0Jy=0

2

d
+§0(t,x +/3(t)) 5

p; (t+68,x,y)
+ap(t, x + B()) p—(t + 8, x, y)}ﬂo(y) dydx

+/ / a—‘p(t,x+ﬂ(t))p—(t+8,x,y)ﬁo(y)dydxﬁ(t)>dt-
x=0Jy=0 0x

Adding these expressions together and using the definition of &5 and (13), we get that

Ad (1) — A%(0)

/ / (8 ~|—oz(p> s, X + B(s) {/ p—(s+68,x, y)uo(y)dy
s=0Jx=0 t 4

+/ / p—(s +8—r.x, Er ) dydr
r=0Jy=0

+/ / p—(s+38—r,x,y)u(r, y)d{r(y+ﬁ(r))dy}dxds
y=0Jr=0

2

t o0 o0 a -~
s w(s,x+ﬂ(s)){/ D s 48, Wio(y) dy
s=0 0 X

—o 0x?
2,

K 00 92
+/ / 9°p- (s+8—r,x,y)§(r,y)dydr
r=0Jy
/ — (s +8—rx,y)(r, y)d{,(y—i—ﬁ(r))dy}dxds

r=0 8)62

R (s +8—rx, yu(r, y)dCr(y+ﬂ(r))dy}dXﬂ(S)ds

/0/ w(s,x+ﬁ(S))p—(5,x,y)S(s,y)dde>ds
x=0Jy

o0 o0 t
+/ / / o(s.x + B(s)) p— (8, x, y)i(s, y) dis(y + B(s)) dy dx
X y s
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1 00
Z/ (/ (8 +a(p>(s’x+ﬁ(s))ﬁ5(s,x)dx
s=0 ot

oo 82"‘
+/ o(s, x +,8(s))Wu26(s,x)dx

=0

+/ g<p (t x—l—ﬁ(t))u,g(s x)dxﬁ(s))
x=0

+/ </ / <p(s,x+,3(s))p_(8,x,y)é(s,y)dydx) ds
s=0 x=0Jy=0

o0 o0 t
+ /_Of_o /_o‘”(s’x +B()) p-(6.x. V(s ) dgs (v + B(s)) dydx

Z/— (/ (881‘ +a(p)(s’x+/3(S))”8(S’x+ﬂ(S))dx

0
00 21,{3
+/ (s, x+,3(s)) 5 (s, x 4+ B(s)) dx

=0

© g
+f_ 8‘” (5. + B(s))us s, x—i—ﬂ(s))dx,B(s))

+/ </ / (p(s,x—i—ﬁ(s))p_((ﬁ,x,y)é(s,y)dxdy) ds
s=0 \Jx=0Jy=0

0 o0 t
- /—0/ /_o‘p(s’x +B()) p— (8, x, Y)ii(s, y) dgs (y + B(s)) dy dx

t 3¢ 82
:/ (/ ( +ﬁ—i—a(p)(s,x+,3(s))u5(s,x+ﬂ(s))dx
s=0 =

~ [ ol p6) G (x50 dxf)

— (s, ﬁ(S)) ( B()) + ( B())us(s, B(s))

— (s, B6)us (s, B©)AGs) dx> ds

t 00 00
+/—0</—0/—0¢(S’x+ﬂ(s))p—(51x’y)é(S,y)dydx> ds

o0 o0 t
+/ 0/ O/ Ow(s,x+/3(S))p7(5,x,y)ﬁ(s,y)ds“s(y+ﬂ(S))dde-
x=0Jy s=

By definition of p_, we conclude that us(s, 8(s)) = 0. In addition, we also have that

. Ol . ° dp_ .
l —_— t, =1 — 87 ) t’ d
al_rg)ax(x) al—%/y_o Bx( x, y)u(t,y)dy
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e8]

. 3P+ -
=1 2T, x, t,y)d
Jim, o oy 6, x,y)u(t, y)dy

1'm/oo Gx) 0 d
=1 » X, PYRE]
Jimy | P+ @x 5 ) dy

Bﬁ(t )
=—(t, x).
0x

Upon letting § \, 0 and rearranging things, we indeed get a weak solution of (1). U

5 A Picard Iteration

Our main task now is to show that we can indeed solve (13). The main complication
is that (13) is fully nonlinear due to the presence of the 1 8“ + (7, 0) term in the drift and
the shift by g in the evaluation of the integral against ¢. If we turn off the noise, we
can do this via semigroup theory as in [16]. The noise, however, complicates things,
as we need to respect the rules of Ito integration and (unless we want to use more
advanced theories of stochastic integrals) integrate against predictable functions.

Our approach will be to set up a functional framework in which we can use Picard-
type iterations to show existence and uniqueness. As usual, Cg°(R ) is the collection
of infinitely smooth functions on [0, co) which asymptotically vanishes at infinity.
Define next

C() odd (R'f‘)

in other words, Co. o odd(R4) are those elements of CG°(R,) which can be extended
to an odd element of C °(R) (namely, consider the map y + sgn(y)@(]y|). For all
¢ € C3°(R4), define

def lee CP®RY) | @™ (0)=0forallevenn € N};

def .
gl & Zf oD P dx.
X

€(0,00)

Let H be the closure of Cgo (R4) with respect to || - ||z and let Hyqq be the closure
of C§% 4q(R+) with respect to || - || . We also define

def
ol & \// (P dx
x€(0,00)

for all square-integrable functions on R. Of course H and H,qq are Hilbert spaces
(H is more commonly written as H 2. je., it is the collection of functions on Ry
which possess two weak square-integrable derivatives). The important aspect of H is
the following fairly standard result.

Lemma 5.1 We have that H C C'. More precisely, for any ¢ € H, we have that

sup |¢@ ()| <2llglln.
X€R+
i€{0,1}
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Finally, for i € {0, 1}, 9 (0) € lim, 0 0 (x) is well-defined.

The proof is in Sect. 5.1.

We next need some truncation functions to control the effects of various nonlinear-
ities. In particular, we need to prevent g—z(t, 0) from becoming too big; Picard itera-
tions in general allow only linear growth of various coefficients. Fix L > 0, which we
will use as a truncation parameter. Let ¥; € C*°(R; [0, 1]) be monotone decreasing
such that ¥z (x) = 1if |[x| < L and ¥; (x) =0if |[x| > L + 1 (and thus |¥| < 1).In
other words, ¥, is a cutoff function with support of width L + 1.

Define

ﬁf(t,x)z/ Opf(t,x,y)uo(y)dy
y=

for all # > 0 and x € R and recursively define

] t 8~L
ﬁ,f(t)déf——/ “n(5.0)ds 1> 0
0 Js=0 ax

o0
a,€+1<t,x>=/ p—(t,x, uo(y)dy
y:

0
1/’ f°° (t )8&5( 0)3&5
- — —(t—=s,x,y)—(s,
0 JimoJy—o” Ve O % (17)

x (s, WL ([in (s, )| ) dy ds

1 o0 L
+/ / p_(t—s,x,y)ﬁn(s,y)
s=0Jy=0

< ([akes. )| ) des(y+BL(s)dy >0, x>0.

For each n € N, {ﬁ,f(t, -); t > 0} is a well-defined, adapted, and continuous path
in Hogq.

To study (17), we will use the Dirichlet heat semigroup. For ¢ € Cg°(R4), t > 0,
and x > 0, define

(Trp)(x) & f Pt () dy.
.

Lemma 5.2 For eacht > 0, T; has a unique extension from C3°(Ry) to H such that

T,H C Hogq and such that |T; f ||z < e* || fllg for all f € H. Secondly, there is a
K 4 > 0 such that

. K4
IT: flla < m”f”H

forall f € Hoga N C3(Ry).
Again, we delay the proof until Sect. 5.1.
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Another convenience will be to rewrite the ds part of (17). Set

- ef 1. e
wz'<w>“=f—5w(om(||w||y) and F2) L (ylln)

for all € H. Then

Bu

~L 8’;r1; 7a(~L .
(law @)l ) = Py — ()W (i, )

i ([lay @) ) =97 @y . )
for all n € N. For i and n in H, let us also define

(V. u
(KAl

(DF) (W, m) dﬁ——n(O)quwuﬂ) - —wom(nwuﬂ)

(W, 77)H
1Vl e

Lemma 5.3 For each v and n in H, (le/g)(w, n) is the Gdteaux derivative of lI}L“

at ¥ in the direction of n and similarly (Dliff)(w, n) is the Gateaux derivative of lf/]f
at ' in the direction of n. Furthermore, there is a K p > 0 such that

(D)W, )| < Kpxo.L4n (¥ ) Inlla.

(DEEYWw, m)| < Kpxo.Len (Wl Inla,

forall  and nin H and L > 0.

(DE)(wr, ) E L (vl m)

Proof The claim is straightforward. g

For each n € N, we now define wZ (z, x) def ik, @t x)— #L(t,x) forall x > 0 and

t > 0. Clearly supy, <7 ]E[||11)1L II%,] < oo for all T > 0. We then write that

5
Bl x) =Y AV @),

j=1
where

A" (1, x)

T Dk
:/ / (/ p—(t —s,x, y)—(s y)dy)lI/L( Lis, )+ awk s, ) ds d
2=0Js=0 y=0

1
Z/ / (T, s (s )>(x)lI/“( L(s, ) + Ak (s, ) dsdn,
A=0 Js=0

- anL dwk
Ay (t, x)—/A Ofo /_Op (t—s,x,y) —(s y)+/\—(s y)pdy
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x DUk (s, ) + Ak (s, ), wh (s, ) ds dr

L dit,y gL _
:/)L_O/S_()(Tt—s{g(& D+ A P (s, -)})(x)DlI/L

x (i (s, ) + ADE (s, ), BE (s, ) ds d,

o 1 t 00
A3" (t,x):/ / / p_(t—s,x,y)ﬁ),f(s,y)
A=0Js=0Jy=0

x FP(itk (s, ) + AL (s, ) dg

X (y+ Br(s) + A(Bry1(s) — Br(9))) dydh,

1 t 00
Af(')(t,x)Z/ / / p—(t —s,x, ) (AL (s, y) + 20k (s, )
A=0Js=0Jy=0
x DL (L (s, ) + AbE (s, ), D (s, ) des

x (v + BE(s) + A(BEL () — BE(9))) dyda,

1 00 t
Aé”)<t,x>=/ / / f po(t = s, x, )ik (s, y) + 2L s, )
A=0Jy=0Js=0JzeR
X WP (iif (5, ) + My (5,) (Bl () = Br ()7
x (y =2+ BE) +2(BEL () — BE(9)))W(ds, dz) dy d,

where £;(x) = %’(x). Note that the IZ,I;’S and ﬁ),ll"s are all in Hyqq.

To bound A(ln) and Ag’), we use the fact that 13/ is locally integrable. More
precisely,

t
1
—  _ds=4t'/*
fs:() t—sA
for all ¢+ > 0. Thus,

ds

t
/s'=0 H
2
—o (t—s)¥4 ]

/’ ok (s, e,
S

~ 2
<4K2t1/4/t E[Hw,f(s, )”H] ds.
A Joo (t—s)34

0

~ L
wl‘l

(S7 )
X

Ti—s 3

]

Bllal 1) <3|

< K/%E[

Similarly, we have that

X[0,L+1]
H

ditk dwk
TZS( (S’ ) + A (S7 ))

B[] A3 @] < K%E[ ox o

t
/;=0
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]

x (ks ) + 2wk (s, ) ) [k (5, | ds
]

ds.

< KE,K,_%;E[

S
/s=0 el LAGRIPES

tORME (s, )2
<4K3KF(L+ DAY / w
§=

To bound Ag"), Af‘"), and Ag"), we first rewrite them. For z € R, define n () def
n(y — z) for all y € R. Then

t 1 00
A_g,")(t,x) = /;:0 /zeR{/Azofy 0p,(t -5, X, y)ﬁ),f(s, y)lI/f(ﬁrLl(s, ) 4 AW (s, ,))

X n(y -z ~|-,3y1[(S) +)»(,3,{‘+1(s) — ,3,1,‘(s))) dy d)»}W(ds,dz)

t 1
— =L .
N /S:o /ZeR{/A_O Tis (w” (s, )Qz—ﬁ,% (S)—Mﬁ,fﬂ(s)—ﬁ,%(s))) x)

X WP (iif (s, ) + Mb) Gs, -))d)\}W(ds, dz),
A (1, x)
t 1 00
Z/ / {/ / p—(t —s,x, ) (@5 (s, y) + AL (s, y)
s=0JzeR Ar=0Jy=0
X le/f(ll,f(s, DA Ak (s, ), wEs, 9)

x1(y =2+ By (5) + (B (5) = By (9))) dy dA} W (ds, dz)
t 1 ~L »
- /s:o /ZER{/A:O fies <(”” (5. 3) + Aty (5. y ))ﬂz—ﬂ,%<s>—x<ﬁ,f+1<s>—ﬁ,%(s»>(x)

x DU (i (s, ) + Abf (s, ), B (s, ~))d/\}W(ds, dz),

AL (1, x)

t 1 00
Z/ / {/ / Pt = s.x, ) (it (5, y) + iy (5, ¥))
s=0JzeR JA=0Jy=0

x WP (ak (s, )+ 2k (s, ) x (B, (s) — BE())

iy =2+ B () + 2(Bryy () — By (5))) dy dx} W (ds, dz)
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/S O/ZE]RM o - 3<(” (50) A (5, ), gy A(ﬁnﬂ(s)fﬂ,f(s)))(x)

x WP (g (s, ) + by (s, ) dx} (B, (s) — BE(s)) W(ds, d2).

We will use the following bound on the interaction between 1 and the H-norm.
Lemma 5.4 There is a K > 0 such that
2
[N v < Ks1
yeR
forall f € H and k € {0, 1}.

Proof The structure of 7 ensures that there is an 7j € L>(R) such that [ (x)| < 7(x)
foralln € {0,1,2,3} and x € R. Thus, forall x e R, k € {0, 1}, and n € {0, 1, 2},

3 ('Jl,)f(f)(x)n(“”‘f)(x —y
Jj=0

[(£2%) ™ (o] =

n 2
sZ(’;>| D)t —y) <2 [P @A = y).
j=0 j=0

Thus,
S 2
Lt =s [ f [ rowfie s
Jj=
2 2
<67l 2w Z/ | fD )| dx.
j=0 xeR
The claim follows. g

Fix T > 0 and set K def exp(2|a|T). Let us first bound Ag"). For k € {0, 1, 2},

3kA(ﬂ) (t x) / / {/1 a T} S(w (S )nZ ﬂL(s) )‘(ﬂn+1(s)7ﬂr{‘(s))) (x)
5=0 JzeR | /a=0 dxk

x WP (il (s, ) + Ak s, -))dA}W(ds, dz);

2
dx:|

thusforO0<¢t <T,
(n)

% | gk A
E 3
I
x=0

(,x)
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¢ o0 1O T By (s BL6) A (BE,y ()—BL ()
- = ®
s=0JzeR Jx=0 =0 X
. 2
X 'Ilf(u,f(s, 2 —i—)»u?,f(s, ~)) dk} ]dx dzds
s D (501 s aist or-piisn) |2
/ [ / [/ ﬂLI:) ABL, () —BL(s) (x)‘ dx:| dzdsdn
A=0Js=0JzeR x:O dx
/A Ov/; 0~/ZE]R
~L 2
<K f ) /S . fz ERE[”wn Mgt aat ompon | Jazasa
<K1K/ / [&F 5. | ] ds dx
~ 2
<k [ Bllateo];lds
=

Tis (G520, MBL, ,(5)— ﬂn@)))H ]dZd”“

The bound on Afl") is similar:

8k (”)

8xk

(r, %)

DN gt ()2 (BE,, ()—BL )

dxk

1Tk (s, ) + Ak (s,
. (x)

-LLLAL

x DU (iik (s, ) + AL (s, ), bk (s, .))d)\}W(ds, dz).

Consequently for0 <r < T,

2
]E|:/ dx:|
=0
k ~L .
/ / / [{fl aTt_s((un(s")jwwn(57~))Ez—ﬂ,%<s>—x(ﬂ,f+1<s>—ﬂ,§(s»)
k (x)
=0JzeR Jx=0 2=0 o

2
x DWL @k (s, )+ 1k (s, ), wk (s, -))d,\} ] dxdzds

<L AL

x (DD (il (s, ) + Ak (s, ), WE (s, -)))2] dzdsdx

(n)
kA
4
t,
o1k (r, x)

T, (L (s, ) + AL (s, Ny
dxk

Lz—BE)—1(BE (5)— ﬁL(\))) 2
n+1 n (x) dx
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2
A O/S O/ZGR s (@ 2k, K(ﬁ,,Jrl(b)*ﬂnL(S)))HH

x (Dli/f(ﬁfl(s, )+ ABE (s, ), BE (s, ) ]dzds dx

’ 2

ik
x X[o,L+1](||ﬁ,’;(s, YA ks, ) | ) Bk, .)HH] dzds d.
<K1KKB(L+1)2/ f [k s, |3 ] ds da
gKlKKg(LH)Zf E[ ||k (s, )| ]ds
=0
To bound Ag"), we first bound BL, | — BL. We have that
|Brs1 (1) — By ()]
[ [P,
- Q Js=0

n+l(s’0)
2 (. 2 . 2
<= [ kool < 5/r | ks, s

0x
For k € {0, 1, 2}, we then have that

(s 0)|ds

8kA(’1)

ok (t,x)

L
' 1 KT (@ (s, ) + A" (s, N, _ BE(S)—A(BL, ,(5)— ﬂnL(S)))
= z ()
5s=0JzeR Ja=0 0x

x WPk (s, ) + 1k (s, ) dk} (BE () = BE()) W(ds, d2).

Hence for0 <t <T,

2
([ g
x=0
/t / |: ) 1 8this((ﬁ,%(S7 ) +)ﬂb2(s’ .))ﬁz—ﬂL(s‘)—A(ﬂLﬂ(Y)—ﬂL(Y)))
— E / {/ . n o\ n 3 n \» (x)
s=0JzeR LJx=0lJr=0 dx*

2
x WP (ak (s, ) + 2k s, ))dk} dx(ﬁnLH(s)—,B,I;(s))z]dsdz

akA(”)
Bxk (t,x)
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LA L

x (FP (il (s, ) + 2bk (5, )) (B () — ﬂ,,L(s))z} dsdzd

L L
T (@ (s, ) + 2 (s, N BE () MBL,  (5)—BE L(s)))
dxk

2
(x)‘ dx

2
/A 0‘/; O/Z‘GR ‘7} N M (S )+)\.w (s ))77 ‘3’1 (S) )‘(ﬁnJrl(s)iﬁr%(‘s)))HH

X (P (k5. ) + 20E (5.))* (B o) = BE)) | ds dzd
1 t L L . 2
S Kl /);:0 /;:0 /Z\EREI:” (un (S’ ) + )hwn (S, '))Qz—ﬂnL(S)—)»(ﬂnLH(S)—ﬁ,,L(S)) ‘H

x (FL(al (s, ) + 1L (s, ) (BE () — ﬁ,f(s))z] dsdzd

1 t
2
skik@+ 1 [ [ E[(Bh0) - BE0) Tdsda
A=0Js=0
AK\K(L+ 1)t [! s 2
< PRI Elate. ol ]as
o s=0
Lemma 5.5 For each T > 0, we have that Zn 1 SUPo<s<T IE[||u,H_1 L||H] < 00.
Thus, P-a.s., it (t, ") oo hm,,_><>Q Uy Lt ) exists as a limit in C([0,T]; H) and u®“

satisfies the integral equation
o
ﬁL(t,X)=/ OP—(t,x,y)ﬁo(y)dy
1 t o0
T s T 0T (5.0 ) s
0 Js=0Jy=0

o t
+ / 0 / et =soxit o[t 6.] ) de by + ) dy
y 5=

t>0, x>0,
(18)

where
t
0
ﬁ()dﬁf——/ 0 5. 0)ds.
P Js=0 0x

Proof See also [18, Lemma 3.3]. Fixing T > 0 we collect the above calculations to
see that there is a K 7, > 0 such that

tOE[lwE (s, 1131

—sph P

E[‘}wrlfﬂ—l(t’ )Hi,] < KT,L/

5=
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for all ¢ € [0, T']. Iterating this, we get that

n—2
B[ ik, )] < K¥ll’("_l)/4{n3“ I ”‘”} sup E[ | |7,].
=0 0<t<T

where B is the standard Beta function and thus that

n—2 1/2
VEll k.l < K;'fz”””””/g{ [T+ ‘”} s B[]

j=0

To show that the terms on the right are summable, we use the ratio test. It suffices to
show that

) 1/2 178 n—2 12
Tim K71 (B<1+T,1/4>> —0. (19)

We calculate

1/2
s — )73 as :/ s — )34 gs
s=0

1
B(1 +n/4,1/4) :/

s=0

1
+/ s —5) T4 ds
s=1/2

1

-1 1
§n3/4/ s”/4ds+/ (1 —s)34ds
s=0 s:lf%

4n3/4 1\ /4
()
n+4 n
This implies (19). The rest of the proof follows by Jensen’s inequality and standard
calculations. g

We can finally show uniqueness.

Lemma 5.6 The solution of (18) is unique.

. - def .
Proof Letu; and uy be two solutions. Define w = u1 — uy. By calculations as above
we get that

t
E[lw. )] < Kr.L / _ =7 BB, ] ds.

We can iterate this inequality several times to get (cf. [18, Theorem 3.2])

N

t
B[l )13] < K2, / G f (s — )y E[ (. I3 dr ds
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t
= K7 B(1/4,1/4) /_O(I — ) HE[ W, I, ] dr
t
< K3, B(1/4,1/4) /_O(z — )72
x/r (r — ) UE[ 1w (s, )3 ] ds dr
s=0
t
=K3  B(1/4,1/4)B(1/2,1/4) /_O(r — ) VAE[lw(s, )13 ] ds
t
< K%, B(1/4,1/4)B(1/2,1/4) /_O(t gl

x/s (s =) PE[ i, 1% dr ds
r=0

t
= K;’LB(1/4, 1/4)B(1/2,1/4)B(3/4, 1/4)/ OE[HzI)(r, ~)||%{] dr.

r=
We can now use Gronwall’s inequality. g

We can also show non-negativity. Define the random time
def . ~L
tp =inf{r >0: |a"@, )|, =L}
for L > 0.

Lemma 5.7 The solution it (t, x) of (18) is nonnegative for 0 <t <ty and x > 0.

Proof Letiik(z, x) &L (¢, x)e™ . Since we have that ¥, (|iL (¢, )| ) = 1 for 0 <
t < 1z, from (18) we obtain that for 0 <z < 77,

a2k 1 oak ak
dik(t,x) = & (f,x) — —e —L(1,0)—2 (¢, x) { dt
Uy (1, x) { 2 (t,x) Qe o (,0) ™ ( x)}

+ ik, x)dBf
i (t,0)=0,

ik (0,x) = uo(x) >0,
where B is defined as in (7). We will then follow the approach used in [5] to show
non-negativity of izL, which implies non-negativity of &i”. To start, fix a nonnegative

and nonincreasing n € C*°(R) such that n(u) =2 if u < —1 and n(u) =0 if u > 0.
Define

aef [ "
o) = n(s)dsdr uelR.
r=0Js=0
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Finally, define ¢, (1) &ef 82(p(%) for all u € R. Fixing x € R and applying Ito’s for-
mula to {<ps(ﬁ{;(t, x)):0<t < 1z}, we have that

@@L (t ATL, X)) — e (o (X))

INTL 32 L
—/ %(ﬁé(s,x)) "‘ (s,x)ds

=0
INTL
- s, “{ws(u Go0) 5 0 s
tATL AT,
+ %/ (ﬁg(ﬂé(s,x))(ﬂé(s,x))zds +[ (i)g(ﬁé(s,x))ﬁé(s,x)dBf.
s=0 s=0
(20)

Here ¢ (u.(x)) = 0 since u, > 0. Then (20) implies that

e (Lt AT, x))e ™M — g (uo (X))

INTL 82ﬂL
Z/SZO ﬁbe(ﬁé(s,x)) Bx; (s,x)e " ds
1 INTL 97 L
- _/ —(S 0){908(1/{ (s, x))—(s x)} @=Ds g¢
0 Js=0 Ox
1 INTL ) (21)
+§/ g'ég(ﬁé(s,x))(zlé(s,x)) e *ds
s=0

INTL
+/ e (@5 (s, %))a5 (s, x)e ™ d BY
s=0

AT,
—/ (pg(ﬂg(s,x))e_s ds.
s=0
Next fix a nonincreasing @ € C*°(Ry) suchthat w(x) =1 forx <1 and w (x) =

0 for x > 2. For each N € N, define @wy (x) def @ (x/N). Let us now do several
things. Let us multiply (21) with ey . Let us then integrate in space, and finally take

expectations. We get that

IE|:/OO e (ﬁg(t ATL, x))wN(x)e_”\rL dx]

tATL
:E[/ Aiv’g(s)e_‘y ds]
s=0
1 tATL o ~L 1 tATL
- —IE|:/ —( O)e””AN “(s)e” Ya’s:| + E|:/ Agv’g(s)e_s dS:|,
0 s=0 2 s=0
(22)

where
2~L

def [ . o d%ik
O fxzowg(ua(s,x)) Py

(s, x)on(x)dx,
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~L

Ao | " (it 5,0) 2 s, o) di,
=0 0x

AN A3 (s) deffio{gﬁg(ﬂg(s, x)) (@4 Gs, )c))2 — 20, (@5 (s, %)) Joorn (x) dx.

We need some bounds on ¢;. Define || - ||¢ as the sup norm over R. First note that
¢(u) —2xr_ =n(u) — 2xgr_. This implies that for all u € R,

1G(u) —2xr_| < In—2llcx—1.000), ) —2uxr_ | < ln—_2lc, )
lo) —u?xr_| < lln —2llclul;

the first bound is direct, and the second two follow by integration. Note also that since
n is bounded,

. . 1
| <lnllc, le@)| < lnliclul, and |p@)| < Ellnllcuz- (24)

Let us understand the behavior of the various terms of (22) as N — oo and then
& — 0. From the last bound of (23), we have that limg_,¢ ¢.(x) = xzx]Rf (x). Due to
the last bound of (24), we can use dominated convergence and thus conclude that

e—>0N—00

o0
lim lim IE|:/ Ve (ﬂOLl(t A TL,X))ZD'N(x)e*IATL dx]
X

- E[ [ @m0 s @t n ) dx:|,

=0

We next consider Allv‘s(s). Integrating by parts and using the boundary conditions
at x =0, we have that

00 L
= {8
x=0 €
1 00 L
_N x:Og(/)( (: X)) ( )w< )dx

The first term is nonpositive since n and @ are nonnegative. We can also see that

1 [ (al(s,x)\ ok L x
w ()T “’(ﬁ)‘“

2
} oy (x)dx

2 o0 L
anncnnnc/ ik (s, )2 “<s o) dx
x=0
2
= istetnte [ et o + |2 . ax.
x=0

Thus
o INT],
lim lim EU A?’S(s)e%is]go.
e—>0N—o00 $=0
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Thirdly, another integration by parts gives us that

A;va(s) = _% /OOO wg(ﬁ{;(&x))@'(%) dx,

and thus
N,e 1 . o0 ~L 2
|AY ()| < =l liclinllc | |ak (s, x)| dx.
2N x=0
Thus,

tATL alZL N
lim lim ']E|:/ 8—‘)‘(s,0)e°”A2 ’g(s)e_‘gds] =0.
P X

e—>0N—o00 -0

Let us finally bound Agv,s- Note that for every u € R,
lim g )u? = 20 (u) = 2u’ xg_(u) = 2u’ xz_ () =0.

In light of the first and last bounds of (24), we can use dominated convergence to see
that

e—=>0N—o00 s=0

AT,
lim lim EU Aév’s(s)e_sds:|=o.

Combining things together, we finally get that

o0
E|:f [ﬁOLl(t AT, x)]z)(Rf (ﬁé(r ATL, x))e_MTL dxi| <0.
x=0

This implies the claimed result. U
Let us now see what happens as L ' co. Define the random time
T def lim (zz A L).
L—oo

Let us also define

~ def +— ~L

u(t,x) = lim u~(t At ,x) t>0,x>0.

L—oo

Lemma 5.8 (Positivity) u(z,x) > 0 forallt >0 and x > 0.
Proof We first define a transformation:

i (1, x) L ii(t, x)exp[ = (x + B1)] 1=0, x>0. (25)

Since ¢;(x + B(t)) is an Ito process (recall (8)), by applying Ito’s formula and plug-
ging into (14), we get

di*(t,x) =d{u(t, x)exp[—¢ (x + B1))]}
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=exp[—¢(x + ,B(t))]{dﬁ(r, x) +u(t, x)|:—d§, (x+B®)

—&(x+B®)BM)dr + %dr“

—i(t, x)exp[ =& (x + B(1))] dt
8%

=exp[— (x + B(1))] { S0+ [y — & (x + B®))B@)]

~ . ou
xu(t,x)+ B@)—(t, x)} dt.
0x

Since ¢; is smooth in space, we also have the following equalities:
~k

ou
0x

.
%(t, x) =exp[&(x + BM1))] - {

0%ii
S0 = exp[¢ (x + ()]

(t, %) + & (x +ﬂ(l))ft*(t,X)};

ou*
(t,x)

3%ii* :
X {W(t,x)+2§t(x+,3(t)) ax

+ i (1, ) [ (x + ﬂ(t))2 +&(x + ﬁ(t))]}.

Putting things together, we have that #* (¢, x) satisfies the random PDE

on* 2ﬁ* . .
g(t,X) = W(I,x) + 28 (x + B(1) + B1)]

ou

*
z,
oy (%)

. 2 o -
+ G (x+BO) +&(x+B0)) +as|u*(t,x), t>0,x>0 (26)
0 (t,00=0, t>0,
"0, x) =us(x), x>0.
Now suppose there exists #p > 0, xp > 0 such that (7, xo) = u*(t9, x0) = 0. In

light of Lemma 5.7, since u*(¢,x) > 0,¢ > 0, x > 0, we have that (fy, xo) is a mini-
mum point of #*(¢, x). By applying Strong Parabolic Maximum Principle (cf. The-

orem 2, p. 309, [17]) upon —i*(r,x) on Uy, = (0,10 + 1) x [0, x0 + 1] with
M =0, we obtain that #*(¢,x) =0, (¢, x) € Uy, x,, Which contradicts the fact that
Uo(x) > 0,x > 0 and the continuity of &#*(z, x) at t = 0. Therefore we have that
u(t,x)>0,t>0,x>0. O

Lemma 5.9 We have that

lim [|it(¢, )| g = oo.
Tim it )l = oo
Define u as in (15)—(16). Then {u(t,-) | 0 <t < 1} is a weak solution of (1).
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Proof Fixing L’ > L we have from the uniqueness claim of Lemma 5.6 that
IZL,(I‘, ) =dqk@, ) for0<¢ <t Thus 7, > 17 for all L’ > L, and so 7 =
limy;_, o 77 = limy_, o (rp A L) and 7 is predictable. We also have that u(z,-) =
limy, oo IZL(t, -) for 0 <t < 7. From this, Lemma 5.8, and Lemma 4.4, we conclude
that {u(t, ) | 0 <t < t} as defined by (15)—(16) indeed is a weak solution of (1). The
characterization of ||ii(z, -)|| g at T— is obvious. O

In fact, we have a more explicit characterization of t.

Lemma 5.10 We have that

—|ou
lim|—(t—, 0)| = oo.
t/t|0x

Proof For each L > 0, define

.
7 définf{r €0, 1) | ‘—u(h@)
0x

> L} (infd =1)
Thus in fact T > ti and hence
ou , ,
—(1;,0)|=L.
i)
Consequently,

ou
lim |—(77,0)| = oc0.
Ll>moo‘ 0x (TL )‘ 0

Since ri < 1, we of course also have that lim; _, ti < 7. On the other hand,

|l (t, -)|| g may become large for many reasons other than |g—f§ (77, 0)| becoming large,
so necessarily 7 < limz . 7; . Putting things together, we get that lim; o 7, = 7.
The claimed result now follows. U

To finish things off, we prove uniqueness.

Lemma 5.11 (Uniqueness) If {u(¢,") |0<t<t}CHand {i'(t,")|0<t <71} C
H are two solutions of (13), then u(t,-) =u'(t, -) for 0 <t < min{z, t’}.

Proof For each L > 0, define

~/

on 0
oLdzefinf tel0,tAT): —u(t,O) > L or —u(t,O)
0x 0x

zL} (infd =7 AT

Then 7 A 7/=1im _, o 07.. We can use standard uniqueness theory to conclude that i
and i1’ coincide on [0, o7 ], and we then let L 7 co. Il
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5.1 Proofs

We here give the delayed proofs. We start with the structural claims about H.

Proof of Lemma 5.1 The fact that H C C' is well known; [9]. Fix ¢ € Cr(Ry),
x € (0,00), and i € {0, 1}. We then have that

ai x+1 ai x+1 81' ai
q.jx—/ q.)(s)ds—/ { (/.)s q.)x}ds
ax? s—y 0X! s—y | OX! axt
x4+ x+1 at+1
:/ f pyeEey (r)drds
S=X S= r=x

x+1 az ai+1

% %
= ~(s)ds — +1-— : dr.
/s ot /r:x T

=X

\//x+l

Of course we also have that

Thus

9i+l 2

(| dr =2l¢lH.

dxi (x) 9xi+l

d +\//x+l

v
/ (p(’H)(r) dr
r=x

so the stated limits at x = O exist. O

0@ (x) — O ()] < =lelavix—yl

We next study {7} };~0-

Proof of Lemma 5.2 The proof relies upon a combination of fairly standard calcula-

tions.
To begin, fix ¢ € C°(R) and define

u(t, x) & / pettx = )sen()uly) dy
ye

00 0
=/ Po(t, x — Y)p(y)dy — / Po(t, x — Y)p(=y)dy
y

)=—00

o0
=/ 0{190(!, x—y) = po(t,x +y)}o(y)dy.
y=
Thus, u(t, x) = (Ty¢)(x) for x > 0, and since p, is even in its second argument,
u(t, —x) =/ Po(t, —x — y)sgn(y)e(|y|) dy
yeR

_ / Polt. x + y)sgn(»)e(ly|) dy
yeR
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= —/ Rpo(t,x —y)sgn(Me(y) dy = —u(t, x)
ye

so in fact u(¢, -) is odd. Thus we indeed have that 2 3 “(,0) =0 for all even n € N;
thus, Ty € Hodq.

A standard calculation shows that 7} is a contraction on H. Indeed, for each non-
negative integer n,

d 3"u 2 Ity
o . 8xn(t,x) dx:Z/ ™ n+2(t x) (t x)dx
xe
antly 2
=_2/x€R8"+l(tx) dx <0
and thus
/00 8”u(t )2d 1/ a"u(t )2d <1/ 8"u(0 )2
X X = - , X x < — X
x=0 dx" 2 xeR dxn 2 xeR dx"

27
=/ o™ ()| dx.
x=0

Summing these inequalities up for n € {0, 1, 2, 3}, we see that || T3, < ||g0||%{ for all
@ € C3°(Ry). This implies that 7; is a contraction on C;°(R ) and has the claimed
extension.

To proceed, fix ¢ € Cgfodd(R+). Note that thus y — ¢(|y]) is continuous. Define

MLMz/iJmnx—w—pdan%¢“@My
y=

=/ polt.x = y)sgn(eV 1y dy.
yeR
We can now fairly easily conclude from (27) with n = 0O that

oo oo 2
f vz(t,x)dxsf loD ()| dx.
x=0 x=0

Differentiating and integrating by parts as needed, we get that

0
) = / 2, x — v sen()e® (¥ dy
X yeR 0x

=—wmwwm@—/'pmw—w¢%mm%
yeR

92 9po apo
i =—222, W@—/ b
ax ax yeR 0X

ope
ﬂiwmwm%/ po(t.x — ) sgn(e® Iy dy.
X yeR

M@y dy
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We now note that there is a K > 0 such that

K
Do(2t, x)

apo
‘W(I’x) = ﬁ

for all t > 0 and x € R. Thus,

0
’a—”(r,m 52po(t,x)|<p“><0)|+/ po(t, x — M|e@ (D] dy,
X yeR
92 2K o) 3)
S (%) swpo@z,x)!go <0>|+/yeRpo<z,x—y)!<o (yD|dy.

Note now that

/°° 2(.2)d ! [Oo ! [ "z}d <!
Jx)dx = | — ——exp| —— |dx < ———.
x=0 Po Vamt Jr=0 /Tt P77 (4mr)l/4

Combining this and (27) with n =0, we get that

J 2 : & Z 102
d _ 0 2 dy,
/xeR XS el O /y:o"” ["dy

\// e 2K o4 2/ PRI
xeR - \/;(87”)1/4 yeR

Combine things together to get the last claim. O

av
—(t,
8x( %)

3%v )
—(t,x
9x?2

6 Numerical Simulation

In this section, we will see from numerical simulations where the boundary is and
how it is moving. In general, it is difficult to simulate the SPDE (1) directly since we
need to find a solution of a stochastic heat equation and at the same time we need to
trace the position of the moving boundary. Here we can avoid this difficulty since we
have the explicit formula for the solution # in Lemma 4.4. That is,

¢ )dif ut,x —p@) x=>p@),0<t<rt
B I x<B(1),0<t <1,
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Fig. 1 Weak solution u(¢, x)

where (i, ) is a solution of the SPDE

920 19

di(t,x) = {—Z(t,x) + au(t, x) — ——ﬁ(t,O)a—ﬁ(t,x)}dt
0 ox

ox 0 dx
+u(t,x)dg(x+ @) t>0,x>0

i(t,0)=0 0,
u(t,0) t > 28)

u(0,x)=u.(x) x>0,
. 10u
B()=———@10) >0,
0 0x

B(0)=0.

Therefore we first need to solve the SPDE (28) numerically in order to obtain the
moving boundary S(¢) and then the weak solution u(z, x). We first discretize space
by using the explicit finite difference scheme. Here we can also approximate n by
simple functions which converge to 7 in L2(R) (see [18]). As a result, we can have
an approximation of ¢ (x). Note that {;(x) is a Brownian motion for each fixed x,
however it is spatially correlated. Now we use the Euler—Maruyama type method to
discretize time (see [11, 12]). Then we can get a numerical solution of (28). Since
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there is a stability issue for parabolic PDE, we note that At/(Ax)? < 1/2, where At
is a time step and Ax is a space step. Figure 1 is a simulation with initial condition

2,
1’_‘:('%)4 ifx>0

uo(-x) = 1
€lse

and o = 0.5, 0 = 0.5. We can clearly see that there are two phases separated by the
black line, which is the moving boundary, and how u is changing on the colored
region where u > 0. Furthermore, we can see that the boundary is moving left. This
just follows from the positivity of the solution u(z, x) for x > B(¢) and the Stefan
boundary condition of (1).
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