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Abstract We show how a central limit theorem for Poisson model random poly-
gons implies a central limit theorem for uniform model random polygons. To prove
this implication, it suffices to show that in the two models, the variables in question
have asymptotically the same expectation and variance. We use integral geometric
expressions for these expectations and variances to reduce the desired estimates to
the convergence (1 + α

n
)n → eα as n → ∞.
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1 Introduction

Given a convex set K ⊂ R
2 of unit area, we may define two random polygon models.

For the Poisson model, we consider a Poisson process of intensity λ inside K , and
define ΠK,λ to be the convex hull of the points of this process. For the uniform model,
we take n independent random points distributed uniformly in K and let PK,n be their
convex hull. For a polygon P inside K , we let N(P ) denote the number of vertices of
P , and we let A(P ) denote the area of K \ P . When one wants to prove central limit
theorems for N and A in either of the two models of random polygons, it is often
the case that the Poisson model is easier than the uniform model. Indeed, in general,
results are proved first for the Poisson model, and then more arguments are needed to
deduce a corresponding result for the uniform model.

Recently, the author [3] studied the Poisson model of random polygons and proved
the following central limit theorem for N and A:
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Theorem 1.1 ([3]) As λ → ∞, the following estimates for ΠK,λ hold uniformly over
all K of unit area:
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x
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Here Φ(x) = P(Z ≤ x) where Z is the standard normal distribution.

In this paper, our goal is to show how to derive the following corollary for the
uniform model:

Corollary 1.2 As n → ∞, the following estimates for PK,n hold uniformly over all
K of unit area:
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− Φ(x)
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∣
→ 0. (1.4)

Here Φ(x) = P(Z ≤ x) where Z is the standard normal distribution.

From the estimates derived in this paper, a secondary result from [3] (Theorem 1.3
below) also carries over immediately to the uniform model. We should say that The-
orem 1.3 and the consequence derived here, Corollary 1.4, have both been proven
independently by Imre Bárány and Matthias Reitzner.

Theorem 1.3 ([3]) As λ → ∞, the following estimates for ΠK,λ hold uniformly over
all K of unit area:

E[N ] � VarN � λE[A] � λ2 VarA. (1.5)

Corollary 1.4 As n → ∞, the following estimates for PK,n hold uniformly over all
K of unit area:

E[N ] � VarN � nE[A] � n2 VarA. (1.6)

Though both Theorem 1.1 and Corollary 1.2 have been known for quite some
time in the case that either K is a polygon or ∂K is of class C2, the proof given
here of Theorem 1.1 ⇒ Corollary 1.2 for arbitrary convex K appears to be new.
Corollary 1.2 answers a question of Van Vu [4].

We will see below that in order to prove that Theorem 1.1 implies Corollary 1.2,
it suffices to show that when n = λ, the random variables N(PK,n) and N(ΠK,λ) (as
well as A(PK,n) and A(ΠK,λ)) have the same expectation and variance up to a small
enough error. This is essentially the same strategy used by Van Vu in [7] to derive a
similar implication for a special case of random polytopes.
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However, in contrast to [7], we will use relatively down to earth integral geometry
to establish our estimates, instead of sophisticated arguments from probability theory.
The approach we take is conceptually very simple. We write down integral geomet-
ric expressions for the expectation and variance for the Poisson and uniform models,
and then estimate their difference in the limit n = λ → ∞. In this formulation, the
“reason” that the desired convergence holds is completely transparent: it is essentially
reduced to the convergence (1 + α

n
)n → eα as n → ∞. Also, the variables N and A

are treated simultaneously with an identical proof for each (c.f. [7] where the case of
fi , the number of i-simplices, is harder than the case of the volume and requires a
new idea). An admitted disadvantage of this approach is that one has to actually write
down these integrals explicitly; however, once this is done, no further manipulations
are necessary. It is interesting to observe that using integral geometry is almost never
the “right” way to prove statements along the lines of Theorem 1.1 or even Theo-
rem 1.3, essentially because the expressions quickly become too complicated to deal
with either conceptually or theoretically. However, for our applications here, the de-
sired estimates become simple when written in terms of the integral geometry, so we,
in fact, believe that these integral geometric expressions do in some sense give the
“right” proof of our main lemmas.

One expects that our results and the proofs given here will admit straightforward
generalization to higher dimensions. For random polytopes in dimension d ≥ 3, The-
orems 1.1–1.4 are all known in the case of fixed K whose boundary is C2 and has
nonvanishing Gauss curvature, due to Reitzner [5] and Vu [7]. In the case that K is
a polytope, the analogue of Theorem 1.1 was proven very recently by Bárány and
Reitzner [2] (one expects that an analogue of Theorem 1.3 also follows from their
methods). We expect that if applied to higher dimensions, the methods in this pa-
per would show that Corollaries 1.2 and 1.4 follow in any situation in which Theo-
rems 1.1 and 1.3, respectively, are known to hold (in particular, for the case that K is
a polytope). It is conjectured that Theorems 1.1–1.4 hold for d ≥ 3 with no restriction
on K .

2 Notation and Definitions

We now review some definitions and two basic lemmas from [3].
In this paper, K will always denote a (bounded) convex set in R

2. Any constants
implied by the symbols �, �, or � are absolute; in particular, they are not allowed
to depend on K .

Many of the following definitions are illustrated in Fig. 1. We may leave out the
subscript K later when doing so is unambiguous.

Definition 2.1 We define the random variable WP (θ) to be the vertex of P which
has an oriented tangent line at angle θ . This is illustrated in Fig. 1(a).

Definition 2.2 A cap at angle θ is the intersection of K with a half-plane Hθ at
angle θ . We may specify a cap at angle θ by giving either its area r or a point p ∈ ∂Hθ .
These are denoted CK(r, θ) and CK(p, θ), respectively; the latter is illustrated in
Fig. 1(b).
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Fig. 1 Illustration of some definitions

Definition 2.3 We define the real number AK(p, θ) to be the area of the cap
CK(p, θ).

Lemma 2.4 The random variable WΠ,λ(θ) has probability distribution given by
λ exp(−λAK(p, θ)) dp where dp is the Lebesgue measure. This has total mass
1 − e−λArea(K), as ΠK,λ is empty with probability e−λArea(K).

Proof This follows directly from the definition of a Poisson point process. The prob-
ability that no point lands in CK(p, θ) is exp(−λAK(p, θ)), and we multiply this by
λdp, which is the density of the Poisson point process.

Alternatively, we may differentiate exp(−λAK(p, θ)) with respect to the di-
rection orthogonal to θ and divide by the length of ∂Hθ ∩ K . This also yields
λ exp(−λAK(p, θ)) dp. �

Definition 2.5 We define the function fK(x, θ) : [0,1] × R/2π → R as follows:

fK(x, θ) =
⎧

⎨

⎩

length of (∂Hθ ) ∩ K where CK(log 1
x
, θ) = Hθ ∩ K

if x > exp(−Area(K)),

0 if x ≤ exp(−Area(K)).

(2.1)

It will be important to have the following bound on the growth of f :

Lemma 2.6 If y ≤ x then

f (y)√− logy
≤ f (x)√− logx

. (2.2)

The bound above is sharp; for instance, f (x) = const ·√− logx for K = {x, y ≥
0} (i.e., the first quadrant).

Proof Project K along the lines at angle θ to get a height function h : [0,∞) → R≥0;
in Fig. 2, h(	) is the length of the thick segment. Now if A(	) = ∫ 	

0 h(	′) d	′ then
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Fig. 2 Illustration of the
function h

Fig. 3 Illustration of A(α,β)

f (exp(−A(	))) = h(	). Thus we see that it suffices to show that the function:

h(	)√
A(	)

(2.3)

is decreasing. Differentiating with respect to 	, we see that it suffices to show that

h(	)2 − 2h′(	)A(	) ≥ 0. (2.4)

For 	 = 0, the left-hand side is clearly non-negative, and the derivative of the left-
hand side equals −2h′′(	)A(	), which is ≥ 0 by concavity of h. �

When proving central limit theorems, it is important to decompose N and A into
local pieces. Thus we define N(α,β) to equal the number of edges with angle in the
interval (α,β). Then it is easy to see that

N = N(α1, α2) + N(α2, α2) + · · · + N(αL,α1). (2.5)

A similar decomposition is valid for A, where A(α,β) is best explained graphically
in Fig. 3.

Consider for the moment the Poisson model, and let X denote N or A. In [3], it
is shown that if one chooses the partition so that each interval [αi,αi+1] has con-
stant affine invariant measure (a notion from [3] which will not concern us here),
then X(αi,αi+1) has constant expectation and variance, and the correlation between
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X(αi,αi+1) and X(αj ,αj+1) is exponentially decreasing in |i − j | (specifically, an
α-mixing estimate is proved). From these facts, along with a general lower bound on
the variance of X due to Bárány and Reitzner [1] (their result also holds in higher
dimensions), it follows on general principles that a central limit theorem holds for X

in the Poisson model.

3 Proofs

Let us begin by stating the lemmas which we will prove.

Lemma 3.1 As n → ∞, we have:

sup
x

∣
∣P

(

A(ΠK,n) ≤ x
) − P

(

A(PK,n) ≤ x
)∣
∣ → 0, (3.1)

sup
x

∣
∣P

(

N(ΠK,n) ≤ x
) − P

(

N(PK,n) ≤ x
)∣
∣ → 0, (3.2)

uniformly over all convex K of unit area.

Lemma 3.2 As n → ∞, we have:
∣
∣E

[

N(ΠK,n)
] − E

[

N(PK,n)
]∣
∣ = o

(√

VarN(ΠK,n)
)

, (3.3)
∣
∣E

[

A(ΠK,n)
] − E

[

A(PK,n)
]∣
∣ = o

(√

VarA(ΠK,n)
)

, (3.4)

uniformly over all convex K of unit area.

Lemma 3.3 As n → ∞, we have:

VarN(ΠK,n) ∼ VarN(PK,n), (3.5)

VarA(ΠK,n) ∼ VarA(PK,n), (3.6)

uniformly over all convex K of unit area.

Lemma 3.1 says essentially that as n → ∞, the functionals of PK,n and ΠK,n

have asymptotically the same distributions. Lemmas 3.2 and 3.3 give us equivalence
of the expectation and variance in the two models. It is elementary to observe that
these lemmas combine to give Corollary 1.2 (and also Corollary 1.4). We note that
Van Vu has observed (3.4) in [7, p. 224, Proposition 3.1 and Remark 3.5]; our proof
is different.

3.1 Proof of Lemma 3.1

Proof We follow and slightly correct an argument of Reitzner [5, pp. 492–493]. We
thank the referee for asking us to clarify our use of Reitzner’s argument, since it
was this that led us to realize the error. The argument below becomes fallacious if
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we write P(X ≤ x|E) (as Reitzner does) everywhere we have P(X ≤ x &E). The
problem is that the first equality in (3.9) (which is Reitzner’s Equation (13)) is false
in this case (note our E is Reitzner’s A). Thus the proof in [5] is typographically very
close to being correct; there is no problem once we replace every P(X ≤ x|E) with
P(X ≤ x &E).

First, fix ε > 0 and let Sε = ⋃

θ∈R/2π C(θ, ε) be the union of all caps of area ε.
Let EP and EΠ respectively be the events that ∂P and ∂Π are completely contained
in Sε . Now, trivially, we have that P(EP ),P (EΠ) → 1 as n → ∞, uniformly over
all K of unit area.

If B is any event, then |P(B) − P(B &E)| ≤ 1 − P(E). Letting B be X ≤ x, we
have:

sup
K

sup
x

∣
∣P

(

X(ΠK,n) ≤ x
) − P

(

X(ΠK,n) ≤ x &EΠ

)∣
∣ → 0, (3.7)

sup
K

sup
x

∣
∣P

(

X(PK,n) ≤ x
) − P

(

X(PK,n) ≤ x &EP

)∣
∣ → 0, (3.8)

as n → ∞, where X denotes either N or A.
Now consider P(X(ΠK,n) ≤ x &EΠ) and P(X(PK,n) ≤ x &EP ). Observe that

if we condition both probabilities on the number of points of the process in Sε , then
they become equal. Let us call this probability P(X ≤ x &E | k). In other words,
suppose we place k points uniformly at random in Sε . Then P(X ≤ x &E | k) is
defined to equal the probability that the boundary of their convex hull is contained in
Sε and X ≤ x. Thus setting p = Area(Sε), we find

∣
∣P

(

X(ΠK,n) ≤ x &EΠ

) − P
(

X(PK,n) ≤ x &EP

)∣
∣

=
∣
∣
∣
∣
∣

∞
∑

k=0

(np)k

k! e−npP (X ≤ x &E | k) −
(

n

k

)

pk(1 − p)n−kP (X ≤ x &E | k)

∣
∣
∣
∣
∣

≤
∞
∑

k=0

∣
∣
∣
∣

(np)k

k! e−np −
(

n

k

)

pk(1 − p)n−k

∣
∣
∣
∣
≤ 2p (3.9)

where
(
n
k

) = 0 if k > n. The last bound is due to Vervaat [6]. Combining (3.7) and
(3.8) with (3.9), we find that

lim sup
n→∞

sup
K

sup
x

∣
∣P

(

X(ΠK,n) ≤ x
) − P

(

X(PK,n) ≤ x
)∣
∣ ≤ 2 sup

K

Area(Sε). (3.10)

But we may choose ε > 0 arbitrarily, so we are done. �

It may indeed be possible to take a similar strategy to prove Lemmas 3.2 and 3.3.
However, in this case bounding the sum in (3.9) becomes harder, since we have expec-
tations instead of probabilities, and the former are not bounded by 1. Also, proving
analogues of (3.7) and (3.8) becomes nontrivial. Since we need good estimates for
Lemmas 3.2 and 3.3, choosing ε correctly as a function of n and estimating P(EΠ)

and P(EP ) becomes an issue.
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3.2 Proofs of Lemmas 3.2 and 3.3

The proofs of Lemmas 3.2 and 3.3 will make use of some simple integral geometric
expressions for the expectations and variances in question. The derivation of these
expressions is completely elementary. The integrals appear complicated, though the
point is not their exact form, but rather that they are almost identical for PK and
ΠK . With the appropriate integrals in hand, the desired convergence essentially re-
duces to the fact that (1 + α

n
)n → eα as n → ∞. So, before we begin the proofs, we

make some elementary observations about this convergence. If e−n < x ≤ 1, then 0 <

1 + logx
n

≤ 1, so

n log

(

1 + logx

n

)

≤ n
logx

n
= logx ⇒ 1

x

(

1 + logx

n

)n

≤ 1. (3.11)

If additionally it holds that (logx)2 ≤ n
2 , then

n log

(

1 + logx

n

)

= n

(
logx

n
+ O

(
(logx)2

n2

))

= logx + O

(
(logx)2

n

)

⇒ 1

x

(

1 + logx

n

)n

= 1 + O

(
(logx)2

n

)

. (3.12)

For the proofs of Lemmas 3.2 and 3.3, it is most convenient to use the normaliza-
tion Area(K) = n and λ = 1 (breaking from our previous convention). Thus n will
be a positive integer, K will have area n, and we let ΠK = ΠK,1 and PK = PK,n.

Proof of Lemma 3.2 Let X denote either N or A. In the derivation of the integral
geometric expressions, we treat ΠK and PK simultaneously.

The following formula is tautological:

E[X] =
∫

R/2π

∫

K

IX(p, θ) dθ, (3.13)

IX(p, θ) = d

dh
E

[

X(θ, θ + h) | W(θ) = p
]
∣
∣
∣
∣
h=0

dP
(

W(θ) = p
)

. (3.14)

Now let us derive expressions for IX(p, θ) for the uniform and Poisson mod-
els, respectively. It will be convenient to let yθ,p equal f (p, θ)−1 times the dis-
tance from p to ∂K in the positive θ -direction. For every angle θ , the coordinates
xp,θ := exp(−A(p, θ)) and yp,θ give a bijection between K and [e−n,1] × [0,1]. It
will prove very useful to express points in K in terms of these coordinates, mostly
because dP (WΠ(θ) = p) = exp(−A(p, θ)) dp = dx dy.

First, let us observe that d
dh

E[X(θ, θ + h) | W(θ) = p]|h=0 is equal to:

For ΠK and X = N :
1

2
y2
p,θf (p, θ)2; (3.15)

For PK and X = N :
1

2
y2
p,θf (p, θ)2 n − 1

n − A(p, θ)
; (3.16)
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For ΠK and X = A:
1

2
y2
p,θf (p, θ)2; (3.17)

For PK and X = A:
1

2
y2
p,θf (p, θ)2. (3.18)

We also observe that dP (W(θ) = p) equals:

For ΠK : exp
(−A(p, θ)

)

dp; (3.19)

For PK :

(

1 − A(p, θ)

n

)n
n

n − A(p, θ)
dp. (3.20)

Using coordinates x and y in the integral (3.13) and substituting our expressions
for IX(p, θ), we observe that we can integrate out yp,θ in every case. The reader can
check that the final expressions are:

E[X] =
∫

R/2π

∫ 1

e−n

IX(x, θ) dx dθ (3.21)

where IX(x, θ) equals:

For ΠK and X = N :
1

6
f (p, θ)2; (3.22)

For PK and X = N :
1

6
f (p, θ)2 1

x

(

1 + logx

n

)n−2(

1 − 1

n

)

; (3.23)

For ΠK and X = A:
1

6
f (p, θ)2; (3.24)

For PK and X = A:
1

6
f (p, θ)2 1

x

(

1 + logx

n

)n−1

. (3.25)

We now proceed to use the representations (3.21) and (3.22)–(3.25) to show that the
expectations of X(ΠK) and X(PK) are the same up to a relative error of O(n−1+ε).

First, observe that our estimate on the growth of f (Lemma 2.6) shows that cutting
off the integral (3.21) to x ≥ n−B for some large fixed B incurs a relative error of no
more than n−B+ε . Now for x ∈ [n−B,1], we may use (3.12) to see that the relative

error incurred by replacing 1
x

(

1 + logx
n

)n by 1 is no more than (logn)2

n
. Observe also

that for x ∈ [n−B,1], we know that replacing 1 + logx
n

with 1 incurs a relative error

of no more than logn
n

. These operations suffice to transform between the expressions
for E[X(ΠK)] and E[X(PK)], so we have shown that they are equal up to a relative
error of O(n−1+ε).

Thus to finish the proof, we just need to show that

E
[

X(Π)
]

n−1+ε = o
(√

VarX(Π)
)

. (3.26)

By a result of Bárány and Reitzner [1], VarX(Π) � E[X(Π)], so it suffices to show
that

√
E[X(Π)] = o(n1−ε). It is trivial to see that E[X(Π)] ≤ n, so we are done. �
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Proof of Lemma 3.3 This proof follows the same outline, so we will be a little less
explicit; the interested reader can write down the long integrals if they so desire.
Again, we let X denote either N or A.

Our plan is to show that E[X2] is the same in the two cases up to a relative error
of O(n−1+ε).

We think of X as being the integral of a random measure μX on R/2π . This ran-
dom measure is just given by the family of variables X(α,β) (explicitly, the measure
of the interval [α,β] is X(α,β)). Now X2 is just the total mass of μX ⊗ μX on
(R/2π)2. Using linearity of expectation, we just need to take the dθ dψ integral of
the expectation of X(θ, θ + dθ)X(ψ,ψ + dψ). This expectation, in turn, we condi-
tion on W(θ) and W(ψ), writing it as an integral dP ((W(θ),W(ψ)) = (p, q)) over
K × K . We will often implicitly use the fact that the integrand is positive.

The first step is to show that we may remove the region where either
exp(−A(p, θ)) < n−B or exp(−A(q,ψ)) < n−B and incur a relative error of
O(n−1+ε). By symmetry, let us deal with the region where exp(−A(p, θ)) < n−B .
Then the contribution to the total integral representing E[X2] is just
∫

R/2π

∫

{p∈K:A(p,θ)≥B logn}
d

dh
E

[

X(θ, θ +h)·X | W(θ) = p
]
∣
∣
∣
∣
h=0

dP
(

W(θ) = p
)

dθ.

(3.27)
Now the X in the expectation contributes at most a multiplicative factor of n + 2.
With this X removed, the integral becomes something we already estimated in the
proof of Lemma 3.2 as being O(n−B+ε). Thus we are done.

The second step is to show that on the region where A(p, θ) and A(q,ψ) are both
≤ B logn, the integrands (corresponding to E[X(θ, θ + dθ)X(ψ,ψ + dψ)] in the
respective models) are equal up to a relative error of O(n−1+ε). As before, this splits
up into two problems:

First, we need to show that the probability densities dP ((W(θ),W(ψ)) = (p, q))

in the cases of ΠK and PK are the same up to a relative error of O(n−1+ε).
As before, we may express dP ((W(θ),W(ψ)) = (p, q)) elementarily in terms
of A(p,q, θ,ψ) := Area(C(p, θ) ∪ C(q,ψ)). Then the fact that this quantity is
O(logn) means we may apply (3.12) to see that the densities are equal up to a rela-
tive error of O(n−1+ε) (note that this is true even for the singular part of the measure
dP ((W(θ),W(ψ)) = (p, q)) occurring on the diagonal p = q).

Second, we need to show that the incremental expectations E[X(θ, θ + dθ)X(ψ,

ψ + dψ)] are the same up to a relative error of O(n−1+ε). Again, this just involves
writing equations such as (3.15)–(3.18). Then the fact that A(p,q, θ,ψ) = O(logn)

shows easily that they coincide up to a relative error of O(n−1+ε). Though it presents
no difficulty in the proof, one should note that when X = N , there is a singular com-
ponent to the measure E[X(θ, θ + dθ)X(ψ,ψ + dψ)] on the diagonal θ = ψ .

We have shown that
∣
∣E

[

X(ΠK)2] − E
[

X(PK)2]
∣
∣ � n−1+ε

E
[

X(ΠK)2]. (3.28)

Now E[X(ΠK)2] = E[X(ΠK)]2 + VarX(ΠK). Thus we have

∣
∣E

[

X(ΠK)2] − E
[

X(PK)2]
∣
∣ � n−1+ε max

(

E
[

X(ΠK)
]2

,VarX(ΠK)
)

. (3.29)
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In the proof of Lemma 3.2, we showed that E[X(ΠK)] and E[X(PK)] are the same
up to a relative error of O(n−1+ε). This implies then that

∣
∣E

[

X(ΠK)
]2 − E

[

X(PK)
]2∣

∣ � n−1+ε
E

[

X(ΠK)
]2

. (3.30)

Thus it follows that
∣
∣VarX(ΠK) − VarX(PK)

∣
∣ � n−1+ε max

(

E
[

X(ΠK)
]2

,VarX(ΠK)
)

. (3.31)

Thus to finish the proof, we just need to show that n−1+ε
E[X(Π)]2 = o(Var[X(Π)]).

By a result of Bárány and Reitzner [1], VarX(Π) � E[X(Π)], so it suffices to show
that E[X(Π)] = o(n1−ε). It is a well known estimate (see [3]) that E[X(Π)] � n1/3,
so we are done. �
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