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Abstract We establish a large deviation principle for the occupation distribution
of a symmetric Markov process with Feynman—Kac functional. As an application,
we show the L”-independence of the spectral bounds of a Feynman—Kac semi-
group. In particular, we consider one-dimensional diffusion processes and show that
if no boundaries are natural in Feller’s boundary classification, the L”-independence
holds, and if one of the boundaries is natural, the L”-independence holds if and only
if the L?-spectral bound is non-positive.
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1 Introduction

In this paper we study Donsker—Varadhan type large deviations for symmetric
Markov processes with Feynman—Kac functional; in particular, we prove the uni-
form upper bound for each closed set and we apply it to show the L”-independence
of spectral bounds of Feynman—Kac semigroups.

Let M = (£2, X;, Py, ¢) be an m-symmetric Markov process on a locally compact
separable metric space X. Here m is a positive Radon measure with full support and
¢ is the lifetime. We impose on the Markov process M the assumptions (I), (II) and
(IIT) below. Let (£, D(E)) be the Dirichlet form on L(X; m) generated by M. Let
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be a Green-tight Kato measure (in notation, u € Koo) and A,f‘ the positive continuous
additive functional in the Revuz correspondence to . We then define the Feynman—
Kac semigroup {p}‘},;~0 by

PEIO) =By (e f(X0)it <)

for a bounded Borel function f on X. We may regard {p!'},>0 as the semigroup
generated by the Schrodinger form (E#, D(E)):

5“(u,v)=8(u,v)—/u(x)v(x)dy,(x), u,veDE). (1.1)
X

Let P be the set of probability measures on X equipped with the weak topology. We
define the function /* on P by

{SWT, VI ifv=f-m JfeDE),
(0,]

I"(v) =
otherwise.

(1.2)

Given w € £2 with 0 < t < ¢{(w), we define the occupation distribution L, (w) € P by

1 t
L) =1 [ 1a(x@)ds

for a Borel set A of X, where 14 is the indicator function of the set A. Then we will
establish the main theorem:

Theorem 1.1 Assume (1), (I1) and (III) below. Let 1 be a measure in Ko.

(1) For each open set G C P,
1 "
liminf - logE, (" ; L, € G, 1 < ¢) > — inf I*(v).
t—o0 t veG
(ii) For each closed set K C P,

1 "
limsup — log supIEx(eAi i LieK,t < {) < — inlf< I*(v).
ve

t—oo 1 xeX

The infimum of /#(v) attains at the normalized ground state of the generalized
Schrodinger operator, the generator of the semigroup {p!'} (see Remark 4.1). In this
sense, Theorem 1.1 says a large deviation from the ground state, not from the in-
variant measure. The essential idea of the proof for Theorem 1.1 lies in Donsker—
Varadhan [9], where the one-dimensional Brownian motion was treated; however,
since A} is not generally regarded as a function of L;, we need to extend the
Donsker—Varadhan’s argument to Markov processes with Feynman—Kac functional.

The lower bound (i) was proved in [21]. An important fact for the proof is that any
irreducible symmetric Markov process can be transformed to a symmetric ergodic
process by a certain supermartingale multiplicative functional (Theorem 3.1). For the
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proof of the upper bound (ii), we will first introduce a new rate function which is re-
garded as a version of so-called I-function introduced in Donsker and Varadhan [10];
suppose that pu € Ko, is gaugeable, that is,

sup E, (eA?) <00
xeX

and let h(x) = E, (exp(Aif )). After consideration of the Feynman—Kac functional,
we define the modified I-function by

. H ¢
Iv)=— inf dv, veP, 1.3
) ¢e7>+<81#>/x ¢+eh (1.3)
€>

where H* is the generalized Schrodinger operator and D (H*) is its suitable do-
main. The operator H* is formally written as H* = £ + u, where L is the generator
of the Markov process M. Next we will show the upper bound with this modified
I-function / and finally identify the function / with I* by the similar argument as
in [10]. The function 4 is said to be a gauge function and some necessary and suf-
ficient conditions for the measure p being gaugeable are known (cf. [3, 6]). For an
analytic condition for the gaugeability, see Theorem 2.1 below.

In [20, 21], we dealt with the large deviation principle for symmetric Markov
processes with finite lifetime or Feynman—Kac functional. Theorem 1.1 can be re-
garded as a final result in the sense that it says the full large deviation principle for
symmetric Markov processes with Feynman—Kac functional; in [20] we proved Theo-
rem 1.1 for symmetric Markov processes without Feynman—Kac functional. We there
used the identity function 1 for the gauge function / to define the I-function. Noting
that the identity function is harmonic for the Markov generator £ and the gauge func-
tion & is harmonic for the Schrodinger operator H*, we can regard the function / as
an extension of the I-function in [20]. In [21] we proved the upper bound (ii) for each
compact set of P without assuming (III). We there did not need to add €4 in (1.3)
because the Markov process was supposed to be conservative and the I-function was
defined by taking the infimum over uniformly positive functions in a domain of H*.
We can show that the function / is independent of 4 if the function % is uniformly
positive and bounded, that is,  is identical to the Schrédinger form (1.2). This is an
extension of the known fact due to Donsker and Varadhan that if a Markov process
is symmetric, then the associated I-function is identified with its Dirichlet form. We
would like to emphasize that the definition (1.3) of the rate function / is a key point
for the proof of the upper bound, Theorem 1.1(ii).

A technically important remark on the proof of Theorem 1.1 is that it suffices to
prove it for the B-subprocess of M, the killed process by exp(—pt¢), 8 > 0. Owing
to this, we may assume that M is transient. Moreover, since every Green-tight mea-
sure becomes gaugeable with respect to the S-subprocess of M if 8 is large enough
(Lemma 4.4), we may also assume that p is gaugeable. The S-subprocess is a useful
tool in studying the original process. This tool becomes available by extending the
large deviation to symmetric Markov processes with finite lifetime.
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When G = K =P, Theorem 1.1 tells us that

1 Wy
tl_l)rrolo;logEx(e 1<)

1
= lim - log supIEx(eAf; 1<i)
—>0o0 xeX

=—inf{€“(u,u):ueD(5),/ u2dm=1}. (1.4)
X

Equation (1.4) says that the spectral bound of the semigroup p) on L”(X;m) is
independent of p; indeed, let || p‘|| p,p be the operator norm of pl from LP(X; m) to
LP(X; m) and define the LP-spectral bound of p}* by

1
pp(u)=—tgrgo;10gllpfllp,p, 1<p<=<oo. (1.5)

Since

sup B (e 1 < ¢) = sup /1) = 1 pf* lloc, 00,

xeX xeX
(1.4) implies that poo(t) = p2(u) and consequently p, () is independent of p by
the Riesz—Thorin interpolation theorem ([7, 1.1.5]).

We gave in [24] an alternate proof of the L”-independence for a different class of
symmetric Markov processes whose semigroup is conservative, transforms C, (X) to
itself and does not always satisfy (IIT). Here Coo (X) is the set of continuous functions
vanishing the infinity A. Our method in [24] is as follows: we first note that if the state
space is compact, only the Feller property is necessary to verify the upper bound. We
thus extend the Markov process M to the one-point compactification X 4 by making
the infinity A a trap, and prove the upper bound for this extended Markov process.
Then the rate function becomes a function on the set of probability measures on X 4,
not on X; the adjoined point A makes a contribution to the rate function. We showed
in [24] that the infimum of the rate function on the set of probability measures on
X 4 is equal to the infimum of the original rate function on the set of probability
measures on X, if and only if the L?-spectral bound is non-positive. Consequently
we obtained a necessary and sufficient condition for the L?-independence. For non-
local Feynman—Kac semigroups, see [25, 27].

The uniform upper bound (ii) is crucial for the proof of L?-independence, and so is
the assumption (III). In Sect. 5, we will consider one-dimensional diffusion processes
and show that if no boundaries are natural in Feller’s boundary classification, the as-
sumption (III) is fulfilled. As a result, the L?-independence holds if no boundaries are
natural. We see by exactly the same argument as in [24] that if one of boundaries is
natural, then the L”-independence holds if and only if the L?-spectral bound is non-
positive. The case treated in [24] is corresponding to when the both boundaries are
natural. For example, consider the one-dimensional diffusion process with generator
(1/2)A+k -d/dx on (—o0, 00). Here k is a constant. Then the both boundaries are
natural and p; (1) equals k2 /2; however, poo (1) = 0 because of the conservativeness.
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Consequently, Theorem 1.1 does not hold when G and K are the whole space P. This
example was given in [11]. Next consider the Ornstein—Uhlenbeck process, the diffu-
sion process generated by (1/2) A — x -d/dx on (—o0, 00). Then both boundaries are
natural and py () and pso(1t) are zero, consequently the L?-independence follows;
however, Theorem 1.1 is not applicable because the uniform upper bound (ii) is not
known, while the locally uniform upper bound was shown in [11]. In this sense, we
can say that the L”-independence of the Ornstein—Uhlenbeck operator holds for the
different reason from Theorem 1.1 below.

The Gértner—Ellis theorem is a useful theorem for the proof of the large deviation
principle (cf. [8]). To prove the large deviation principle of A} /¢ by employing the
Girtner—Ellis theorem, we need to prove the existence of the logarithmic moment
generating function of A% that is, for each 6 € R, the limit

. l GAH
c®) ::tl_lglo?log]Ex(e 1<)

exists. Equation (1.4) implies that C(6) exists and equals to —p> (O ). We will dis-
cuss the large deviation principle for additive functionals of one-dimensional diffu-
sion processes (Theorem 5.2).

2 Notations and Some Facts

Let X be a locally compact separable metric space and m a positive Radon measure
on X with full support. Let M = (£2, ¥, ¥, 6;, Py, X;, £) be an m-symmetric on X.
Here {#3};>0 is the minimal (augmented) admissible filtration, 6;, t > 0, are the shift
operators satisfying X (6;) = X4, identically for s,¢ > 0. Let X4, = X U{A} be the
one-point compactification of X, and ¢ be the lifetime of M[, ¢ =inf{r > 0: X; = A}.
Let {p:}:>0 be the semigroup and {R, }«>0 the resolvent:

o]

P fE) =Ex(F(X)).  Raf(x)= fo ¢ p, f(x) dt.

We then impose three assumptions on M.

(D (Irreducibility) If a Borel set A is p;-invariant, i.e., p; (14 f)(x) = 1ap; f(x) m-
a.e. forany f € L?(X:;m) N Bp(X) and 1 > 0, then A satisfies either m(A) =0
or m(X \ A) =0. Here 8B,(X) is the space of bounded Borel functions on X.
(IT) (Strong Feller Property) For each ¢, p;(8Bp(X)) C Cp(X), where Cp(X) is the
space of bounded continuous functions on X.
(IIT) For any € > 0, there exists a compact set K such that

sup Rilge(x) <e.
xeX

Here 1k« is the indicator function of the complement of the compact set K.
Remark 2.1 The assumption (II) implies that the transition probability kernel

p:(x,dy) is absolutely continuous with respect to m, p:(x,dy) = p;(x,y)dm(y).
The next assumption is a resolvent version of (I):
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(Il') (Resolvent Strong Feller Property) For each a > 0, R, (Bp(X)) C Cp(X),
where Cp(X) is the space of bounded continuous functions.

Under the assumption (II") the resolvent kernel R, (x, dy) is absolutely continuous
with respect to m, Ry (x,dy) = Ry(x, y)dm(y), and so is the transition probability
p:(x,dy) by [13, Theorem 4.2.4]. The assumption (II') is weaker than the assump-
tion (IT) and can be checked more easily for time-changed processes (see Appendix).

Remark 2.2 We know from the resolvent equation that ||Rilgcllooc < @||Rylke|loo

fora > 1 and |Rilgc]loo < (1/a)||Ry1kc|loo for & < 1. Hence the a-resolvent Ry,
satisfies the assumption (III) for all > 0.

Remark 2.3 (1) If m(X) < oo and ||R1|c0,1 < 00, then

sup Ri1ge(x) = [[Rilloo,1 - m(K€)
xeX
and the assumption (III) is fulfilled. Here, || R} ||c0.1 is the operator norm of R; from
LY(X; m) to L®(X; m).
(i) If R11 € Cx(X), then the assumption (III) is fulfilled. Indeed, since by the
strong Markov property

Rilge(x) =, </ooethc(X,)dt> —E, (/Oo e’ch(X,)dt>
0 okgc

=E, (e_UKC Ry 1K”(X¢7Kc))
(oge = inf{t > 0; X; € K¢}), we have

sup Rilge(x) = sup Rilge(x) < sup Ri1(x).
xeX xekKe¢ xekKe¢

Remark 2.4 The assumption (III) is equivalent to the statement that the measure m is
Green-tight in Definition 2.1(ii) below.

We further assume that M is transient; however, this assumption is not necessary
to prove Theorem 1.1 because it is enough to do it for the S-subprocess of M. Note
that the B-subprocess also satisfies the assumptions (I), (II) and (IIT). We denote by
(€, D(E)) the Dirichlet form generated by M ([13, p. 29]). Every function u in D(E)
admits a quasi-continuous version # (see [13, Theorem 2.1.3]). In the sequel we al-
ways assume that every function u € D(E) is represented by its quasi-continuous
version. A positive Borel measure p on X is said to be smooth, if there exists a pos-
itive continuous additive functional (PCAF in abbreviation) A} of M such that for
any non-negative Borel function f € 84 (X) and y-excessive function #,

t
T ( | f(xudAﬁf) = [ remew e @1
t—0t 0 X

(see [13, p. 188]). The measure u is called the Revuz measure corresponding to Af‘ .
We introduce classes of smooth measures.
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Definition 2.1 (i) A positive smooth Radon measure p on X is said to be in the Karo
class (in notation, u € ), if

lim sup E, (Af) =0. 2.2)
130 xex

(ii) A measure pu € K is said to be Green-tight (in notation, u € K), if for any
€ > 0, there exists a compact set K C X such that

sup/ R(x,y)du(y) <e, (2.3)
xeX JK¢

where R(x, y) denotes the O-resolvent density Ro(x, y).

Remark 2.5 We suppose that every measure in /C is a Radon measure. As a result,
the associated PCAF is of no exceptional set, that is, a classical one ([13, Theo-
rem 5.1.7], [2, Proposition 3.8]). We know from [2, Theorem 3.9] that for all x € X,

t
Ex(Af)=/0 /sz(x,y)du(y), Ex(Aé‘):/XR(x,y)du(y). (24)

Remark 2.6 The definition of K is different from that of Z.-Q. Chen [3, Defini-
tion 2.2], where he assumes in addition that there exists a positive constant § such
that for all measurable sets B C K with w(B) < §,

sup/BR(x,y) du(y) <e. 2.5)

xeX

Chen in [3] showed that if a measure u € K satisfies (2.5), two statements in Propo-
sition 2.1 below are equivalent. We only need the sufficient part for the proof of The-
orem 1.1. For this reason, we remove the condition (2.5) in the definition of K.

We see from [2, Lemma 3.5] that a measure p in K is S-potential-bounded,
Sup,ex Rgu(x) < oo, for any B > 0. Here

Rgu(x) = f Rg(x, y)dp(y).
X
Equation (2.2) in Definition 2.1(i) is equivalent to
lim || Rgpllc =0 26)
B—o00

(e.g. [1]). Moreover, it is known from [19, Theorem 3.1] that

/ uPdu < | Rgpulloo - Ep(u, ). @7

X

We define the Feynman—Kac semigroup {p! },>0 by

Pl =Ee (e F(X0)it <2).

Then the semigroup {p!'};>0 possesses the following properties:
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Theorem 2.1 Letp=put—pn e K -K.

(1) There exist constants ¢ and 8 such that

<ce’5t, 1<p<oo,t>0.

e -

Here || || p,p means the operator norm on LP (X; m);

(i) {p!}i>0 is a strongly continuous symmetric semigroup on L%(X;m) and the
closed form generated by p!' is identical to (E*, D(E));

(iii) For each f € Bp(X), p!' f € Cp(X).

Proof (i) This assertion is a consequence of [2, Proposition 5.2, Theorem 6.1(i)].
(ii) By (2.7), the Dirichlet space D(€) is contained in L*(X: ). Thus this asser-
tion follows from [2, Theorem 6.1(ii)].

(iii) See [6, Proposition 3.12]. O

For a measure u in /C, define
Alp) = inf{é’(u, u):ueDE), / uz(x),u(dx) = 1}. (2.8)
X

On account of Lemma 3.1 in [22], we see that A(u) is the principal eigenvalue of the
time-changed process of Ml by A, If a measure 1 € K satisfies

sup E, (eA?) < 00,
xeX

then w is said to be gaugeable.
Proposition 2.1 Let u € K. Then
Al‘-
AMu)>1 = supE;(ec) <oo0.

xeX

For the proof of Proposition 2.1 see Appendix.
The super-gauge theorem follows from Proposition 2.1 ([3, Theorem 5.4]).

Corollary 2.1 If u € Koo satisfies A(u) > 1, then there exists a positive constant €
such that (1 + €)u is gaugeable.

Proof There exists a positive constant € such that A(x) > 1 + €. By the definition of
A(u),

1
A((l +6)pL) = mk(,u) > 1.
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3 Transform of Symmetric Markov Processes

In [4], we studied a class of supermartingale multiplicative functionals which trans-
form each symmetric Markov process to an ergodic one. For the proof of Theo-
rem 1.1, the transformation played a crucial role.

Let u € Ko and k() the constant in Theorem 2.1(1). If @ > « () and f € Bp(X),
we define the resolvent R by

RIf(x) =E, (fooo e‘“’“ff(x,)dt).
We set
Di(H")={RLf: >k, f e L>(X;m)NCy(X), f = 0and f 0},
and define the generator H* by
Hru=ou—f, u=RYfeDi(H"). (3.1

Here « (1) is defined by
.1 u
e(u) = lim —log [ p1'| ; -
Theorem 2.1(i) says that « (u) is finite and the function RY f is finite for a > x (1)
and f € L2(X; m) N Cp(X). Each function ¢ = R f € Dy (HM) is strictly positive
because Py (0o < ¢) > 0forany x € X by the assumption (I). Here O is a non-empty

openset {x € X: f(x) >0} and op =inf{t > 0: X, € O}.
Suppose that a measure u € K satisfies A(u) > 1. Let

h(x) = E (%), (32)
which is said to be the gauge function of . Then Proposition 2.1 yields

1<h(x) < Ch(:= sup h(x)) <00,

xeX

Remark 3.1 If a measure u in K satisfies A() > 1, then

[P/ ] oo < SUP Ex () < 00,
xeX

and thus

lim llog ||pr H <0.

t—o00 00,00 —

Hence we can take any « > 0 in the definition of D4 (H").

Lemma 3.1 The function h defined in (3.2) is bounded continuous.
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Proof Since by the Markov property
Al _AF Al _ A7+A“(9 ,(60) -
e h(X) lj<gy = €™ Ex, ("¢ ) 1y<g) =Ex(e <60 <oy | F7)

= B (™ Lpee)| 7).
we have
pf‘h(x) =E, (eA?; < {), 3.3)
and so by Holder’s inequality

h(x) — plh(x) = B (et 11 > )

< (E, (e<1+e>A‘;))1/<e+1> Pyt > £)</ €D,

Since by Corollary 2.1

sup B, (e(1+€)A?)

xeX

< 00,
and P, (t > ¢) =1 — p;1(x) converges to 0 locally uniformly as ¢ | 0, we see that
pi*h converges to h locally uniformly as ¢ | 0. The function p!‘h is continuous by [5]
and so is A. O
Lemma 3.2 Let h be the function defined in (3.2). Put h(A) = 1 and define

M = e* h(X,) — h(Xo).
Then Mth is a martingale with respect to (Py, {F:}).
Proof Noting h(A) =1, we have

Ex(eA;Lh(X,)) =E, (eAﬁlh(X,); t < ;) +E, (eAlfl; t> g).

The first term on the right-hand side equals IEx(eA/;;t < ¢) by (3.3) and thus
Ey (e h(X;)) = h(x), that is, E.(M") = 0. Since

"
My, =M +e™ M @),
we have
i
B (M 1) = M? + A B, (MP) = . 0

Lemma 3.3 For ¢ = Rl f € Dy (HM), let
I3 L
M0 = e (X)) — §(Xo) — / M HEP(X) ds.
0
Then Mt’“p is a martingale with respect to (Py, {F}).
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Proof First we show that E, (M!* ’¢) = 0. By the Markov property

t (L
a-IEIx</ s R{jf(Xs)ds>
0
to 00 B
=u-E, (/ e Ex, (/ et Ay f(Xu)du> ds)
0 0
! o0 13 13
:a.Ex(/ (/ Ex(eau+As+Au(9s)f(Xu+S)|Jrz's)du> ds)
0 0

t [ee]
=a-E, ( / e ( / e~ AL £(X ) du> ds), (3.4)
0 s

and the right-hand side equals

t )
E, (/ (eau _ 1)e‘°‘”+A5f(Xu)du> +E, (/ (eozt _ l)e—au-‘f-Agf(Xu)du)
0 t

by interchanging the order of integration. The first term equals

t
E, ( / eAﬁf(Xumu) ~E, ( / te—“"“‘ff(xu)du)
0 0

and the second term equals

E, (eA;LEX, </OOO e—as+A§Lf(Xs)dS>> —E, (/Ooe—au+Af¢Lf(Xu)du>.
t

Hence the left-hand side of (3.4) equals
t
E. ( / eAfff(Xmu) +E (M RE£(X)) — REF (),
0

which implies E,(M/“?) = 0. Since M";? = M/*? + ¢4 M/“? (6;), we have the
lemma for the same reason as in Lemma 3.2. O

For ¢ = Rig € D4 (H") and € > 0, let ¢ = ¢ + ch and put
1 L
Mt =M g - g o) = [ Mg xods,
0

Then, by Lemmas 3.2 and 3.3, M,LW)e is a martingale with respect to P,.. Let le)e] be
the martingale part of the semimartingale ¢ (X;) — ¢ (Xg) = M,we] + N,we]. Then
M!% is also written as

t
M — /O M aM#), Prae xeX. (35)
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Indeed, applying 1t6’s formula to F(x, y) = xy, we see that

M Be(X)) — de(Xo) = F (e, (X)) — F (e, ¢ (X0))

t (L t " t (L
- / e dMI9 ¢ / e AN 4 / be (X )e™ dAF,
0 0

0

and thus the martingale part of eAfuqbe (Xt) — ¢<(Xo) equals the right-hand side
of (3.5).
Let us define the multiplicative functional (MF in abbreviation) Lf’e by

t
L ot XD (_ g
¢e (Xo) 0 ¢)e

(xs)ds> L<c)- (3.6)

When € = 0, we write L? for LY.

Lemma 3.4 Fore >0,

p (X.) du) dM©%e. (3.7)

t S
L?€ -1 :f ! exp(—/ Loy
0 ¢e(Xo) 0

Proof The right-hand side of (3.7) is equal to

( H% 5 (X du) (d(e™ pe (X)) — e HIp(X,) ds).
0

®e (Xo)
Noting that
d(ef‘?qse(xs)exp(— ' HH¢(Xu)du>>
0 ¢e

= exp(— ) H;‘p (X,) du) (d(e™ pe (X)) — ™ Hip(X,) ds),
0 (3

we have the lemma. O

For € = 0, define the sequence of open sets {G,}7° , by G, ={x € X : p(x) > %}.
As remarked in the second paragraph of Sect. 3, the function ¢ is strictly posi-
tive continuous, and thus G, 1 X. Let 1, be the first leaving time from G, 7, =

inf{t > 0: X, € G,}. We have the next lemma in the same way as in Lemma 3.4.

Lemma 3.5 Foreachn,

ATy 1 s HM¢
L¢,—1=/ <—/ —Xud>dM“’¢. 3.8
G ST TR N R A oo
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We see from Lemmas 3.4 and 3.5 that for each € >0

E.(L{") <liminf E.(L{{,) <1, xeX,
and L?’G is a supermartingale MF. Denote by M¢% = (2, X,, Pf’ ¢, ¢) the transformed

process of M by L?e. We see from Lemma 3.4 that Lf) satisfies the Doléans—Dade
equation

t
¢ _ ¢ [¢]
L _1+f LY dM'?).
! 0o To(Xsm)

We note that the function ¢ belongs to D(E) by [2, Proposition 5.2, Theorem 6.1].
The transformation by L?, ¢ € D(E), was thoroughly studied in [4]. For example,
the next theorem is a consequence of [4, Theorem 2.6, Theorem 2.8].

Theorem 3.1 M? is a ¢p>m-symmetric ergodic process.

Remark 3.2 For¢ =Rk g >0, g€ £;(X ), the operator H* ¢ is defined in the same
way as (3.1). Since Lemma 3.3 holds for this ¢, the MF L? defined by (3.6) satisfies
that Ly = 1 and E,(LY) < 1.

4 A Large Deviation Principle

In this section we will prove the main theorem. As mentioned in the Introduction,
Theorem 1.1(i) was proved in [12, 21]. For the completeness, we will give a sketch of
the proof. For the proof of Theorem 1.1(ii), a new definition of I-function is essential.
After the definition we can prove it by the similar argument as in [10, 20].

Let P the set of probability measures on X equipped with the weak topology.
Define the function I** on P by

{mﬁ, VI ifv=f-m JfeDE),
o0

I"*(v) =
otherwise.

For t < ¢ (w), let
1 t
Li(w)(A) = ;/ 1A(Xs(a))) ds, AeBX).
0
Proposition 4.1 Let i € K. Then for each open set G € P

|
liminf = logE, (¢’ ; L, € G, 1 <¢) > — inf I"(v). 4.1
t—o00 f veG
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Proof Let ¢ = RY f € Dy (H") and ¢ - m € G. Let L? = L,d)0 be the MF de-
fined by (3.6) and denote by M? = (£, X, Pﬁ’ ) the transformed process of the Hunt
process M by L?. We have this proposition by exactly the same argument as in [21].
Set
1 [rHH*
le{weﬂzlim— ¢
0

t—o0

(Xs(a))) ds :/ ¢H“¢>dm},
X

2 = {w € 2 : L;(w) converges to ¢2m}.

We then know from Theorem 3.1 that for i =1, 2, ]P’f(.Qi) =1 ¢*m-as., so that
Pf(.Q,-) =1 for any x € X on account of the shift invariance of £2; and the absolute
continuity of the transition probability of M?. Hence,

P?(S(t,€)) — 1t — oo for Vx € X,

where
el 55
St,e)=3wef2: / (x)L,(a),dx)—/d)H“q&dm <€, Li(w)eGy.

x ¢ X

Since
B (e" ;L €G,1 <)
B (LY e L e Gt <)
o even <) (5
> exp(t (/ dH d dm — e)) 9 x) (1-P¢(2 =S, ),

X 1@ 1loo

we have

1
uminf—logEx(eAr“; L eG,t<Y) 2/ dH pdm — €.
t—oo t X

Noting that the set {¢ € Dy (H") : |||l = 1} is dense in the set {¢p € D) :
¢ >0, ||¢|l2 = 1} with respect to 550 (g > Kk (w)), we arrive at the theorem. O

Lemma 4.1 Let p € Koo. If A(t) > 1, then R’f also satisfies the assumption (III);
for any € > 0 there exists a compact set K¢ such that sup, ¢y Ri‘ Ige(x) <e.

"
(H'G)AC) < oo for small €. Since

Proof By Corollary 2.1, sup, .y E (e
(0.¢] AM
Ri‘ch(x)=/ e "By (e 1xe(Xy))dt
0
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0 . 1/(14¢)
< (/ ¢ Ey (014 )dt> Ry e (x)€/ 15
0

N\ 1/(14€)
= (sup Eu () T Ritge o)/ (149,

xeX

the proof of this lemma is completed. g

For p € K with A(w) > 1, let k be the gauge function of w and put
e =¢+eh, ¢eDi(H"),e>D0.

We define the function on P by

i
I(v)=— inf /H ? v, 4.2)
¢6D+<81M> X Qe

Proposition 4.2 Let u € Koo with A(uu) > 1. Then, for each closed subset K of P

1
lim sup — log sup E, (eA;i; L, eK,t < {) < - inlf(l(v). “4.3)
ve

t—oo I xeX

Proof For ¢ € Do (H™), let L% be the MF defined in (3.6). Then, since L% is a local
martingale with Ld’f =1,

. (eAy pe(X) exp(_ CHg
9 (X0) 0 9

(Xs)ds>;l<§>§1, “4.4)

and thus

t
SuPEx(ﬁXP(Af‘—/ 7-ZL¢(Xs)ds;t<C>> < [Plloe €litlloo
0

xeX € €
Furthermore, for any Borel set C of P

t
Ex(exp<A,”—f 7_f;qb(XS)ds>;L, eC,t <§>
0

€

=E, <eA7 -exp(—t/ f"b (x)Lt(dx)); LieC,t< g)
X (3

> Ex(eAfl; LieC,t<¢) ~exp<—t . sup/ 7—5;4) (x)dv(dx)).
X

veC 3

Hence

sup Ex(eA#; LieC,t<¢)
xeX
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§ (M) exp(t sup | H“¢<x>dv(dx>)
€ veCJX ¢€

and thus

1 HH
lim sup — log sup E, (eAﬁL; LieC,t<¢)< inf supf ¢ dv. 4.5)
X

t—oo [ xeX €Dy (HM) yeC €
e>0

To derive (4.3) from (4.5), we have only to imitate the argument in [9]. Indeed, let K
be a compact set of P and set

i
£=sup inf fH ¢dv.

veK 9D (HM Jx e
€>

Then, given § > 0, for every v € K there exist ¢, € D4 (H") and €, > 0 such that

w
/ T <o
X¢v+€vh

The function Hﬂf”h is bounded and continuous on X, so that there exists a neighbor-

¢\) v
hood N (v) of v such that

HM
s <0+28 forreN(@O).
x v +€vh
Since {N(v)},ekx is an open covering of K, there exist vi,..., vt in K such that

KC U];-:1 N(vj).Put Nj = N(v;). We then have for 1 < j <k

HM(pUj
su ———dv <{£+4+126,
p/X%j Fenh

UGNj

and thus

HH
max inf sup/ ¢dv§€+28.
X

1§j§k¢€D+<H“)vgNj 3
e>0

Therefore, by (4.5)

1
limsup;logEx(eA?; LieK,1<7)

t—0o0

1 m
< max limsup —logE eAf;L eN;,t <
TI<j<k t—>oopt & X( ! / é‘)

. H* o

< max inf sup dv <t +26. 4.6)
15j5k¢59+(g‘“>MeNj X e

€>

Since § is arbitrary, (4.3) holds for each compact set.
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To prove (4.3) for each closed set, we follow the argument in [11, Lemma 7.1].
We know from Lemma 4.1 that for € > 0, there exists a compact set K, such that
sup,ex R} 1ke(x) <e. Put

_ H“Ritl[(EC(x) _ lKg(x) - Rfl[(g(x)
R 1ge(x) +eh(x)  R{'1ge(x)+eh(x)

Ve(x) =

and define the measure Q, ; on P by
0. (C)=E (ML eCt <), CeB(P).

‘We then see from Remark 3.2 that

Rf1ge +€h C
/ eXP<tf Vf(x)v(dx))Qx,tS L KT €O @)
P X

€ €

where Cj, = sup,cy h(x). If 0 <€ <1/(2+ C}), then for x € K, the function Ve (x)
is negative and for x € K¢

1—e¢ >1—1/(2+Ch)_ 1

Ve(x) = > = .
€+ Cpe €+ Cpe 24 Cp)e

Hence the set K¢ is written as

KGZ{XEX: Vg()C)Zm}

Since V¢ (x) > —1, we have

/exp(t/ Ve(x)v(dx))de,,
P X
:/ exp(t/ Ve(x)v(dx)+t/ VAx)v(dx))de
P K¢ K

t oy
ZLCXP(mV KG) l)de,[. (48)

Let
M ={veP:v(K) > s}

€:

Then it follows from (4.7) and (4.8) that for 0 <e < 1/(2+ Cp)

Qx,z(«M;S) <({1+Cp) ~exp(t — L)
24 Cp)e

@ Springer



1114 J Theor Probab (2011) 24:1097-1129

26y
Forany A > 2+ Cp, set J, =J,2; M " .Then

n?

2+
) Z(I+Ch)e(l tin)

n=1

th(fx)<Zsz<

n=1 An

(1=t

= (1+C) 7.

and thus

1
limsup —logsup Oy ;(J;) <1—2

t—oo I xeX

We see by definition that the set Jy is tight and closed with respect to the weak
topology, that is, a compact subset of P. Hence for each closed subset K

limsup — , log sup Oy :(K)

t—00 xeX

1 1
< (limsup — log sup Qx,t(K N Jf)) \% <1itm sup " log sug O (KN JA)>
— 00 XE

t—oo I xeX

= (_ueiI?rf\‘J)f ") v (1 =3 = (= inf 1)) v (1 =),

The proof is completed by letting A to co. g

Denote by 073; (X) the set of non-negative bounded Borel functions on X. Let us
define a function on P by

RE h
I,(v)=— inf / log(m> du. (4.9)
ueJB’;r(X) X u-+eh
e>0
Lemma 4.2 It holds that
I(v)

I,wW<—=, veP.
o

Proof Foru = Rl f € Dy(H*) and € > 0, set

aRNu+eh
=— 11 — ) dv.
¢ () /X0g< Wt eh ) v

Then, noting that 7~ (R“u) = —(R¥)2u, we have

d RM _ RM 2 HH RM 2
—¢(a) f Md“ :/ # (4.10)
x aRyu-+¢€h x CRyu +€h
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Since
(@(RE)u — REu) (@ (RE) u + eh) — (a(RE) u — REu) (¢ RV u + h)

equals a(a(RE)?u — REw)? > 0, we have

o(R&)*u — R§u _ o(Ry)*u — Ryu
OleM—FGh - Olz(Rg)zu—l-Eh ’
and thus

U2 K2
f H*(Ry)“u v Z/ H*(Rg)~u
X

aREu+eh x 02(RW)2u + €h
1 K (RE)? 1
= __<_/ M‘h) >——I®).
a? X (Ra)zu—i—ﬁh o?

ozRéfu—}—eh)de_I(v)

Therefore

3

u-+eh o

¢ (00) — p(a) =/ log(
X

Ry h I
— inf /log<a alt € )dvf (U).
ueDy(HM) J x u+eh o
e>0

Since by Theorem 2.1(i) and Remark 3.1, ||/3R§f||OO < Clflloos B > 0, and
BRy f(x) = f(x)as B — o0,

aRY (BRY f) +eh N RY h
/log( ﬂﬂ s/ )d,u g 1og(M> dv.  (411)
X ,BRﬂf +e€h X f+ehn

which implies

Define the measure v, by
va(A)zfxaRjj(x,A)dv(x) A e B(X).
Given v € :B;(X), take a sequence {g,},;2 | C C;(X) N L2(X; m) such that
/;(|U—gn|d(va+v)—>0 as 7 — 00.
We then have
/X|aRfjv—otR(‘jg,,|dvS/XaRg(|v—g,1|)dv=/X|v—g,,|dva—>O

as n —> 00, and so

RY h = RY h
/1og<w) du”—"f/ log<w)dv. 4.12)
X gn+e€h X v+eh
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Hence, combining (4.11) and (4.12) we have

RY h RY h
inf /log(m>dv= inf flog(w)dv,
ueDy(HH) Jx u-+eh ues Jx u-+eh

which implies the lemma. O
Lemma 4.3 [f I (v) < 0o, then v is absolutely continuous with respect to m.
Proof By the similar argument in the proof of [10, Lemma 4.1], we obtain this

lemma. Indeed, for a > 0 and A € B(X), set u(x) =ala(x)+1¢€ JB’;(X), where
14 is the indicator function the set A. Then

oRbu +eh aaRl (x, A) +aRY (x, X) + €h
log| ———— |dv= [ log dv.
X u+eh X alA(x)+1+6h

Define the measure v, as in the proof of Lemma 4.2. Put

Ca =/ ochj(x,X)dv(x)(: va(X)), k:/ hdv.
X X
Noting that 4 > 1, we see from Lemma 4.2 and Jensen’s inequality that
log(avy (A) + ¢y +ke) = v(A)log(a + 1 +€) +v(A)log(l +€) — I (v) /e,

and by letting € — 0

log(ava(A) + ca) >v(A)logla+1)—1(v)/a.
Since logx < x — 1 for x > 0, we have

avy(A) +cy —1>v(A)logla+1) — 1 (v)/a,

and so

—I(W)/a+v(A)(ogla+1)—a)+1—cqy
a

Ve (A) —v(A) =

Noting that log(a + 1) — a < 0, we have

—I(W)/a+(ogla+1)—a)+1—cqy
a

v (A) —v(A) =

for all A € B(X) and
V(A) = vg(A) = 1 — ¢ + (v (A°) —1(4%))

—I(W)/a+dogla+1) —a)+ (A -cu)l@a+ 1)
a
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for all A € 8(X). Therefore we can conclude that

sup |v(A)_Ua(A)|Sa—log(a—l—l)—i-l(v)/a—i—(l—ca)(a_;_l).
AeB(X) P

Note that ¢, — 1 as « — oo. Then since

—lo 1
limsup sup ’v(A) — Vy (A)‘ < L(a—i_)
a—00 AeB(X) a
and the right-hand side converges to 0 as a — 0, the lemma follows from Re-
mark 2.1. O

Proposition 4.3 It holds that for v € P

I(w)=1"®).

Proof We follow the argument in the proof of [10, Theorem 5]. Suppose that I (v) =
£ < 0co. By Lemma 4.4, v is absolutely continuous with respect to m. Let us denote
by f its density and let f" = ./f A n. Since log(1 — x) < —x for —co < x < 1 and

-0 < 7fﬂ —aRéff” <1
fr4eh ’

aRY "+ €h B f"—aRy f"
,/Xk)g<7f”+6h )fdm_/xlog<1——fn+6h )fdm

fn Rl’«fn
./ f"+eh “rigen JAm

SO

fn_“ o f
[ S < 1o

By letting n — oo and € — 0,

[ VIT —ariTyam < s -m < 2L,

which implies that \/f € D(E) and EX(J/F, /) < I(f -m).
Let ¢ € D4 (H") and define the semigroup P,¢ by

( Al Pe(Xy) ( "HM
| et - ———exp| —

#e(Xo) 0 Pe

Then, Pt¢ is (¢ 4+ eh)>m-symmetric and satisfies P,¢1 <1 by virtue of (4.2). Given
v=f-meF with /T € D), set

th.
SV ) = x(e exp(— A ¢¢<Xs>ds>ﬁ(xt>).

Ptd)f(x) =K

(Xs)ds>f(xt)>-
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Then
fiam= (o ()
<fert () Jam
<[ (57 am= [ ram
Hence
0= lim - (VF = SIVFND), =€ WTNT) + [ Fo2 pam,
and thus EX(JF, VT) = I(f - m). O

We now remark that by considering the SB-subprocess of M, we can assume
without loss of the generality that M is transient and p is gaugeable. Here the
B-subprocess of M is the m-symmetric Markov process with transition probability
e P p,(x, y)m(dy), B > 0. Let us denote by M# = (£, IF’)’?, Xy, ¢) the subprocess.
Then clearly the subprocess M# also fulfills the assumptions (I), IT) and (IIT). The
Dirichlet form generated by M is identical to Eg (=E+B(,)m). Let /cfo be the set
of Green-tight measures defined by using the B-resolvent density Rg(x, y) in place of

R(x,y). According to the resolvent equation, the space ICgo is independent of § > 0.

Lemma 4.4 If u € K., then for large B

Ag(w) ::inf{gﬁ(u, u) :/ wrdp = 1} > 1.
X

Proof By (2.7) and (2.6),

/usz«EHRﬂM”oo'gﬂ(u,u)
X

and limg_, o |Rgutllcoc = 0. Hence Ag(u) > 1 for B large enough, and thus this
lemma follows form Proposition 2.1. U

Combining Lemma 4.4 with Proposition 2.1, we see that each measure u € IC}X)
becomes gaugeable with respect to the S-subprocess for large 8. We define I# in
the same manner as /* by using £g. By applying Propositions 4.1 and 4.2 to the
B-subprocess, we can prove Theorem 1.1 for the subprocess. Since

inf 1P (v) = 1nf I"(v)— B

veG
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and
IEE(eA#; L, eG,t< c) —e P ~IEx(eA;L; L, eG,t< {),

Theorem 1.1 for the subprocess yields that for the original Markov process.

Remark 4.1 We see that the generalized Schrodinger operator H* admits the ground
state. Indeed, put

pg(u):inf{c‘)”(u,u):ueD(S),/ uzduzl},
X

and let {u,} be a minimizing sequence of D(E), i.e., fX u% du=1 and pr(n) =
limy, 00 EX (Up, uyn). By (2.7),

fu%dus | Rattlloo - (Etns 1) + 1)
X

and || Ry /t]loo < 1 for large o because u € K. Hence

Supn g”(”n, un) +a||ROt/"L||OO <

Eun, uy) <
e 1= |Ryptlloo

We then see from the assumption (III) that for any € > O there exists a compact set K
such that

SUP/ uZdm < || Rilgelloo - (Supc‘?(un,un) +a) <k,
K¢ n

n

that is, the subset {uﬁ -m} of P(X) is tight. Hence a subsequence {u,%k -m} weakly
converges to a probability measure v. Moreover, it follows from Proposition 4.3 that
the function /* is lower semi-continuous with respect to the weak topology. Hence

I*(v) < liminf 7" (uj,, - m) = liminf £ (up, , un,) < 00
k—00 k— 00

and the probability measure v is expressed by v = u(2) -m,up € D(E). We now con-

clude that ug is the ground state, Ao () = E* (ug, ug). The uniqueness of the ground
state is derived from the irreducibility (I).

Remark 4.2 Let 1 be a signed Radon measure whose positive part u* is in Ko and
negative part 1~ is in KC. Let M*  be the subprocess by the MF exp(—A}* ). Then
Theorem 2.1(iii) says that the process M* satisfies (I), (II) and (III). Applying the
results above to M# | we establish Theorem 1.1 for u =™ — pu~ € Koo — K.

The next corollary is a consequence of Theorem 1.1 with G = K =P.

Corollary 4.1 For i€ K.,

1
— lim —log supEx(eA#;t <)
t—00 t xeX
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:inf{E“(u,u):ueD(é'),/ u2dm:1}. (4.13)
X

Let ||p,”||p,p be the operator norm of pf from LP(X;m) to LP(X;m) and define
the LP-spectral bound by

|
pp(w) == lim —log|p'|, .. 1<p=oo.

Note that || p![|cc.co = Sup,cx Ex(exp(A}); t < ¢) and pa(u) equals the right-hand
side of (4.13) by the spectral theorem. Then Corollary 4.1 yields

Poo (1) = p2(1n). (4.14)

By the symmetry and positivity of p}*,

[P laa =P, , = 1P e 1< P <00 (4.15)

Hence the next theorem is an immediate consequence of (4.14) and the Riesz—Thorin
interpolation theorem.

Theoremd4.1 Let € IC})O. Then under the assumptions (1), (II) and (I11), the spectral
bound pp(1), 1 < p <00, is independent of p.

Remark 4.3 The inequality (4.15) says that pa(it) > poo(it). Hence the uniform
upper bound in Theorem 1.1(ii) with K = P is essential for the proof of the L”-
independence.

5 One-Dimensional Diffusion Processes

In order to illustrate the power of our main Theorem 1.1, we consider one-
dimensional diffusion process and obtain a necessary and sufficient condition for
LP-independence of their diffusion semigroups in terms of speed measures and
scale functions. To this end we need to check the assumption (III). Let I = (rq, r2),
—00 <r; <0 <ry <oo.Let s be strictly increasing continuous function on / and m
a strictly increasing function on /. We define

Dypu(x) = lim 43T 7 ) DHu(x) = lim T —#@)
'm _h—>0Wl()C‘|‘h)—}’}’l(}c)7 s _th(X—i-h)—s(x)’

if the limits exist. Let us recall Feller’s boundary classification. Put

p— f (fydmu)) ds(y), o= / (/ydsm) dm(y)
0 0 0 0
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(r; =ry or rp). By the Feller’s boundary classification, we call

r; aregular boundary if p < 00,0 < 00,

r; an exit boundary if p < 00, 0 = 00,

r; an entrance boundary if p = 00, 0 < 00,
r; a natural boundary if p = 00, 0 = c0.

We denote M = (P, X;, ¢) the minimal diffusion process generated by D,, D:T, that
is, the Dirichlet boundary condition is imposed if 7; is a regular or exit boundary. The
Dirichlet form generated by M is written as

rn n
€(u,v)=—/ D,,,Dju-udmzf Dfu(x)- Dfv(x)ds. 3.1
r r

Let uy(x) (resp. ua(x)) be a positive increasing (resp. decreasing) solution of the
equation (1 — D, D}F)u =0 and W the Wronskian. We may assume that W = 1.
Then R;(x, y) is written by

ur(uz(y), ri<x=<y<r,

wr(ur(y), rn<y<x<nr

R1(XJ)={

(e.g. [14, 5.14]).

Lemma 5.1 Suppose that rp is regular, exit, or entrance. Then for any € > 0 there
exists 0 <r < ro such that

sup Ril ) (x) <e.
xel

Proof We know from [14, Theorem 5.14.1] that if r, is regular or exit, then
lim R{1(x)=0.
xX—r

Hence for any € > 0 there exists a constant » > 0 such that

sup Rilg ) (x)= sup Rilg,)(x) < sup Ril(x) <e.

r<x<r r<x<rp r<x<rp

If r, is an entrance boundary, we see from [14, Theorem 5.14.1] that for a bounded
Borel function g on /

r
lim R1g(6) =272 / ¢ (o1 (x) dm(x),
XTr r

where us(r2) = limyy,, u2(x) < 0o. Hence noting that the function Ri1,,)(x) is
increasing in x, we have for 0 <r <

r
Sup Ry 1) (¥) = lim Ry 1) (¥) = 02(r2) / 1 (x) dm(x)
xel x1ry r+
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and the left-hand side converges to 0 as r — r». |
The next corollary follows from Theorem 1.1.

Corollary 5.1 Assume that no boundaries are natural. Then for u € IC(IX), pp () is
independent of p.

Suppose that the boundary, say rp, is natural. Then we can show by the same
argument as in [24] that p,(u) is independent of p if and only if p2(u) < 0, while
we supposed in [24] that the symmetric Markov process is conservative. Indeed, we
extend the diffusion to (r1, r;] by making the adjoined point r, a trap, that is, the
transition probability p;(x, dy) on (rq, r2] defined by

pi(x, E)=pi(x, E\{r2}), x€(r1,r),EcB((r1,r])

and

B 1 meE,
pl(rZa E)= O r ¢E

We first suppose that r| is regular or exit. Let M = (P,, X;, ) be the diffusion
process on (r1, r2] with transition probability p; (x, dy). We regard r| as the infinity A
of M. Furthermore, we take S large enough so that . € ICéo is gaugeable with respect

to the B-subprocess of M, and denote by Mf = (f_’)é5 , X¢) the B-subprocess of M. We
will apply the facts shown in the previous section to the B-subprocess MP. Let pt*
and RZ be the semigroup and the resolvent of MP: for f € By((r1, r2])

_ = an - g
P =B fxir <) Rigoo= [ et war
0
Lemma 5.2 Suppose that ry is a natural boundary. Then for a bounded continuous
function f on (r1, 2],

lim p! f(x) = f(r).
x1ry

Proof We see from [14, Theorem 5.14.1] that for f € Cp((r1, r2])

PTIE Rpf(x)= f(;). (5.2)

Let f be a strictly positive function in Co(I). Forry <r <x <rp

ePt

E,(e P Rg f(X,

Pi(o, <t) <

and

Rpf(x) > E, ( / h e PEXy) dt) =E (e P Ry f(Xo,)).
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where o; is the first hitting time at r, o, = inf{r > 0 : X; =r}. Hence we have

Bt
P(oy <1) < —

T Rgf(r)
which implies that for any f € Coo(I)

“Rgf(x) —0, x1r,

lim p; f(x) =0,
XT}‘Z

and so

12

Ex(e™ f(X0);1 <¢) <Eo() - p(f) @ —0, x1r

Since p* f(x) = p*(f — f(r))(x) + f(r2)p*1(x), it is enough to show that
limy 4, pf‘l(x) = limy, Ex(exp(AﬁL); t<¢)=1.

Let K C I be a compact set and denote by pxc the restriction of the measure
on the complement of K, pge(-) = u(K°N-). Since

t
Rpjge(x) > E, (/O e P lK«(Xs)dAfj) >e P K, (A]F),

we have

supE, (A/¥) < Pl sup Rguge(x) — 0, K11

xel xel

by the definition of K. ,. By Khasminskii’s lemma,

AMKC ]
supEy (e < -
el + ) 1 —sup, ¢, B, (AFK)

and thus

nge
lim sup E, (e =1.
fmsupEx (™)

Hence we have limy4,, Ey (exp(AfL );t < ¢) =1 by the same argument as in [24,
Theorem 2.1(iv)]. O

Set
D+(’)'_{“”3) = {¢ = Iégﬂgg ca>0,g¢€ Cb((rl,rz]) with g > Je > ()}.

On account of Remark 3.1 and Lemma 5.2 we see that ¢ € D+(7:(“’ﬂ) is a bounded
continuous function on (ry, r»]. Let

n=inf{t > 0: X;— =r1}, p=inf{t >0:X,_ € (r1,r2), X, =r1}.

Then ¢ =n A p, that is, n is the predictable part of { and p is the inaccessible part
of ¢. Let

h) =B (e n=¢),  hoD=1.
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Then the function % satisfies that
n
h(x)— pfh(x) :Ef(eAi in=¢,t< g“)
and the argument in Lemma 3.1 leads us to the continuity of & on /. Moreover,

h(ry) = liTm h(x)=0 (5.3)
XTr

because lim, 4, ]Pf (n=¢)=0and
¢ “1/01
Efg(el‘\; in= g‘) < ]Ef(e(lJre)A:) /(+e) Pf(n _ g)g/(pre).

Denote by P (resp. P) the set of probability measures on (ry, r2) (resp. (r1, r2]).
Let us define the function on P by

_ B _
Pv)y=— inf / i ¢dv veP, (5.4)
¢eD+(HOM‘> (1] @+ €h
€>

where H*P ¢ = aRZ+ﬁg —gfor¢ = R5+,5g e Dy (HMP).
Lemma 5.3 For v € P with v((ri,r2)) > 0, put

D=1D(e)=v(e)/v((r1,r2)) €P
Then

Py =v(r1,r2)) - IP®) +v({r2}) - B, veP.

Proof For ¢ = Rg+ﬁg € Dy (H*P),

1
hm ¢(x) =———8(r),

xtr a+p
By oy — " ___ A
iug HMP g (x) = hm (aR ﬁg(x) g(x)) = "ar ﬂg(rz)

by (5.2). In addition, Rgf(x) = Rgf(x) on x € (r;,r2) and so H*Po(x) =
H* B (x) on x € (r1, r2). Hence we have by (5.3)

g kst
() +€h(r2) 5 g(ra) +eh(ry)

and forv e P
_ Hw-B
IP(vy=— inf / ¢ dv
¢ED+(7:1”"/3) (r1,r2] ¢ +e€h
e>0
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B
=— inf / n ¢dv+,3.v({r2})

¢ED+('H””ﬂ) (ri,r2) ¢ + €h
e>0
=v((r1, ) - 1P ) +v({r2}) - B. O

Proposition 5.1 Let i € IC}X). Suppose that ry is a natural boundary and ry is a
regular or exit boundary. Then, for each closed set K C P

1 _
limsup—logsupEf(eAf; L, eK,t < ;) < - inlf( Iﬂ(v). (5.5)
ve

t—oo I xel
Proof Since for x € (r1,r2)
Ef(eA;l;L, ek, t < {) =I_Ef(eA;i;L, ek, t < {),
we can prove this proposition by exactly the same argument as in Proposition 4.2. [

The set P \ {6,,} is in one-to-one correspondence to (0, 1] x P through the map:
veP\ {8} (v((r1.r2)). D(e) = v(®)/v((r1.r2)) € (0, 1] x P. (5.6)

Then Lemma 5.3 says that

inf T8 (v) = ( inf iﬂ(u)) AP, = ( inf iﬂ(u)) AB
veP veP\{5,} veP\{5r,}

— ; B —
= (_inf _{rrfo)+a-yp))ap

O<y<l,ve

= onf {r(p2G0) + ) + (1 = y)B}. (5.7)

Hence if p(un) < 0, then the right-hand side equals p2 (1) + 8. Moreover, Proposi-
tion 5.1 implies that poo (1) + B = p2() + B. As a result, we have poo (1) = p2(1t)
on account of Remark 4.3. On the other hand, if py(u) > 0, then the right-hand
side of (5.7) equals B, and thus ps (1) + B > B. In addition, lim,4,, pﬁ‘l(x) =1
by Lemma 5.2. Hence || p![lc.00 = 1 and s0 pso (i) < 0. Therefore we can conclude
that if oo () > 0, then poo () = 0.

If 1 is entrance or natural, we need not add €/ in the definition of I-function
because the diffusion process is conservative and so each function ¢ in D (H*#) is
strictly positive, that is, there exists a positive constant § > 0 such that ¢ (x) > § on
(r1, r2). If rq is entrance, we extend M to (r1, 7] by making r» a trap. Then we can
show by the same arguments as above that the L”-independence holds if and only if
p2(pn) < 0. If rq is natural, we extend M to [ry, r2] by making both r; and r; traps.
Then 17 (v) is written as for v € P(:= P([r1, r2])):

Py =v(r1,r2)) - IP®) +v({r1}) - B +v({r2}) - B
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and

inf T8 (v) = ( inf iﬂ(v)) AB
veP veP:v((r1,r2))>0

=0<ily1f<l{y(pz(u)+ﬂ)+(1 aRaLit

Therefore the same conclusion follows. We now sum up the facts above:

Theorem 5.1 Let 1 € ICéo. If no boundaries are natural, then p,(u), 1 < p <00, is
independent of p. If one of the boundaries is natural, then p, () is independent of p
if and only if p2(u) < 0.

Finally we consider a large deviation principle for the additive functional A¥ of
a one-dimensional process. To establish the large deviation principle by applying the
Girtner—Ellis theorem, we need the existence of the logarithmic moment generating
Sfunction ([8, Assumption 2.3.2]). Theorem 5.1 and Remark 4.1 lead us to the next
corollary.

Corollary 5.2 Let u € IC})O and assume that no boundaries are natural. Then for
0elR

1
lim —log]Ex(eeA#; 1<t)=—p26p).

t—0o0 t
For a positive bounded function v, the measure v - m belongs to IC because

t
limsupE, </ v(Xs)ds) <lim||v|cot = 0.
tl0 ey 0 t}0

Note that the assumption (III) is equivalent to that m € IC})O, and thus v - m belongs
to IC})O forv e :B;' . Therefore we assume that no boundaries are natural, the limit

in Corollary 5.2 exists for fé v(X,)ds. Moreover, if no boundaries are natural, the
resolvent R; of the diffusion is compact [16, Theorem 3.1], and so is the resolvent
R} of the Feynman—Kac semigroup because R} is written by

R f(x)=Rif(x)+ Ri(vR} f)(x).

Consequently, p2(0(v - m)) is differentiable in 6 by the analytic perturbation theo-
rem [15, Chap. VII]. Therefore, employing the Girtner—Ellis theorem, we have:

Theorem 5.2 Assume that no boundaries are natural. Then for a bounded positive
Borel function v, f(; v(Xs) ds/t obeys the large deviation principle with rate function
I (L) =sup{rd —C():0 e R}:

(i) For each closed set K € R,

1 1!
limsup—log]P’X(—/ v(Xs)ds e Kt < §‘> <—inf I(}).
t tJo reK

—>0o0
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(ii) For each open set G C R,

1 1!
liminf—log]P’x<—/ v(XS)dseG;t<§> > —inf I(A).
tJo reG

t—oo f

Appendix

In this section we will prove Proposition 2.1 if a symmetric Markov process satisfies
(I) and (II). For u € K its fine support is defined by

fsupplul ={x e X :Pr(r=0)=1}, t=inf{r>0:A;>0].

Lemma 6.1 Let M be a symmetric Markov process satisfying (I), (I). Let i be a

measure in ngo whose fine support is identical to the topological support, supp[i].
Then the time-changed process of the B-subprocess by AY satisfies (I), (II') and (IT).

Proof Denote by MFA# = (Pf " X,,¢) the time-changed process of the B-subproc-
ess by A, MP-# satisfies (I) because the irreducibility is stable under time-changed
transform ([18, Theorems 8.2, 8.5]).

Let Rg’“ be the a-resolvent of MPA#. Let 7; = inf{s > 0: AL > t}. Then for f €
By (X)

REF f(x) =] ( / e“”f(Xf,)dt> =Ef ( f e f(x,>dA¢‘)
0 0

[e9] u
=E, < / e Prmad; f(X,)dA,“).
0

Note that by Theorem 2.1(iii),

o0 "
E, ( f e Pimad f(Xt)dAﬁ‘)
N
I o0 "
=E, (e—ﬂ“—“f‘x Ex, ( / e Proodk f(X,)dAf))
0

By (e P54 REH £ (X)) = e P pr ¥  REH £ (x) € Cp(X).

Then since

sup |REH f(x) — e PS p @i RE f ()|

xeX

S _ _ 123
=supJEx( / e Prmak f(xt)dAﬁ‘) < I fllcc sup Ex(A¥) } 0, 50,
xeX 0 xeX

by the definition of the Kato class, we see that Rg H f € Cp(X), that is, MPA# satis-
fies (IT).
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Finally, since
o
Rg‘“ll(c(X) <E, (/ eﬂthC(Xt)dA;l) = Rp(lgep),
0

the property (III) follows from the definition of u € ICgo. 0
Lemma 6.2 Let g be a strictly positive function in Coo(X), the set of continuous

functions vanishing the infinity A. Then the measure g - m belongs to ngo.

Proof Since

Ry(lxe - 2)(0) < Ry ((sup g(0) - 1 ) () = sup g(x)- Rg1(x),

xekK¢ xekKe¢

we have

1
supRﬂ(ch-g)(x)SB- sup g(x) — 0, K1 X. 0

xeX xekK¢

Proposition 6.1 It holds that for ju € K%,

)JS(M) >1 = sup Ef(eA?) < 00.

xeX

Proof Let g be a function in Lemma 6.2 and M#¢ = (]P’f’g, X, ¢) be the subprocess
of M# by exp(— fot g(Xs)ds). Then M8 satisfies (I) and (II). Since the fine support

of 1 + g - m equals the whole space X, the time-changed process of M#¢ by PCAF
Al + [; g(X,)dt satisfies (I), (II') and (III). Then the assertion that

¢
i >1 sup]Ef’g<exp<A:f +/ g(X,)dt)) <00 6.1)
xeX 0

is a consequence of [23, Corollary 4.9], where

Aﬁ’g(u)zinf{gﬂ(u,u)—l—/ uzgdm:ueD(g),/ uz(x)(d,u+gdm)=1}.
X X
Put

t

t
Af =AY +/O g(Xy)ds, A7 :/O g(Xy)ds.

Then we see from [17, (62.13)] and [3, (2.17), (2.19)] that the expectation on the
right-hand side of (6.1) equals

¢ _ - ¢ _
Ef (/ eAfd(—e_At )-|—eAzreAf) =1 —|—]Ef </ e d(eAf)>
0 0
A ¢ Al AR
:Eff(e z+/ e fdA,)ZEff(e 0).
0
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Moreover, we show in the same way as in [26, Lemma 3.1] that the left-hand side

of (6.1) is equivalent with A# (1) > 1. The proof is completed. O
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