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Abstract We establish a large deviation principle for the occupation distribution
of a symmetric Markov process with Feynman–Kac functional. As an application,
we show the Lp-independence of the spectral bounds of a Feynman–Kac semi-
group. In particular, we consider one-dimensional diffusion processes and show that
if no boundaries are natural in Feller’s boundary classification, the Lp-independence
holds, and if one of the boundaries is natural, the Lp-independence holds if and only
if the L2-spectral bound is non-positive.
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1 Introduction

In this paper we study Donsker–Varadhan type large deviations for symmetric
Markov processes with Feynman–Kac functional; in particular, we prove the uni-
form upper bound for each closed set and we apply it to show the Lp-independence
of spectral bounds of Feynman–Kac semigroups.

Let M = (Ω,Xt ,Px, ζ ) be an m-symmetric Markov process on a locally compact
separable metric space X. Here m is a positive Radon measure with full support and
ζ is the lifetime. We impose on the Markov process M the assumptions (I), (II) and
(III) below. Let (E , D(E )) be the Dirichlet form on L2(X;m) generated by M. Let μ
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be a Green-tight Kato measure (in notation, μ ∈ K∞) and A
μ
t the positive continuous

additive functional in the Revuz correspondence to μ. We then define the Feynman–
Kac semigroup {pμ

t }t≥0 by

p
μ
t f (x) = Ex

(
eA

μ
t f (Xt ); t < ζ

)

for a bounded Borel function f on X. We may regard {pμ
t }t≥0 as the semigroup

generated by the Schrödinger form (E μ, D(E )):

E μ(u, v) = E (u, v) −
∫

X

u(x)v(x) dμ(x), u, v ∈ D(E ). (1.1)

Let P be the set of probability measures on X equipped with the weak topology. We
define the function Iμ on P by

Iμ(ν) =
{

E μ(
√

f ,
√

f ) if ν = f · m,
√

f ∈ D(E ),

∞ otherwise.
(1.2)

Given ω ∈ Ω with 0 < t < ζ(ω), we define the occupation distribution Lt(ω) ∈ P by

Lt(ω)(A) = 1

t

∫ t

0
1A

(
Xs(ω)

)
ds

for a Borel set A of X, where 1A is the indicator function of the set A. Then we will
establish the main theorem:

Theorem 1.1 Assume (I), (II) and (III) below. Let μ be a measure in K∞.

(i) For each open set G ⊂ P ,

lim inf
t→∞

1

t
log Ex

(
eA

μ
t ;Lt ∈ G, t < ζ

) ≥ − inf
ν∈G

Iμ(ν).

(ii) For each closed set K ⊂ P ,

lim sup
t→∞

1

t
log sup

x∈X

Ex

(
eA

μ
t ;Lt ∈ K, t < ζ

) ≤ − inf
ν∈K

Iμ(ν).

The infimum of Iμ(ν) attains at the normalized ground state of the generalized
Schrödinger operator, the generator of the semigroup {pμ

t } (see Remark 4.1). In this
sense, Theorem 1.1 says a large deviation from the ground state, not from the in-
variant measure. The essential idea of the proof for Theorem 1.1 lies in Donsker–
Varadhan [9], where the one-dimensional Brownian motion was treated; however,
since A

μ
t is not generally regarded as a function of Lt , we need to extend the

Donsker–Varadhan’s argument to Markov processes with Feynman–Kac functional.
The lower bound (i) was proved in [21]. An important fact for the proof is that any

irreducible symmetric Markov process can be transformed to a symmetric ergodic
process by a certain supermartingale multiplicative functional (Theorem 3.1). For the
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proof of the upper bound (ii), we will first introduce a new rate function which is re-
garded as a version of so-called I-function introduced in Donsker and Varadhan [10];
suppose that μ ∈ K∞ is gaugeable, that is,

sup
x∈X

Ex

(
e
A

μ
ζ
)
< ∞

and let h(x) = Ex(exp(A
μ
ζ )). After consideration of the Feynman–Kac functional,

we define the modified I-function by

I (ν) = − inf
φ∈D+(Hμ)

ε>0

∫

X

Hμφ

φ + εh
dν, ν ∈ P , (1.3)

where Hμ is the generalized Schrödinger operator and D+(Hμ) is its suitable do-
main. The operator Hμ is formally written as Hμ = L + μ, where L is the generator
of the Markov process M. Next we will show the upper bound with this modified
I-function I and finally identify the function I with Iμ by the similar argument as
in [10]. The function h is said to be a gauge function and some necessary and suf-
ficient conditions for the measure μ being gaugeable are known (cf. [3, 6]). For an
analytic condition for the gaugeability, see Theorem 2.1 below.

In [20, 21], we dealt with the large deviation principle for symmetric Markov
processes with finite lifetime or Feynman–Kac functional. Theorem 1.1 can be re-
garded as a final result in the sense that it says the full large deviation principle for
symmetric Markov processes with Feynman–Kac functional; in [20] we proved Theo-
rem 1.1 for symmetric Markov processes without Feynman–Kac functional. We there
used the identity function 1 for the gauge function h to define the I-function. Noting
that the identity function is harmonic for the Markov generator L and the gauge func-
tion h is harmonic for the Schrödinger operator Hμ, we can regard the function I as
an extension of the I-function in [20]. In [21] we proved the upper bound (ii) for each
compact set of P without assuming (III). We there did not need to add εh in (1.3)
because the Markov process was supposed to be conservative and the I-function was
defined by taking the infimum over uniformly positive functions in a domain of Hμ.
We can show that the function I is independent of h if the function h is uniformly
positive and bounded, that is, I is identical to the Schrödinger form (1.2). This is an
extension of the known fact due to Donsker and Varadhan that if a Markov process
is symmetric, then the associated I-function is identified with its Dirichlet form. We
would like to emphasize that the definition (1.3) of the rate function I is a key point
for the proof of the upper bound, Theorem 1.1(ii).

A technically important remark on the proof of Theorem 1.1 is that it suffices to
prove it for the β-subprocess of M, the killed process by exp(−βt),β > 0. Owing
to this, we may assume that M is transient. Moreover, since every Green-tight mea-
sure becomes gaugeable with respect to the β-subprocess of M if β is large enough
(Lemma 4.4), we may also assume that μ is gaugeable. The β-subprocess is a useful
tool in studying the original process. This tool becomes available by extending the
large deviation to symmetric Markov processes with finite lifetime.
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When G = K = P , Theorem 1.1 tells us that

lim
t→∞

1

t
log Ex

(
eA

μ
t ; t < ζ

)

= lim
t→∞

1

t
log sup

x∈X

Ex

(
eA

μ
t ; t < ζ

)

= − inf

{
E μ(u,u) : u ∈ D(E ),

∫

X

u2 dm = 1

}
. (1.4)

Equation (1.4) says that the spectral bound of the semigroup p
μ
t on Lp(X;m) is

independent of p; indeed, let ‖pμ
t ‖p,p be the operator norm of p

μ
t from Lp(X;m) to

Lp(X;m) and define the Lp-spectral bound of p
μ
t by

ρp(μ) = − lim
t→∞

1

t
log‖pμ

t ‖p,p, 1 ≤ p ≤ ∞. (1.5)

Since

sup
x∈X

Ex

(
eA

μ
t ; t < ζ

) = sup
x∈X

p
μ
t 1(x) = ‖pμ

t ‖∞,∞,

(1.4) implies that ρ∞(μ) = ρ2(μ) and consequently ρp(μ) is independent of p by
the Riesz–Thorin interpolation theorem ([7, 1.1.5]).

We gave in [24] an alternate proof of the Lp-independence for a different class of
symmetric Markov processes whose semigroup is conservative, transforms C∞(X) to
itself and does not always satisfy (III). Here C∞(X) is the set of continuous functions
vanishing the infinity Δ. Our method in [24] is as follows: we first note that if the state
space is compact, only the Feller property is necessary to verify the upper bound. We
thus extend the Markov process M to the one-point compactification XΔ by making
the infinity Δ a trap, and prove the upper bound for this extended Markov process.
Then the rate function becomes a function on the set of probability measures on XΔ,
not on X; the adjoined point Δ makes a contribution to the rate function. We showed
in [24] that the infimum of the rate function on the set of probability measures on
XΔ is equal to the infimum of the original rate function on the set of probability
measures on X, if and only if the L2-spectral bound is non-positive. Consequently
we obtained a necessary and sufficient condition for the Lp-independence. For non-
local Feynman–Kac semigroups, see [25, 27].

The uniform upper bound (ii) is crucial for the proof of Lp-independence, and so is
the assumption (III). In Sect. 5, we will consider one-dimensional diffusion processes
and show that if no boundaries are natural in Feller’s boundary classification, the as-
sumption (III) is fulfilled. As a result, the Lp-independence holds if no boundaries are
natural. We see by exactly the same argument as in [24] that if one of boundaries is
natural, then the Lp-independence holds if and only if the L2-spectral bound is non-
positive. The case treated in [24] is corresponding to when the both boundaries are
natural. For example, consider the one-dimensional diffusion process with generator
(1/2)Δ + k · d/dx on (−∞,∞). Here k is a constant. Then the both boundaries are
natural and ρ2(μ) equals k2/2; however, ρ∞(μ) = 0 because of the conservativeness.
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Consequently, Theorem 1.1 does not hold when G and K are the whole space P . This
example was given in [11]. Next consider the Ornstein–Uhlenbeck process, the diffu-
sion process generated by (1/2)Δ−x ·d/dx on (−∞,∞). Then both boundaries are
natural and ρ2(μ) and ρ∞(μ) are zero, consequently the Lp-independence follows;
however, Theorem 1.1 is not applicable because the uniform upper bound (ii) is not
known, while the locally uniform upper bound was shown in [11]. In this sense, we
can say that the Lp-independence of the Ornstein–Uhlenbeck operator holds for the
different reason from Theorem 1.1 below.

The Gärtner–Ellis theorem is a useful theorem for the proof of the large deviation
principle (cf. [8]). To prove the large deviation principle of A

μ
t /t by employing the

Gärtner–Ellis theorem, we need to prove the existence of the logarithmic moment
generating function of A

μ
t ; that is, for each θ ∈ R, the limit

C(θ) := lim
t→∞

1

t
log Ex

(
eθA

μ
t ; t < ζ

)

exists. Equation (1.4) implies that C(θ) exists and equals to −ρ2(θμ). We will dis-
cuss the large deviation principle for additive functionals of one-dimensional diffu-
sion processes (Theorem 5.2).

2 Notations and Some Facts

Let X be a locally compact separable metric space and m a positive Radon measure
on X with full support. Let M = (Ω,F ,Ft , θt ,Px,Xt , ζ ) be an m-symmetric on X.
Here {Ft }t≥0 is the minimal (augmented) admissible filtration, θt , t ≥ 0, are the shift
operators satisfying Xs(θt ) = Xs+t identically for s, t ≥ 0. Let XΔ = X ∪ {Δ} be the
one-point compactification of X, and ζ be the lifetime of M, ζ = inf{t ≥ 0 : Xt = Δ}.
Let {pt }t≥0 be the semigroup and {Rα}α≥0 the resolvent:

ptf (x) = Ex

(
f (Xt )

)
, Rαf (x) =

∫ ∞

0
e−αtptf (x) dt.

We then impose three assumptions on M.

(I) (Irreducibility) If a Borel set A is pt -invariant, i.e., pt(1Af )(x) = 1Aptf (x) m-
a.e. for any f ∈ L2(X;m) ∩ Bb(X) and t > 0, then A satisfies either m(A) = 0
or m(X \ A) = 0. Here Bb(X) is the space of bounded Borel functions on X.

(II) (Strong Feller Property) For each t , pt(Bb(X)) ⊂ Cb(X), where Cb(X) is the
space of bounded continuous functions on X.

(III) For any ε > 0, there exists a compact set K such that

sup
x∈X

R11Kc(x) ≤ ε.

Here 1Kc is the indicator function of the complement of the compact set K .

Remark 2.1 The assumption (II) implies that the transition probability kernel
pt (x, dy) is absolutely continuous with respect to m, pt(x, dy) = pt (x, y) dm(y).
The next assumption is a resolvent version of (II):
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(II′) (Resolvent Strong Feller Property) For each α > 0, Rα(Bb(X)) ⊂ Cb(X),
where Cb(X) is the space of bounded continuous functions.

Under the assumption (II′) the resolvent kernel Rα(x, dy) is absolutely continuous
with respect to m, Rα(x, dy) = Rα(x, y) dm(y), and so is the transition probability
pt (x, dy) by [13, Theorem 4.2.4]. The assumption (II′) is weaker than the assump-
tion (II) and can be checked more easily for time-changed processes (see Appendix).

Remark 2.2 We know from the resolvent equation that ‖R11Kc‖∞ ≤ α‖Rα1Kc‖∞
for α > 1 and ‖R11Kc‖∞ ≤ (1/α)‖Rα1Kc‖∞ for α < 1. Hence the α-resolvent Rα

satisfies the assumption (III) for all α > 0.

Remark 2.3 (i) If m(X) < ∞ and ‖R1‖∞,1 < ∞, then

sup
x∈X

R11Kc(x) = ‖R1‖∞,1 · m(
Kc

)

and the assumption (III) is fulfilled. Here, ‖R1‖∞,1 is the operator norm of R1 from
L1(X;m) to L∞(X;m).

(ii) If R11 ∈ C∞(X), then the assumption (III) is fulfilled. Indeed, since by the
strong Markov property

R11Kc(x) = Ex

(∫ ∞

0
e−t1Kc(Xt ) dt

)
= Ex

(∫ ∞

σKc

e−t1Kc(Xt ) dt

)

= Ex

(
e−σKc R11Kc(XσKc )

)

(σKc = inf{t > 0;Xt ∈ Kc}), we have

sup
x∈X

R11Kc(x) = sup
x∈Kc

R11Kc(x) ≤ sup
x∈Kc

R11(x).

Remark 2.4 The assumption (III) is equivalent to the statement that the measure m is
Green-tight in Definition 2.1(ii) below.

We further assume that M is transient; however, this assumption is not necessary
to prove Theorem 1.1 because it is enough to do it for the β-subprocess of M. Note
that the β-subprocess also satisfies the assumptions (I), (II) and (III). We denote by
(E , D(E )) the Dirichlet form generated by M ([13, p. 29]). Every function u in D(E )

admits a quasi-continuous version ũ (see [13, Theorem 2.1.3]). In the sequel we al-
ways assume that every function u ∈ D(E ) is represented by its quasi-continuous
version. A positive Borel measure μ on X is said to be smooth, if there exists a pos-
itive continuous additive functional (PCAF in abbreviation) A

μ
t of M such that for

any non-negative Borel function f ∈ B+(X) and γ -excessive function h,

lim
t→0

1

t
Ehm

(∫ t

0
f (Xs) dAμ

s

)
=

∫

X

f (x)h(x) dμ(x) (2.1)

(see [13, p. 188]). The measure μ is called the Revuz measure corresponding to A
μ
t .

We introduce classes of smooth measures.
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Definition 2.1 (i) A positive smooth Radon measure μ on X is said to be in the Kato
class (in notation, μ ∈ K), if

lim
t↓0

sup
x∈X

Ex

(
A

μ
t

) = 0. (2.2)

(ii) A measure μ ∈ K is said to be Green-tight (in notation, μ ∈ K∞), if for any
ε > 0, there exists a compact set K ⊂ X such that

sup
x∈X

∫

Kc

R(x, y) dμ(y) < ε, (2.3)

where R(x, y) denotes the 0-resolvent density R0(x, y).

Remark 2.5 We suppose that every measure in K is a Radon measure. As a result,
the associated PCAF is of no exceptional set, that is, a classical one ([13, Theo-
rem 5.1.7], [2, Proposition 3.8]). We know from [2, Theorem 3.9] that for all x ∈ X,

Ex

(
A

μ
t

) =
∫ t

0

∫

X

pt (x, y) dμ(y), Ex

(
A

μ
ζ

) =
∫

X

R(x, y) dμ(y). (2.4)

Remark 2.6 The definition of K∞ is different from that of Z.-Q. Chen [3, Defini-
tion 2.2], where he assumes in addition that there exists a positive constant δ such
that for all measurable sets B ⊂ K with μ(B) < δ,

sup
x∈X

∫

B

R(x, y) dμ(y) < ε. (2.5)

Chen in [3] showed that if a measure μ ∈ K∞ satisfies (2.5), two statements in Propo-
sition 2.1 below are equivalent. We only need the sufficient part for the proof of The-
orem 1.1. For this reason, we remove the condition (2.5) in the definition of K∞.

We see from [2, Lemma 3.5] that a measure μ in K is β-potential-bounded,
supx∈X Rβμ(x) < ∞, for any β > 0. Here

Rβμ(x) =
∫

X

Rβ(x, y) dμ(y).

Equation (2.2) in Definition 2.1(i) is equivalent to

lim
β→∞‖Rβμ‖∞ = 0 (2.6)

(e.g. [1]). Moreover, it is known from [19, Theorem 3.1] that
∫

X

u2dμ ≤ ‖Rβμ‖∞ · Eβ(u,u). (2.7)

We define the Feynman–Kac semigroup {pμ
t }t≥0 by

p
μ
t f (x) = Ex

(
eA

μ
t f (Xt ); t < ζ

)
.

Then the semigroup {pμ
t }t≥0 possesses the following properties:
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Theorem 2.1 Let μ = μ+ − μ− ∈ K − K.

(i) There exist constants c and β such that

∥∥p
μ
t

∥∥
p,p

≤ ceβt , 1 ≤ p ≤ ∞, t > 0.

Here ‖ ‖p,p means the operator norm on Lp(X;m);
(ii) {pμ

t }t≥0 is a strongly continuous symmetric semigroup on L2(X;m) and the
closed form generated by p

μ
t is identical to (E μ, D(E ));

(iii) For each f ∈ Bb(X), p
μ
t f ∈ Cb(X).

Proof (i) This assertion is a consequence of [2, Proposition 5.2, Theorem 6.1(i)].
(ii) By (2.7), the Dirichlet space D(E ) is contained in L2(X;μ). Thus this asser-

tion follows from [2, Theorem 6.1(ii)].
(iii) See [6, Proposition 3.12]. �

For a measure μ in K, define

λ(μ) = inf

{
E (u,u) : u ∈ D(E ),

∫

X

u2(x)μ(dx) = 1

}
. (2.8)

On account of Lemma 3.1 in [22], we see that λ(μ) is the principal eigenvalue of the
time-changed process of M by A

μ
t . If a measure μ ∈ K satisfies

sup
x∈X

Ex

(
e
A

μ
ζ
)
< ∞,

then μ is said to be gaugeable.

Proposition 2.1 Let μ ∈ K∞. Then

λ(μ) > 1 �⇒ sup
x∈X

Ex

(
e
A

μ
ζ
)
< ∞.

For the proof of Proposition 2.1 see Appendix.
The super-gauge theorem follows from Proposition 2.1 ([3, Theorem 5.4]).

Corollary 2.1 If μ ∈ K∞ satisfies λ(μ) > 1, then there exists a positive constant ε

such that (1 + ε)μ is gaugeable.

Proof There exists a positive constant ε such that λ(μ) > 1 + ε. By the definition of
λ(μ),

λ
(
(1 + ε)μ

) = 1

1 + ε
λ(μ) > 1.

�
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3 Transform of Symmetric Markov Processes

In [4], we studied a class of supermartingale multiplicative functionals which trans-
form each symmetric Markov process to an ergodic one. For the proof of Theo-
rem 1.1, the transformation played a crucial role.

Let μ ∈ K∞ and κ(μ) the constant in Theorem 2.1(i). If α > κ(μ) and f ∈ Bb(X),
we define the resolvent R

μ
α by

Rμ
α f (x) = Ex

(∫ ∞

0
e−αt+A

μ
t f (Xt ) dt

)
.

We set

D+
(

Hμ
) = {

Rμ
α f : α > κ(μ),f ∈ L2(X;m) ∩ Cb(X),f ≥ 0 and f �≡ 0

}
,

and define the generator Hμ by

Hμu = αu − f, u = Rμ
α f ∈ D+

(
Hμ

)
. (3.1)

Here κ(μ) is defined by

κ(μ) = lim
t→∞

1

t
log

∥∥p
μ
t

∥∥∞,∞.

Theorem 2.1(i) says that κ(μ) is finite and the function R
μ
α f is finite for α > κ(μ)

and f ∈ L2(X;m) ∩ Cb(X). Each function φ = R
μ
α f ∈ D+(Hμ) is strictly positive

because Px(σO < ζ) > 0 for any x ∈ X by the assumption (I). Here O is a non-empty
open set {x ∈ X : f (x) > 0} and σO = inf{t > 0 : Xt ∈ O}.

Suppose that a measure μ ∈ K∞ satisfies λ(μ) > 1. Let

h(x) = Ex

(
e
A

μ
ζ
)
, (3.2)

which is said to be the gauge function of μ. Then Proposition 2.1 yields

1 ≤ h(x) ≤ Ch

(
:= sup

x∈X

h(x)
)

< ∞.

Remark 3.1 If a measure μ in K∞ satisfies λ(μ) > 1, then

∥
∥p

μ
t

∥
∥∞,∞ ≤ sup

x∈X

Ex

(
e
A

μ
ζ
)
< ∞,

and thus

lim
t→∞

1

t
log

∥∥p
μ
t

∥∥∞,∞ ≤ 0.

Hence we can take any α > 0 in the definition of D+(Hμ).

Lemma 3.1 The function h defined in (3.2) is bounded continuous.
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Proof Since by the Markov property

eA
μ
t h(Xt )1{t<ζ } = eA

μ
t EXt

(
e
A

μ
ζ
)
1{t<ζ } = Ex

(
e
A

μ
t +A

μ
ζ(θt )

(θt )1{t<ζ }|Ft

)

= Ex

(
e
A

μ
ζ 1{t<ζ }|Ft

)
,

we have

p
μ
t h(x) = Ex

(
e
A

μ
ζ ; t < ζ

)
, (3.3)

and so by Hölder’s inequality

h(x) − p
μ
t h(x) = Ex

(
e
A

μ
ζ ; t ≥ ζ

)

≤ (
Ex

(
e
(1+ε)A

μ
ζ
))1/(ε+1) · Px(t ≥ ζ )ε/(ε+1).

Since by Corollary 2.1

sup
x∈X

Ex

(
e
(1+ε)A

μ
ζ
)
< ∞,

and Px(t ≥ ζ ) = 1 − pt1(x) converges to 0 locally uniformly as t ↓ 0, we see that
p

μ
t h converges to h locally uniformly as t ↓ 0. The function p

μ
t h is continuous by [5]

and so is h. �

Lemma 3.2 Let h be the function defined in (3.2). Put h(Δ) = 1 and define

Mh
t = eA

μ
t h(Xt ) − h(X0).

Then Mh
t is a martingale with respect to (Px, {Ft }).

Proof Noting h(Δ) = 1, we have

Ex

(
eA

μ
t h(Xt )

) = Ex

(
eA

μ
t h(Xt ); t < ζ

) + Ex

(
e
A

μ
ζ ; t ≥ ζ

)
.

The first term on the right-hand side equals Ex(e
A

μ
ζ ; t < ζ ) by (3.3) and thus

Ex(e
A

μ
t h(Xt )) = h(x), that is, Ex(M

h
t ) = 0. Since

Mh
s+t = Mh

s + eA
μ
s Mh

t (θs),

we have

Ex

(
Mh

s+t |Fs

) = Mh
s + eA

μ
s EXs

(
Mh

t

) = Mh
s . �

Lemma 3.3 For φ = R
μ
α f ∈ D+(Hμ), let

M
μ,φ
t = eA

μ
t φ(Xt ) − φ(X0) −

∫ t

0
eA

μ
s Hμφ(Xs) ds.

Then M
μ,φ
t is a martingale with respect to (Px, {Ft }).
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Proof First we show that Ex(M
μ,φ
t ) = 0. By the Markov property

α · Ex

(∫ t

0
eA

μ
s Rμ

α f (Xs) ds

)

= α · Ex

(∫ t

0
eA

μ
s EXs

(∫ ∞

0
e−αu+A

μ
u f (Xu)du

)
ds

)

= α · Ex

(∫ t

0

(∫ ∞

0
Ex

(
e−αu+A

μ
s +A

μ
u (θs )f (Xu+s)|Fs

)
du

)
ds

)

= α · Ex

(∫ t

0
eαs

(∫ ∞

s

e−αu+A
μ
u f (Xu)du

)
ds

)
, (3.4)

and the right-hand side equals

Ex

(∫ t

0

(
eαu − 1

)
e−αu+A

μ
u f (Xu)du

)
+ Ex

(∫ ∞

t

(
eαt − 1

)
e−αu+A

μ
u f (Xu)du

)

by interchanging the order of integration. The first term equals

Ex

(∫ t

0
eA

μ
u f (Xu)du

)
− Ex

(∫ t

0
e−αu+A

μ
u f (Xu)du

)

and the second term equals

Ex

(
eA

μ
t EXt

(∫ ∞

0
e−αs+A

μ
s f (Xs) ds

))
− Ex

(∫ ∞

t

e−αu+A
μ
u f (Xu)du

)
.

Hence the left-hand side of (3.4) equals

Ex

(∫ t

0
eA

μ
u f (Xu)du

)
+ Ex

(
eA

μ
t Rμ

α f (Xt )
) − Rμ

α f (x),

which implies Ex(M
μ,φ
t ) = 0. Since M

μ,φ
s+t = M

μ,φ
s + eA

μ
s M

μ,φ
t (θs), we have the

lemma for the same reason as in Lemma 3.2. �

For φ = R
μ
α g ∈ D+(Hμ) and ε > 0, let φε = φ + εh and put

M
μ,φε
t = eA

μ
t φε(Xt ) − φε(X0) −

∫ t

0
eA

μ
s Hμφ(Xs) ds.

Then, by Lemmas 3.2 and 3.3, M
μ,φε
t is a martingale with respect to Px . Let M

[φε ]
t be

the martingale part of the semimartingale φε(Xt ) − φε(X0) = M
[φε ]
t + N

[φε ]
t . Then

M
μ,φε
t is also written as

M
μ,φε
t =

∫ t

0
eA

μ
s dM [φε ]

s , Px-a.e. x ∈ X. (3.5)
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Indeed, applying Itô’s formula to F(x, y) = xy, we see that

eA
μ
t φε(Xt ) − φε(X0) = F

(
eA

μ
t , φε(Xt )

) − F
(
eA

μ
0 , φε(X0)

)

=
∫ t

0
eA

μ
s dM [φε ]

s +
∫ t

0
eA

μ
s dN [φε ]

s +
∫ t

0
φε(Xs)e

A
μ
s dAμ

s ,

and thus the martingale part of eA
μ
t φε(Xt ) − φε(X0) equals the right-hand side

of (3.5).
Let us define the multiplicative functional (MF in abbreviation) L

φε
t by

L
φε
t = eA

μ
t · φε(Xt )

φε(X0)
exp

(
−

∫ t

0

Hμφ

φε

(Xs) ds

)
1{t<ζ }. (3.6)

When ε = 0, we write L
φ
t for L

φ0
t .

Lemma 3.4 For ε > 0,

L
φε
t − 1 =

∫ t

0

1

φε(X0)
exp

(
−

∫ s

0

Hμφ

φε

(Xu)du

)
dMμ,φε

s . (3.7)

Proof The right-hand side of (3.7) is equal to

1

φε(X0)

∫ t

0
exp

(
−

∫ s

0

Hμφ

φε

(Xu)du

)(
d
(
eA

μ
s φε(Xs)

) − eA
μ
s Hμφ(Xs) ds

)
.

Noting that

d

(
eA

μ
s φε(Xs) exp

(
−

∫ s

0

Hμφ

φε

(Xu)du

))

= exp

(
−

∫ s

0

Hμφ

φε

(Xu)du

)(
d
(
eA

μ
s φε(Xs)

) − eA
μ
s Hμφ(Xs) ds

)
,

we have the lemma. �

For ε = 0, define the sequence of open sets {Gn}∞n=1 by Gn = {x ∈ X : φ(x) > 1
n
}.

As remarked in the second paragraph of Sect. 3, the function φ is strictly posi-
tive continuous, and thus Gn ↑ X. Let τn be the first leaving time from Gn, τn =
inf{t > 0 : Xt �∈ Gn}. We have the next lemma in the same way as in Lemma 3.4.

Lemma 3.5 For each n,

L
φ
t∧τn

− 1 =
∫ t∧τn

0

1

φ(X0)
exp

(
−

∫ s

0

Hμφ

φ
(Xu)du

)
dMμ,φ

s . (3.8)
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We see from Lemmas 3.4 and 3.5 that for each ε ≥ 0

Ex

(
L

φε
t

) ≤ lim inf
n→∞ Ex

(
L

φε
t∧τn

) ≤ 1, x ∈ X,

and L
φε
t is a supermartingale MF. Denote by M

φε = (Ω,Xt ,P
φε
x , ζ ) the transformed

process of M by L
φε
t . We see from Lemma 3.4 that L

φ
t satisfies the Doléans–Dade

equation

L
φ
t = 1 +

∫ t

0
L

φ
t−

1

φ(Xs−)
dM [φ]

s .

We note that the function φ belongs to D(E ) by [2, Proposition 5.2, Theorem 6.1].
The transformation by L

φ
t , φ ∈ D(E ), was thoroughly studied in [4]. For example,

the next theorem is a consequence of [4, Theorem 2.6, Theorem 2.8].

Theorem 3.1 M
φ is a φ2m-symmetric ergodic process.

Remark 3.2 For φ = R
μ
α g > 0, g ∈ B+

b (X), the operator Hμφ is defined in the same

way as (3.1). Since Lemma 3.3 holds for this φ, the MF L
φ
t defined by (3.6) satisfies

that L
φ
0 = 1 and Ex(L

φ
t ) ≤ 1.

4 A Large Deviation Principle

In this section we will prove the main theorem. As mentioned in the Introduction,
Theorem 1.1(i) was proved in [12, 21]. For the completeness, we will give a sketch of
the proof. For the proof of Theorem 1.1(ii), a new definition of I-function is essential.
After the definition we can prove it by the similar argument as in [10, 20].

Let P the set of probability measures on X equipped with the weak topology.
Define the function Iμ on P by

Iμ(ν) =
{

E μ(
√

f ,
√

f ) if ν = f · m,
√

f ∈ D(E ),

∞ otherwise.

For t < ζ(ω), let

Lt(ω)(A) = 1

t

∫ t

0
1A

(
Xs(ω)

)
ds, A ∈ B(X).

Proposition 4.1 Let μ ∈ K∞. Then for each open set G ∈ P

lim inf
t→∞

1

t
log Ex

(
eA

μ
t ; Lt ∈ G, t < ζ

) ≥ − inf
ν∈G

Iμ(ν). (4.1)
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Proof Let φ = R
μ
α f ∈ D+(Hμ) and φ2 · m ∈ G. Let L

φ
t := L

φ0
t be the MF de-

fined by (3.6) and denote by M
φ = (Ω,Xt ,P

φ
x ) the transformed process of the Hunt

process M by Lφ . We have this proposition by exactly the same argument as in [21].
Set

Ω1 =
{
ω ∈ Ω : lim

t→∞
1

t

∫ t

0

Hμφ

φ

(
Xs(ω)

)
ds =

∫

X

φHμφ dm

}
,

Ω2 = {
ω ∈ Ω : Lt(ω) converges to φ2m

}
.

We then know from Theorem 3.1 that for i = 1,2, P
φ
x (Ωi) = 1 φ2m-a.s., so that

P
φ
x (Ωi) = 1 for any x ∈ X on account of the shift invariance of Ωi and the absolute

continuity of the transition probability of M
φ . Hence,

P
φ
x

(
S(t, ε)

) −→ 1 t → ∞ for ∀x ∈ X,

where

S(t, ε) =
{
ω ∈ Ω :

∣∣∣∣

∫

X

Hμφ

φ
(x)Lt (ω, dx) −

∫

X

φHμφ dm

∣∣∣∣ < ε,Lt (ω) ∈ G

}
.

Since

Ex

(
eA

μ
t ;Lt ∈ G, t < ζ

)

= E
φ
x

(
L

φ
t

−1
eA

μ
t ;Lt ∈ G, t < ζ

)

≥ exp

(
t

(∫

X

φHμφ dm − ε

))
E

φ
x

(
φ(X0)

φ(Xt )
;S(t, ε)

)

≥ exp

(
t

(∫

X

φHμφ dm − ε

))
φ(x)

‖φ‖∞
(
1 − P

φ
x (Ω − S(t, ε)

)
,

we have

lim inf
t→∞

1

t
log Ex

(
eA

μ
t ;Lt ∈ G, t < ζ

) ≥
∫

X

φHμφ dm − ε.

Noting that the set {φ ∈ D+(Hμ) : ‖φ‖2 = 1} is dense in the set {φ ∈ D(E ) :
φ ≥ 0,‖φ‖2 = 1} with respect to E μ

α0 (α0 > κ(μ)), we arrive at the theorem. �

Lemma 4.1 Let μ ∈ K∞. If λ(μ) > 1, then R
μ
1 also satisfies the assumption (III);

for any ε > 0 there exists a compact set Kε such that supx∈X R
μ
1 1Kc

ε
(x) ≤ ε.

Proof By Corollary 2.1, supx∈X Ex(e
(1+ε)A

μ
ζ ) < ∞ for small ε. Since

R
μ
1 1Kc(x) =

∫ ∞

0
e−t

Ex

(
eA

μ
t 1Kc(Xt )

)
dt
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≤
(∫ ∞

0
e−t

Ex

(
e(1+ε)A

μ
t
)
dt

)1/(1+ε)

· R11Kc(x)ε/(1+ε)

≤
(

sup
x∈X

Ex

(
e
(1+ε)A

μ
ζ
))1/(1+ε) · R11Kc(x)ε/(1+ε),

the proof of this lemma is completed. �

For μ ∈ K∞ with λ(μ) > 1, let h be the gauge function of μ and put

φε = φ + εh, φ ∈ D+(Hμ), ε > 0.

We define the function on P by

I (ν) = − inf
φ∈D+(Hμ)

ε>0

∫

X

Hμφ

φε

dν. (4.2)

Proposition 4.2 Let μ ∈ K∞ with λ(μ) > 1. Then, for each closed subset K of P

lim sup
t→∞

1

t
log sup

x∈X

Ex

(
eA

μ
t ;Lt ∈ K, t < ζ

)
≤ − inf

ν∈K
I (ν). (4.3)

Proof For φ ∈ D+(Hμ), let L
φε
t be the MF defined in (3.6). Then, since L

φε
t is a local

martingale with L
φε

0 = 1,

Ex

(
eA

μ
t · φε(Xt )

φε(X0)
exp

(
−

∫ t

0

Hμφ

φε

(Xs) ds

)
; t < ζ

)
≤ 1, (4.4)

and thus

sup
x∈X

Ex

(
exp

(
A

μ
t −

∫ t

0

Hμφ

φε

(Xs) ds; t < ζ

))
≤ ‖φ‖∞ + ε‖h‖∞

ε
.

Furthermore, for any Borel set C of P

Ex

(
exp

(
A

μ
t −

∫ t

0

Hμφ

φε

(Xs) ds

)
;Lt ∈ C, t < ζ

)

= Ex

(
eA

μ
t · exp

(
−t

∫

X

Hμφ

φε

(x)Lt (dx)

)
;Lt ∈ C, t < ζ

)

≥ Ex

(
eA

μ
t ;Lt ∈ C, t < ζ

) · exp

(
−t · sup

ν∈C

∫

X

Hμφ

φε

(x) dν(dx)

)
.

Hence

sup
x∈X

Ex

(
eA

μ
t ;Lt ∈ C, t < ζ

)
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≤
(‖φ‖∞ + ε‖h‖∞

ε

)
exp

(
t · sup

ν∈C

∫

X

Hμφ

φε

(x) dν(dx)

)

and thus

lim sup
t→∞

1

t
log sup

x∈X

Ex

(
eA

μ
t ;Lt ∈ C, t < ζ

) ≤ inf
φ∈D+(Hμ)

ε>0

sup
ν∈C

∫

X

Hμφ

φε

dν. (4.5)

To derive (4.3) from (4.5), we have only to imitate the argument in [9]. Indeed, let K

be a compact set of P and set

� = sup
ν∈K

inf
φ∈D+(Hμ)

ε>0

∫

X

Hμφ

φε

dν.

Then, given δ > 0, for every ν ∈ K there exist φν ∈ D+(Hμ) and εν > 0 such that
∫

X

Hμφν

φν + ενh
dν ≤ � + δ.

The function Hμφν

φν+ενh
is bounded and continuous on X, so that there exists a neighbor-

hood N(ν) of ν such that
∫

X

Hμφν

φν + ενh
dλ ≤ � + 2δ for λ ∈ N(ν).

Since {N(ν)}ν∈K is an open covering of K , there exist ν1, . . . , νk in K such that
K ⊂ ⋃k

j=1 N(νj ). Put Nj = N(νj ). We then have for 1 ≤ j ≤ k

sup
ν∈Nj

∫

X

Hμφνj

φνj
+ ενj

h
dν ≤ � + 2δ,

and thus

max
1≤j≤k

inf
φ∈D+(Hμ)

ε>0

sup
ν∈Nj

∫

X

Hμφ

φε

dν ≤ � + 2δ.

Therefore, by (4.5)

lim sup
t→∞

1

t
log Ex

(
eA

μ
t ;Lt ∈ K, t < ζ

)

≤ max
1≤j≤k

lim sup
t→∞

1

t
log Ex

(
eA

μ
t ;Lt ∈ Nj , t < ζ

)

≤ max
1≤j≤k

inf
φ∈D+(Hμ)

ε>0

sup
μ∈Nj

∫

X

Hμφ

φε

dν ≤ � + 2δ. (4.6)

Since δ is arbitrary, (4.3) holds for each compact set.
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To prove (4.3) for each closed set, we follow the argument in [11, Lemma 7.1].
We know from Lemma 4.1 that for ε > 0, there exists a compact set Kε such that
supx∈X R

μ
1 1Kc

ε
(x) ≤ ε. Put

Vε(x) = − HμR
μ
1 1Kc

ε
(x)

R
μ
1 1Kc

ε
(x) + εh(x)

= 1Kc
ε
(x) − R

μ
1 1Kc

ε
(x)

R
μ
1 1Kc

ε
(x) + εh(x)

and define the measure Qx,t on P by

Qx,t (C) = Ex

(
eA

μ
t ;Lt ∈ C, t < ζ

)
, C ∈ B(P ).

We then see from Remark 3.2 that

∫

P
exp

(
t

∫

X

Vε(x)ν(dx)

)
Qx,t ≤ R

μ
1 1Kc

ε
+ εh

ε
≤ ε + Chε

ε
= 1 + Ch, (4.7)

where Ch = supx∈X h(x). If 0 < ε ≤ 1/(2 + Ch), then for x ∈ Kε the function Vε(x)

is negative and for x ∈ Kc
ε

Vε(x) ≥ 1 − ε

ε + Chε
≥ 1 − 1/(2 + Ch)

ε + Chε
= 1

(2 + Ch)ε
.

Hence the set Kc
ε is written as

Kc
ε =

{
x ∈ X : Vε(x) ≥ 1

(2 + Ch)ε

}
.

Since Vε(x) > −1, we have

∫

P
exp

(
t

∫

X

Vε(x)ν(dx)

)
dQx,t

=
∫

P
exp

(
t

∫

Kc
ε

Vε(x)ν(dx) + t

∫

Kε

Vε(x)ν(dx)

)
dQx,t

≥
∫

P
exp

(
t

(2 + Ch)ε
ν(Kc

ε ) − t

)
dQx,t . (4.8)

Let

Mδ
ε = {

ν ∈ P : ν(
Kc

ε

)
> δ

}
.

Then it follows from (4.7) and (4.8) that for 0 < ε ≤ 1/(2 + Ch)

Qx,t

(
Mδ

ε

) ≤ (1 + Ch) · exp

(
t − tδ

(2 + Ch)ε

)
.
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For any λ > 2 + Ch, set Jλ = ⋃∞
n=1 M

2+Ch
n

1
λn2

. Then

Qx,t (Jλ) ≤
∞∑

n=1

Qx,t

(
M

2+Ch
n

1
λn2

)
=

∞∑

n=1

(1 + Ch)e
(t−tλn)

= (1 + Ch) · e(1−λ)t

1 − e−λt
,

and thus

lim sup
t→∞

1

t
log sup

x∈X

Qx,t (Jλ) ≤ 1 − λ.

We see by definition that the set J c
λ is tight and closed with respect to the weak

topology, that is, a compact subset of P . Hence for each closed subset K

lim sup
t→∞

1

t
log sup

x∈X

Qx,t (K)

≤
(

lim sup
t→∞

1

t
log sup

x∈X

Qx,t

(
K ∩ J c

λ

)) ∨
(

lim sup
t→∞

1

t
log sup

x∈X

Qx,t (K ∩ Jλ)

)

≤
(
− inf

ν∈K∩J c
λ

Iμ(ν)
)

∨ (1 − λ) ≤
(
− inf

ν∈K
Iμ(ν)

)
∨ (1 − λ).

The proof is completed by letting λ to ∞. �

Denote by B+
b (X) the set of non-negative bounded Borel functions on X. Let us

define a function on P by

Iα(ν) = − inf
u∈B+

b
(X)

ε>0

∫

X

log

(
αR

μ
α u + εh

u + εh

)
dμ. (4.9)

Lemma 4.2 It holds that

Iα(ν) ≤ I (ν)

α
, ν ∈ P .

Proof For u = R
μ
α f ∈ D+(Hμ) and ε > 0, set

φ(α) = −
∫

X

log

(
αR

μ
α u + εh

u + εh

)
dν.

Then, noting that d
dα

(R
μ
α u) = −(R

μ
α )2u, we have

dφ

dα
(α) = −

∫

X

R
μ
α u − α(R

μ
α )2u

αR
μ
α u + εh

dν =
∫

X

Hμ(R
μ
α )2u

αR
μ
α u + εh

dν. (4.10)
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Since
(
α
(
Rμ

α

)2
u − Rμ

α u
)(

α2(Rμ
α

)2
u + εh

) − (
α
(
Rμ

α

)2
u − Rμ

α u
)(

αRμ
α u + εh

)

equals α(α(R
μ
α )2u − R

μ
α u)2 ≥ 0, we have

α(R
μ
α )2u − R

μ
α u

αR
μ
α u + εh

≥ α(R
μ
α )2u − R

μ
α u

α2(R
μ
α )2u + εh

,

and thus
∫

X

Hμ(R
μ
α )2u

αR
μ
α u + εh

dν ≥
∫

X

Hμ(R
μ
α )2u

α2(R
μ
α )2u + εh

dν

= − 1

α2

(
−

∫

X

Hμ(R
μ
α )2u

(R
μ
α )2u + ε

α2 h
dν

)
≥ − 1

α2
I (ν).

Therefore

φ(∞) − φ(α) =
∫

X

log

(
αR

μ
α u + εh

u + εh

)
dν ≥ −I (ν)

α
,

which implies

− inf
u∈D+(Hμ)

ε>0

∫

X

log

(
αR

μ
α u + εh

u + εh

)
dν ≤ I (ν)

α
.

Since by Theorem 2.1(i) and Remark 3.1, ‖βR
μ
β f ‖∞ ≤ C‖f ‖∞, β > 0, and

βR
μ
β f (x) → f (x) as β → ∞,

∫

X

log

(
αR

μ
α (βR

μ
β f ) + εh

βR
μ
β f + εh

)
dμ

β→∞−→
∫

X

log

(
αR

μ
α f + εh

f + εh

)
dν. (4.11)

Define the measure να by

να(A) =
∫

X

αRμ
α (x,A)dν(x) A ∈ B(X).

Given v ∈ B+
b (X), take a sequence {gn}∞n=1 ⊂ C+

b (X) ∩ L2(X;m) such that
∫

X

|v − gn|d(να + ν) −→ 0 as n → ∞.

We then have
∫

X

∣∣αRμ
α v − αRμ

α gn

∣∣dν ≤
∫

X

αRμ
α

(|v − gn|
)
dν =

∫

X

|v − gn|dνα −→ 0

as n −→ ∞, and so
∫

X

log

(
αR

μ
α gn + εh

gn + εh

)
dν

n→∞−→
∫

X

log

(
αR

μ
α v + εh

v + εh

)
dν. (4.12)
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Hence, combining (4.11) and (4.12) we have

inf
u∈D+(Hμ)

∫

X

log

(
αR

μ
α u + εh

u + εh

)
dν = inf

u∈B+
b

∫

X

log

(
αR

μ
α u + εh

u + εh

)
dν,

which implies the lemma. �

Lemma 4.3 If I (ν) < ∞, then ν is absolutely continuous with respect to m.

Proof By the similar argument in the proof of [10, Lemma 4.1], we obtain this
lemma. Indeed, for a > 0 and A ∈ B(X), set u(x) = a1A(x) + 1 ∈ B+

b (X), where
1A is the indicator function the set A. Then

∫

X

log

(
αR

μ
α u + εh

u + εh

)
dν =

∫

X

log

(
aαR

μ
α (x,A) + αR

μ
α (x,X) + εh

a1A(x) + 1 + εh

)
dν.

Define the measure να as in the proof of Lemma 4.2. Put

cα =
∫

X

αRμ
α (x,X)dν(x)

(= να(X)
)
, k =

∫

X

hdν.

Noting that h ≥ 1, we see from Lemma 4.2 and Jensen’s inequality that

log
(
aνα(A) + cα + kε

) ≥ ν(A) log(a + 1 + ε) + ν
(
Ac

)
log(1 + ε) − I (ν)/α,

and by letting ε → 0

log
(
aνα(A) + cα

) ≥ ν(A) log(a + 1) − I (ν)/α.

Since logx ≤ x − 1 for x > 0, we have

aνα(A) + cα − 1 ≥ ν(A) log(a + 1) − I (ν)/α,

and so

να(A) − ν(A) ≥ −I (ν)/α + ν(A)(log(a + 1) − a) + 1 − cα

a
.

Noting that log(a + 1) − a < 0, we have

να(A) − ν(A) ≥ −I (ν)/α + (log(a + 1) − a) + 1 − cα

a

for all A ∈ B(X) and

ν(A) − να(A) = 1 − cα + (
να

(
Ac

) − ν
(
Ac

))

≥ −I (ν)/α + (log(a + 1) − a) + (1 − cα)(a + 1)

a
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for all A ∈ B(X). Therefore we can conclude that

sup
A∈B(X)

∣∣ν(A) − να(A)
∣∣ ≤ a − log(a + 1) + I (ν)/α + (1 − cα)(a + 1)

a
.

Note that cα → 1 as α → ∞. Then since

lim sup
α→∞

sup
A∈B(X)

∣∣ν(A) − να(A)
∣∣ ≤ a − log(a + 1)

a

and the right-hand side converges to 0 as a → 0, the lemma follows from Re-
mark 2.1. �

Proposition 4.3 It holds that for ν ∈ P

I (ν) = Iμ(ν).

Proof We follow the argument in the proof of [10, Theorem 5]. Suppose that I (ν) =
� < ∞. By Lemma 4.4, ν is absolutely continuous with respect to m. Let us denote
by f its density and let f n = √

f ∧ n. Since log(1 − x) ≤ −x for −∞ < x < 1 and

−∞ <
f n − αR

μ
α f n

f n + εh
< 1,

∫

X

log

(
αR

μ
α f n + εh

f n + εh

)
f dm =

∫

X

log

(
1 − f n − αR

μ
α f n

f n + εh

)
f dm

≤ −
∫

X

f n − αR
μ
α f n

f n + εh
f dm,

so
∫

X

f n − αR
μ
α f n

f n + εh
f dm ≤ Iα(f · m).

By letting n → ∞ and ε → 0,
∫

X

√
f

(√
f − αRμ

α

√
f

)
dm ≤ Iα(f · m) ≤ I (f · m)

α
,

which implies that
√

f ∈ D(E ) and E μ(
√

f ,
√

f ) ≤ I (f · m).
Let φ ∈ D+(Hμ) and define the semigroup P

φ
t by

P
φ
t f (x) = Ex

(
eA

μ
t · φε(Xt )

φε(X0)
exp

(
−

∫ t

0

Hμφ

φε

(Xs) ds

)
f (Xt )

)
.

Then, P
φ
t is (φ + εh)2m-symmetric and satisfies P

φ
t 1 ≤ 1 by virtue of (4.2). Given

ν = f · m ∈ F1 with
√

f ∈ D(E ), set

S
φ
t

√
f (x) = Ex

(
eA

μ
t · exp

(
−

∫ t

0

Hμφ

φε

(Xs) ds

)√
f (Xt )

)
.
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Then

∫

X

(
S

φ
t

√
f

)2
dm =

∫

X

φ2
ε

(
P

φ
t

(√
f

φε

))2

dm

≤
∫

X

φ2
ε P

φ
t

((√
f

φε

)2)
dm

≤
∫

X

φ2
ε

(√
f

φε

)2

dm =
∫

X

f dm.

Hence

0 ≤ lim
t→0

1

t

(√
f − S

φ
t

√
f ,

√
f

)
m

= E μ
(√

f ,
√

f
) +

∫

X

Hμφ

φε

f dm,

and thus E μ(
√

f ,
√

f ) ≥ I (f · m). �

We now remark that by considering the β-subprocess of M, we can assume
without loss of the generality that M is transient and μ is gaugeable. Here the
β-subprocess of M is the m-symmetric Markov process with transition probability
e−βtpt (x, y)m(dy),β > 0. Let us denote by M

β = (Ω,P
β
x ,Xt , ζ ) the subprocess.

Then clearly the subprocess M
β also fulfills the assumptions (I), II) and (III). The

Dirichlet form generated by M
β is identical to Eβ (:= E +β( , )m). Let Kβ∞ be the set

of Green-tight measures defined by using the β-resolvent density Rβ(x, y) in place of

R(x, y). According to the resolvent equation, the space Kβ∞ is independent of β > 0.

Lemma 4.4 If μ ∈ K1∞, then for large β

λβ(μ) := inf

{
Eβ(u,u) :

∫

X

u2 dμ = 1

}
> 1.

Proof By (2.7) and (2.6),
∫

X

u2 dμ ≤ ‖Rβμ‖∞ · Eβ(u,u)

and limβ→∞ ‖Rβμ‖∞ = 0. Hence λβ(μ) > 1 for β large enough, and thus this
lemma follows form Proposition 2.1. �

Combining Lemma 4.4 with Proposition 2.1, we see that each measure μ ∈ K1∞
becomes gaugeable with respect to the β-subprocess for large β . We define Iμ,β in
the same manner as Iμ by using Eβ . By applying Propositions 4.1 and 4.2 to the
β-subprocess, we can prove Theorem 1.1 for the subprocess. Since

inf
ν∈G

Iμ,β(ν) = inf
ν∈G

Iμ(ν) − β
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and

E
β
x

(
eA

μ
t ;Lt ∈ G, t < ζ

) = e−βt · Ex

(
eA

μ
t ;Lt ∈ G, t < ζ

)
,

Theorem 1.1 for the subprocess yields that for the original Markov process.

Remark 4.1 We see that the generalized Schrödinger operator Hμ admits the ground
state. Indeed, put

ρ2(μ) = inf

{
E μ(u,u) : u ∈ D(E ),

∫

X

u2 dμ = 1

}
,

and let {un} be a minimizing sequence of D(E ), i.e.,
∫
X

u2
n dμ = 1 and ρ2(μ) =

limn→∞ E μ(un,un). By (2.7),
∫

X

u2
n dμ ≤ ‖Rαμ‖∞ · (E (un,un) + α

)

and ‖Rαμ‖∞ < 1 for large α because μ ∈ K. Hence

E (un,un) ≤ supn E μ(un,un) + α‖Rαμ‖∞
1 − ‖Rαμ‖∞

< ∞.

We then see from the assumption (III) that for any ε > 0 there exists a compact set K

such that

sup
n

∫

Kc

u2
n dm ≤ ‖R1IKc‖∞ ·

(
sup
n

E (un,un) + α
)

< ε,

that is, the subset {u2
n · m} of P (X) is tight. Hence a subsequence {u2

nk
· m} weakly

converges to a probability measure ν. Moreover, it follows from Proposition 4.3 that
the function Iμ is lower semi-continuous with respect to the weak topology. Hence

Iμ(ν) ≤ lim inf
k→∞ Iμ

(
u2

nk
· m) = lim inf

k→∞ E μ(unk
, unk

) < ∞

and the probability measure ν is expressed by ν = u2
0 · m,u0 ∈ D(E ). We now con-

clude that u0 is the ground state, λ2(μ) = E μ(u0, u0). The uniqueness of the ground
state is derived from the irreducibility (I).

Remark 4.2 Let μ be a signed Radon measure whose positive part μ+ is in K∞ and

negative part μ− is in K. Let M
μ−

be the subprocess by the MF exp(−A
μ−
t ). Then

Theorem 2.1(iii) says that the process M
μ−

satisfies (I), (II) and (III). Applying the
results above to M

μ−
, we establish Theorem 1.1 for μ = μ+ − μ− ∈ K∞ − K.

The next corollary is a consequence of Theorem 1.1 with G = K = P .

Corollary 4.1 For μ ∈ K1∞

− lim
t→∞

1

t
log sup

x∈X

Ex

(
eA

μ
t ; t < ζ

)
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= inf

{
E μ(u,u) : u ∈ D(E ),

∫

X

u2 dm = 1

}
. (4.13)

Let ‖pμ
t ‖p,p be the operator norm of p

μ
t from Lp(X;m) to Lp(X;m) and define

the Lp-spectral bound by

ρp(μ) = − lim
t→∞

1

t
log

∥∥p
μ
t

∥∥
p,p

, 1 ≤ p ≤ ∞.

Note that ‖pμ
t ‖∞,∞ = supx∈X Ex(exp(A

μ
t ); t < ζ ) and ρ2(μ) equals the right-hand

side of (4.13) by the spectral theorem. Then Corollary 4.1 yields

ρ∞(μ) = ρ2(μ). (4.14)

By the symmetry and positivity of p
μ
t ,

∥∥p
μ
t

∥∥
2,2 ≤ ∥∥p

μ
t

∥∥
p,p

≤ ∥∥p
μ
t

∥∥∞,∞, 1 < p < ∞. (4.15)

Hence the next theorem is an immediate consequence of (4.14) and the Riesz–Thorin
interpolation theorem.

Theorem 4.1 Let μ ∈ K1∞. Then under the assumptions (I), (II) and (III), the spectral
bound ρp(μ), 1 ≤ p ≤ ∞, is independent of p.

Remark 4.3 The inequality (4.15) says that ρ2(μ) ≥ ρ∞(μ). Hence the uniform
upper bound in Theorem 1.1(ii) with K = P is essential for the proof of the Lp-
independence.

5 One-Dimensional Diffusion Processes

In order to illustrate the power of our main Theorem 1.1, we consider one-
dimensional diffusion process and obtain a necessary and sufficient condition for
Lp-independence of their diffusion semigroups in terms of speed measures and
scale functions. To this end we need to check the assumption (III). Let I = (r1, r2),
−∞ ≤ r1 < 0 < r2 ≤ ∞. Let s be strictly increasing continuous function on I and m

a strictly increasing function on I . We define

Dmu(x) = lim
h→0

u(x + h) − u(x)

m(x + h) − m(x)
, D+

s u(x) = lim
h↓0

u(x + h) − u(x)

s(x + h) − s(x)
,

if the limits exist. Let us recall Feller’s boundary classification. Put

ρ =
∫ ri

0

(∫ y

0
dm(x)

)
ds(y), σ =

∫ ri

0

(∫ y

0
ds(x)

)
dm(y)
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(ri = r1 or r2). By the Feller’s boundary classification, we call

ri a regular boundary if ρ < ∞, σ < ∞,

ri an exit boundary if ρ < ∞, σ = ∞,

ri an entrance boundary if ρ = ∞, σ < ∞,

ri a natural boundary if ρ = ∞, σ = ∞.

We denote M = (Px,Xt , ζ ) the minimal diffusion process generated by DmD+
s , that

is, the Dirichlet boundary condition is imposed if ri is a regular or exit boundary. The
Dirichlet form generated by M is written as

E (u, v) = −
∫ r2

r1

DmD+
s u · v dm =

∫ r2

r1

D+
s u(x) · D+

s v(x) ds. (5.1)

Let u1(x) (resp. u2(x)) be a positive increasing (resp. decreasing) solution of the
equation (1 − DmD+

s )u = 0 and W the Wronskian. We may assume that W = 1.
Then R1(x, y) is written by

R1(x, y) =
{

u1(x)u2(y), r1 < x ≤ y < r2,

u2(x)u1(y), r1 < y ≤ x < r2

(e.g. [14, 5.14]).

Lemma 5.1 Suppose that r2 is regular, exit, or entrance. Then for any ε > 0 there
exists 0 < r < r2 such that

sup
x∈I

R11(r,r2)(x) < ε.

Proof We know from [14, Theorem 5.14.1] that if r2 is regular or exit, then

lim
x→r2

R11(x) = 0.

Hence for any ε > 0 there exists a constant r > 0 such that

sup
r1<x<r2

R11(r,r2)(x) = sup
r<x<r2

R11(r,r2)(x) ≤ sup
r<x<r2

R11(x) < ε.

If r2 is an entrance boundary, we see from [14, Theorem 5.14.1] that for a bounded
Borel function g on I

lim
x↑r2

R1g(x) = u2(r2)

∫ r2

r1

g(x)u1(x) dm(x),

where u2(r2) = limx↑r2 u2(x) < ∞. Hence noting that the function R11(r,r2)(x) is
increasing in x, we have for 0 < r < r2

sup
x∈I

R11(r,r2)(x) = lim
x↑r2

R11(r,r2)(x) = u2(r2)

∫ r2

r+
u1(x) dm(x)
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and the left-hand side converges to 0 as r → r2. �

The next corollary follows from Theorem 1.1.

Corollary 5.1 Assume that no boundaries are natural. Then for μ ∈ K1∞, ρp(μ) is
independent of p.

Suppose that the boundary, say r2, is natural. Then we can show by the same
argument as in [24] that ρp(μ) is independent of p if and only if ρ2(μ) ≤ 0, while
we supposed in [24] that the symmetric Markov process is conservative. Indeed, we
extend the diffusion to (r1, r2] by making the adjoined point r2 a trap, that is, the
transition probability p̄t (x, dy) on (r1, r2] defined by

p̄t (x,E) = pt

(
x,E \ {r2}

)
, x ∈ (r1, r2),E ∈ B

(
(r1, r2]

)

and

p̄t (r2,E) =
{

1 r2 ∈ E,

0 r2 �∈ E.

We first suppose that r1 is regular or exit. Let M̄ = (P̄x,Xt , ζ ) be the diffusion
process on (r1, r2] with transition probability p̄t (x, dy). We regard r1 as the infinity Δ

of M̄. Furthermore, we take β large enough so that μ ∈ K1∞ is gaugeable with respect
to the β-subprocess of M, and denote by M̄

β = (P̄
β
x ,Xt ) the β-subprocess of M̄. We

will apply the facts shown in the previous section to the β-subprocess M̄
β . Let p̄

μ
t

and R̄
μ
β be the semigroup and the resolvent of M̄

β : for f ∈ Bb((r1, r2])

p̄
μ
t f (x) = Ēx

(
eA

μ
t f (Xt ); t < ζ

)
, R̄

μ
β f (x) =

∫ ∞

0
e−βt p̄

μ
t f (x) dt.

Lemma 5.2 Suppose that r2 is a natural boundary. Then for a bounded continuous
function f on (r1, r2],

lim
x↑r2

p
μ
t f (x) = f (r2).

Proof We see from [14, Theorem 5.14.1] that for f ∈ Cb((r1, r2])

lim
x↑r2

Rβf (x) = f (r2)

β
. (5.2)

Let f be a strictly positive function in C∞(I ). For r1 < r < x < r2

Px(σr ≤ t) ≤ eβt

Rβf (r)
Ex

(
e−βσr Rβf (Xσr )

)

and

Rβf (x) ≥ Ex

(∫ ∞

σr

e−βtf (Xt ) dt

)
= Ex

(
e−βσr Rβf (Xσr )

)
,
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where σr is the first hitting time at r , σr = inf{t > 0 : Xt = r}. Hence we have

Px(σr ≤ t) ≤ eβt

Rβf (r)
· Rβf (x) −→ 0, x ↑ r2,

which implies that for any f ∈ C∞(I )

lim
x↑r2

ptf (x) = 0,

and so

Ex

(
eA

μ
t f (Xt ); t < ζ

) ≤ Ex

(
e2A

μ
t
)1/2 · pt

(
f 2)(x)1/2 −→ 0, x ↑ r2.

Since pμf (x) = pμ(f − f (r2))(x) + f (r2)p
μ1(x), it is enough to show that

limx↑r2 p
μ
t 1(x) = limx↑r2 Ex(exp(A

μ
t ); t < ζ ) = 1.

Let K ⊂ I be a compact set and denote by μKc the restriction of the measure μ

on the complement of K , μKc(·) = μ(Kc ∩ ·). Since

RβμKc(x) ≥ Ex

(∫ t

0
e−βs1Kc(Xs) dAμ

s

)
≥ e−βt · Ex

(
A

μKc

t

)
,

we have

sup
x∈I

Ex

(
A

μKc

t

) ≤ eβt · sup
x∈I

RβμKc(x) −→ 0, K ↑ I

by the definition of K1∞. By Khasminskii’s lemma,

sup
x∈I

Ex

(
eA

μKc
t

) ≤ 1

1 − supx∈I Ex(A
μKc

t )

and thus

lim
K↑I

sup
x∈I

Ex

(
eA

μKc
t

) = 1.

Hence we have limx↑r2 Ex(exp(A
μ
t ); t < ζ ) = 1 by the same argument as in [24,

Theorem 2.1(iv)]. �

Set

D+
(

H̄μ,β
) = {

φ = R̄
μ
α+βg : α > 0, g ∈ Cb

(
(r1, r2]

)
with g ≥ ∃ε > 0

}
.

On account of Remark 3.1 and Lemma 5.2 we see that φ ∈ D+(H̄μ,β) is a bounded
continuous function on (r1, r2]. Let

η = inf{t > 0 : Xt− = r1}, ρ = inf
{
t > 0 : Xt− ∈ (r1, r2),Xt = r1

}
.

Then ζ = η ∧ ρ, that is, η is the predictable part of ζ and ρ is the inaccessible part
of ζ . Let

h(x) = E
β
x

(
e
A

μ
ζ ;η = ζ

)
, h(r1) = 1.



1124 J Theor Probab (2011) 24:1097–1129

Then the function h satisfies that

h(x) − p
μ
t h(x) = E

β
x

(
e
A

μ
ζ ;η = ζ, t < ζ

)

and the argument in Lemma 3.1 leads us to the continuity of h on I . Moreover,

h(r2) = lim
x↑r2

h(x) = 0 (5.3)

because limx↑r2 P
β
x (η = ζ ) = 0 and

E
β
x

(
e
A

μ
ζ ;η = ζ

) ≤ E
β
x

(
e
(1+ε)A

μ
ζ
)1/(1+ε) · P

β
x (η = ζ )ε/(1+ε).

Denote by P (resp. P̄ ) the set of probability measures on (r1, r2) (resp. (r1, r2]).
Let us define the function on P̄ by

Ī β(ν) = − inf
φ∈D+(H̄μ,β )

ε>0

∫

(r1,r2]
H̄μ,βφ

φ + εh
dν, ν ∈ P̄, (5.4)

where H̄μ,βφ = αR̄
μ
α+βg − g for φ = R̄

μ
α+βg ∈ D+(H̄μ,β).

Lemma 5.3 For ν ∈ P̄ with ν((r1, r2)) > 0, put

ν̂ = ν̂(•) = ν(•)/ν
(
(r1, r2)

) ∈ P .

Then

Ī β(ν) = ν
(
(r1, r2)

) · Iβ(ν̂) + ν
({r2}

) · β, ν ∈ P̄ .

Proof For φ = R̄
μ
α+βg ∈ D+(H̄μ,β),

lim
x↑r2

φ(x) = 1

α + β
g(r2),

lim
x↑r2

H̄μ,βφ(x) = lim
x↑r2

(
αR̄

μ
α+βg(x) − g(x)

) = − β

α + β
g(r2)

by (5.2). In addition, R̄βf (x) = Rβf (x) on x ∈ (r1, r2) and so H̄μ,βφ(x) =
Hμ,βφ(x) on x ∈ (r1, r2). Hence we have by (5.3)

H̄μ,βφ(r2)

φ(r2) + εh(r2)
= − β

α+β
· g(r2)

1
α+β

· g(r2) + εh(r2)
= −β,

and for ν ∈ P̄

Ī β (ν) = − inf
φ∈D+(H̄μ,β )

ε>0

∫

(r1,r2]
H̄μ,βφ

φ + εh
dν
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= − inf
φ∈D+(Hμ,β )

ε>0

∫

(r1,r2)

Hμ,βφ

φ + εh
dν + β · ν({r2}

)

= ν
(
(r1, r2)

) · Iβ(ν̂) + ν
({r2}

) · β. �

Proposition 5.1 Let μ ∈ K1∞. Suppose that r2 is a natural boundary and r1 is a
regular or exit boundary. Then, for each closed set K ⊂ P̄

lim sup
t→∞

1

t
log sup

x∈I

E
β
x

(
eA

μ
t ;Lt ∈ K, t < ζ

) ≤ − inf
ν∈K

Īβ(ν). (5.5)

Proof Since for x ∈ (r1, r2)

E
β
x

(
eA

μ
t ;Lt ∈ K, t < ζ

) = Ē
β
x

(
eA

μ
t ;Lt ∈ K, t < ζ

)
,

we can prove this proposition by exactly the same argument as in Proposition 4.2. �

The set P̄ \ {δr2} is in one-to-one correspondence to (0,1] × P through the map:

ν ∈ P̄ \ {δr2} �→ (
ν
(
(r1, r2)

)
, ν̂(•) = ν(•)/ν

(
(r1, r2)

) ∈ (0,1] × P . (5.6)

Then Lemma 5.3 says that

inf
ν∈P̄

Ī β (ν) =
(

inf
ν∈P̄ \{δr2 }

Ī β (ν)
)

∧ Ī β (δr2) =
(

inf
ν∈P̄ \{δr2 }

Ī β(ν)
)

∧ β

=
(

inf
0<γ≤1,ν∈P

{
γ Iβ(ν) + (1 − γ )β

}) ∧ β

= inf
0≤γ≤1

{
γ
(
ρ2(μ) + β

) + (1 − γ )β
}
. (5.7)

Hence if ρ2(μ) ≤ 0, then the right-hand side equals ρ2(μ) + β . Moreover, Proposi-
tion 5.1 implies that ρ∞(μ) + β ≥ ρ2(μ) + β . As a result, we have ρ∞(μ) = ρ2(μ)

on account of Remark 4.3. On the other hand, if ρ2(μ) > 0, then the right-hand
side of (5.7) equals β , and thus ρ∞(μ) + β ≥ β . In addition, limx↑r2 p

μ
1 1(x) = 1

by Lemma 5.2. Hence ‖pμ
t ‖∞,∞ ≥ 1 and so ρ∞(μ) ≤ 0. Therefore we can conclude

that if ρ2(μ) > 0, then ρ∞(μ) = 0.
If r1 is entrance or natural, we need not add εh in the definition of I-function

because the diffusion process is conservative and so each function φ in D+(H̄μ,β) is
strictly positive, that is, there exists a positive constant δ > 0 such that φ(x) ≥ δ on
(r1, r2). If r1 is entrance, we extend M to (r1, r2] by making r2 a trap. Then we can
show by the same arguments as above that the Lp-independence holds if and only if
ρ2(μ) ≤ 0. If r1 is natural, we extend M to [r1, r2] by making both r1 and r2 traps.
Then Ī β (ν) is written as for ν ∈ P̄ (:= P ([r1, r2])):

Ī β(ν) = ν
(
(r1, r2)

) · Iβ(ν̂) + ν
({r1}

) · β + ν
({r2}

) · β,
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and

inf
ν∈P̄

Ī β(ν) =
(

inf
ν∈P̄ :ν((r1,r2))>0

Ī β (ν)
)

∧ β

= inf
0≤γ≤1

{
γ
(
ρ2(μ) + β

) + (1 − γ )β
}
.

Therefore the same conclusion follows. We now sum up the facts above:

Theorem 5.1 Let μ ∈ K1∞. If no boundaries are natural, then ρp(μ), 1 ≤ p ≤ ∞, is
independent of p. If one of the boundaries is natural, then ρp(μ) is independent of p

if and only if ρ2(μ) ≤ 0.

Finally we consider a large deviation principle for the additive functional A
μ
t of

a one-dimensional process. To establish the large deviation principle by applying the
Gärtner–Ellis theorem, we need the existence of the logarithmic moment generating
function ([8, Assumption 2.3.2]). Theorem 5.1 and Remark 4.1 lead us to the next
corollary.

Corollary 5.2 Let μ ∈ K1∞ and assume that no boundaries are natural. Then for
θ ∈ R

lim
t→∞

1

t
log Ex

(
eθA

μ
t ; t < ζ

) = −ρ2(θμ).

For a positive bounded function v, the measure v · m belongs to K because

lim
t↓0

sup
x∈I

Ex

(∫ t

0
v(Xs) ds

)
≤ lim

t↓0
‖v‖∞t = 0.

Note that the assumption (III) is equivalent to that m ∈ K1∞, and thus v · m belongs
to K1∞ for v ∈ B+

b . Therefore we assume that no boundaries are natural, the limit
in Corollary 5.2 exists for

∫ t

0 v(Xs) ds. Moreover, if no boundaries are natural, the
resolvent R1 of the diffusion is compact [16, Theorem 3.1], and so is the resolvent
Rv

1 of the Feynman–Kac semigroup because Rv
1 is written by

Rv
1f (x) = R1f (x) + R1

(
vRv

1f
)
(x).

Consequently, ρ2(θ(v · m)) is differentiable in θ by the analytic perturbation theo-
rem [15, Chap. VII]. Therefore, employing the Gärtner–Ellis theorem, we have:

Theorem 5.2 Assume that no boundaries are natural. Then for a bounded positive
Borel function v,

∫ t

0 v(Xs) ds/t obeys the large deviation principle with rate function
I (λ) = sup{λθ − C(θ) : θ ∈ R}:
(i) For each closed set K ∈ R,

lim sup
t→∞

1

t
log Px

(
1

t

∫ t

0
v(Xs) ds ∈ K; t < ζ

)
≤ − inf

λ∈K
I (λ).
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(ii) For each open set G ⊂ R,

lim inf
t→∞

1

t
log Px

(
1

t

∫ t

0
v(Xs) ds ∈ G; t < ζ

)
≥ − inf

λ∈G
I (λ).

Appendix

In this section we will prove Proposition 2.1 if a symmetric Markov process satisfies
(I) and (II). For μ ∈ K its fine support is defined by

f -supp[μ] = {
x ∈ X : Px(τ = 0) = 1

}
, τ = inf

{
t > 0 : Aμ

t > 0
}
.

Lemma 6.1 Let M be a symmetric Markov process satisfying (I), (II). Let μ be a
measure in Kβ∞ whose fine support is identical to the topological support, supp[μ].
Then the time-changed process of the β-subprocess by A

μ
t satisfies (I), (II′) and (III).

Proof Denote by M
β,μ = (P

β,μ
x ,Xt , ζ ) the time-changed process of the β-subproc-

ess by A
μ
t . M

β,μ satisfies (I) because the irreducibility is stable under time-changed
transform ([18, Theorems 8.2, 8.5]).

Let R
β,μ
α be the α-resolvent of M

β,μ. Let τt = inf{s > 0 : A
μ
s > t}. Then for f ∈

Bb(X)

Rβ,μ
α f (x) = E

β
x

(∫ ∞

0
e−αtf (Xτt ) dt

)
= E

β
x

(∫ ∞

0
e−αA

μ
t f (Xt ) dA

μ
t

)

= Ex

(∫ ∞

0
e−βt−αA

μ
t f (Xt ) dA

μ
t

)
.

Note that by Theorem 2.1(iii),

Ex

(∫ ∞

s

e−βt−αA
μ
t f (Xt ) dA

μ
t

)

= Ex

(
e−βs−αA

μ
s EXs

(∫ ∞

0
e−βt−αA

μ
t f (Xt ) dA

μ
t

))

= Ex

(
e−βs−αA

μ
s Rβ,μ

α f (Xs)
) = e−βsp−αμ

s Rβ,μ
α f (x) ∈ Cb(X).

Then since

sup
x∈X

∣∣Rβ,μ
α f (x) − e−βsp−αμ

s Rβ,μ
α f (x)

∣∣

= sup
x∈X

Ex

(∫ s

0
e−βt−αA

μ
t f (Xt ) dA

μ
t

)
≤ ‖f ‖∞ sup

x∈X

Ex(A
μ
s ) ↓ 0, s ↓ 0,

by the definition of the Kato class, we see that R
β,μ
α f ∈ Cb(X), that is, M

β,μ satis-
fies (II′).
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Finally, since

Rβ,μ
α 1Kc(x) ≤ Ex

(∫ ∞

0
e−βt1Kc(Xt ) dA

μ
t

)
= Rβ(1Kcμ),

the property (III) follows from the definition of μ ∈ Kβ∞. �
Lemma 6.2 Let g be a strictly positive function in C∞(X), the set of continuous
functions vanishing the infinity Δ. Then the measure g · m belongs to Kβ∞.

Proof Since

Rβ(1Kc · g)(x) ≤ Rβ

(
sup
x∈Kc

g(x) · 1Kc

)
(x) ≤ sup

x∈Kc

g(x) · Rβ1(x),

we have

sup
x∈X

Rβ(1Kc · g)(x) ≤ 1

β
· sup
x∈Kc

g(x) −→ 0, K ↑ X. �

Proposition 6.1 It holds that for μ ∈ Kβ∞

λβ(μ) > 1 �⇒ sup
x∈X

E
β
x

(
e
A

μ
ζ
)
< ∞.

Proof Let g be a function in Lemma 6.2 and M
β,g = (P

β,g
x ,Xt , ζ ) be the subprocess

of M
β by exp(− ∫ t

0 g(Xs) ds). Then M
β,g satisfies (I) and (II). Since the fine support

of μ + g · m equals the whole space X, the time-changed process of M
β,g by PCAF

A
μ
t + ∫ t

0 g(Xt ) dt satisfies (I), (II′) and (III). Then the assertion that

λβ,g(μ) > 1 ⇐⇒ sup
x∈X

E
β,g
x

(
exp

(
A

μ
ζ +

∫ ζ

0
g(Xt ) dt

))
< ∞ (6.1)

is a consequence of [23, Corollary 4.9], where

λβ,g(μ) = inf

{
Eβ(u,u) +

∫

X

u2g dm : u ∈ D(E ),

∫

X

u2(x)(dμ + g dm) = 1

}
.

Put

A+
t = A

μ
t +

∫ t

0
g(Xs) ds, A−

t =
∫ t

0
g(Xs) ds.

Then we see from [17, (62.13)] and [3, (2.17), (2.19)] that the expectation on the
right-hand side of (6.1) equals

E
β
x

(∫ ζ

0
eA+

t d
(−e−A−

t
) + e

A+
ζ e

−A−
ζ

)
= 1 + E

β
x

(∫ ζ

0
e−A−

t d(eA+
t )

)

= E
β
x

(
e
A

μ
ζ +

∫ ζ

0
eA

μ
t dA−

t

)
≥ E

β
x

(
e
A

μ
ζ
)
.
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Moreover, we show in the same way as in [26, Lemma 3.1] that the left-hand side
of (6.1) is equivalent with λβ(μ) > 1. The proof is completed. �
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