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Abstract It is shown that under a certain condition on a semimartingale and a time-
change, any stochastic integral driven by the time-changed semimartingale is a time-
changed stochastic integral driven by the original semimartingale. As a direct conse-
quence, a specialized form of the Itô formula is derived. When a standard Brownian
motion is the original semimartingale, classical Itô stochastic differential equations
driven by the Brownian motion with drift extend to a larger class of stochastic differ-
ential equations involving a time-change with continuous paths. A form of the general
solution of linear equations in this new class is established, followed by consideration
of some examples analogous to the classical equations. Through these examples, each
coefficient of the stochastic differential equations in the new class is given meaning.
The new feature is the coexistence of a usual drift term along with a term related to
the time-change.

Keywords Time-change · Semimartingale · Stochastic calculus · Stochastic
differential equation · Time-changed Brownian motion
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1 Introduction

Among the most important results in the theory of stochastic integration is the
celebrated Itô formula, which establishes a stochastic calculus for stochastic inte-
grals driven by a semimartingale. In general, given a d-dimensional semimartingale
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X = (X1, . . . ,Xd) starting at 0, if f : R
d −→ R is a C2 function, then f (X) is a

one-dimensional semimartingale, and, for all t ≥ 0, with probability one

f (Xt ) − f (0)

=
d∑

i=1

∫ t

0

∂f

∂xi
(Xs−) dXi

s + 1

2

d∑

i,j=1

∫ t

0

∂2f

∂xi∂xj
(Xs−)d

[
Xi,Xj

]c
s

+
∑

0<s≤t

{
f (Xs) − f (Xs−) −

d∑

i=1

∂f

∂xi
(Xs−)�Xi

s

}
. (1.1)

One useful implication of the Itô formula (1.1) is the product rule. Namely, if Y and
Z are both one-dimensional semimartingales starting at 0, then, for all t ≥ 0, with
probability one

YtZt =
∫ t

0
Ys− dZs +

∫ t

0
Zs− dYs + [Y,Z]t . (1.2)

These formulas are indispensable tools for working with stochastic differential equa-
tions (SDEs).

Our motivation to investigate stochastic integrals driven by a time-changed semi-
martingale originated in a desire to develop a stochastic calculus when the time-
change is the first hitting time process of a stable subordinator of index between 0
and 1. Meerschaert and Scheffler [10, 11] show that this type of process arises as
the scaling limit of continuous time random walks. If the original semimartingale
is a standard Brownian motion, then it is known that the transition probability den-
sity of the time-changed Brownian motion satisfies a time-fractional partial differen-
tial equation (PDE). However, a general PDE satisfied by the transition probability
density of a solution to an SDE which includes a term driven by the time-changed
Brownian motion has not been completely revealed. The stochastic calculus devel-
oped in this paper gives a way to deal with this problem.

Section 2 first introduces the significant concept of synchronization, which con-
nects a semimartingale with a time-change in a certain manner. A time-change (Tt )

is a càdlàg, nondecreasing family of stopping times. Given a one-dimensional semi-
martingale Z starting at 0, the composition of Z and T , denoted Z ◦ T or (ZTt ),
is called the time-changed semimartingale. We occasionally refer to t and Tt as the
original clock and the new clock, respectively. With the notion of synchronization,
Jacod [6] explains how to recognize a time-changed stochastic integral of the form∫ Tt

0 Hs dZs in terms of an integral with respect to the time-changed semimartingale
(ZTt ) (Lemma 2.3). However, this statement does not answer the following question:

Q: When and how can a stochastic integral
∫ t

0 Ks dZTs driven by a time-changed
semimartingale be realized by way of an integral driven by the original semi-
martingale (Zt )?

In Sect. 3, Theorem 3.1 provides a complete answer to the above question. Namely,∫ t

0 Ks dZTs = ∫ Tt

0 KS(s−) dZs , where S is the first hitting time process of T . An im-
portant corollary of Theorem 3.1 is a form of the Itô formula (1.1) for a C2 function
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of a process which contains a stochastic integral driven by a time-changed semi-
martingale (ZEt ) where (Et ) is a continuous time-change, meaning a time-change
with continuous paths. The formula can be reexpressed in terms of usual stochastic
integrals driven by the original semimartingale and the continuous part of the semi-
martingale’s quadratic variation. A generalization of this formula is a time-changed
Itô formula provided in Theorem 3.3.

Theorem 3.1, from which the time-changed Itô formula is derived, can be regarded
as a powerful tool in handling a new class of SDEs which are driven by Lebesgue
measure, a continuous time-change, and a time-changed semimartingale (Sect. 4).
The simplest, yet quite significant subclass, of such SDEs are ones with linear coef-
ficients:

dXt = (
ρ1(t,Et ) + ρ2(t,Et )Xt

)
dt + (

μ1(t,Et ) + μ2(t,Et )Xt

)
dEt

+ (
σ1(t,Et ) + σ2(t,Et )Xt

)
dBEt , (1.3)

where B is a standard Brownian motion. The new feature of this class of SDEs is
the coexistence of a term representing a drift under the new clock Et along with a
usual drift based on the original clock t . Theorem 4.5 establishes a general form of
the solution to SDE (1.3), in which again Theorem 3.1 is applied to obtain another
representation of the solution.

Section 5 compares some SDEs of the form (1.3) with classical Itô SDEs, de-
scribed as

dYt = (
b1(t) + b2(t)Yt

)
dt + (

τ1(t) + τ2(t)Yt

)
dBt . (1.4)

The comparison reveals the role of the dEt term appearing in SDE (1.3). Namely,
μj can be ascribed to either bj or τj in (1.4), depending on the way the model (1.3)
is constructed (Remark 4.7(b)). These examples also illustrate methods for obtaining
statistical data of the solution, such as the mean and variance.

2 Preliminaries—Stochastic Integrals and Time-Changes

Throughout this paper, a complete filtered probability space (�, F , (Ft ),P) is fixed,
where the filtration (Ft ) satisfies the usual conditions; that is, it is right-continuous
and contains all the P-null sets in F . For simplicity, unless mentioned otherwise, all
processes are assumed to take values in R and start at 0.

A process Z is said to be càdlàg (resp. càglàd) if Z has right-continuous sam-
ple paths with left limits (resp. left-continuous sample paths with right limits). The
assumption that Z is càdlàg or càglàd requires the process to have at most count-
ably many jumps. Associated to a càdlàg process Z is its jump process �Z = (�Zt)

where �Zt := Zt − Zt− with Zt− denoting the left limit at t and Z0− = 0 by con-
vention. Let D(Ft ) and L(Ft ) respectively denote the class of càdlàg, (Ft )-adapted
processes and that of càglàd, (Ft )-adapted processes.

A càdlàg process Z is an (Ft )-semimartingale if there exist an (Ft )-local martin-
gale M and an (Ft )-adapted process A of finite variation on compact sets such that
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Z = M + A. Although this decomposition is not unique in general, the local martin-
gale part M can be uniquely decomposed as M = Mc + Md with a continuous local
martingale Mc and a purely discontinuous local martingale Md . The process Mc is
determined independently of the initial decomposition of Z into M and A, and Zc is
defined to be the unique continuous local martingale part Mc of Z; i.e., Zc := Mc [7,
I. Proposition 4.27].

The class of semimartingales forms a real vector space which is closed under
multiplication. It is known to be the largest class of processes for which the Itô-type
stochastic integrals are defined. Let P (Ft ) be the smallest σ -algebra on R+ × �

which makes all processes in L(Ft ) measurable. Given an (Ft )-semimartingale Z,
L(Z, Ft ) denotes the class of P (Ft )-measurable, or (Ft )-predictable processes H

for which a stochastic integral driven by Z, denoted (H • Z)t = ∫ t

0 Hs dZs , can be
constructed. A brief summary of the construction appears in Appendix.

The quadratic variation of a semimartingale Z, denoted [Z,Z], can be defined
by way of a stochastic integral. It is the càdlàg, (Ft )-adapted, nondecreasing process
given by

[Z,Z]t := Z2
t − 2

∫ t

0
Zs− dZs. (2.1)

By polarization, the map [·,·] becomes a symmetric, bilinear form on the class of
semimartingales. For semimartingales Y and Z, note that [Y,Z]c does not denote
its continuous martingale part, which is of course zero, but it is defined to be its
continuous part; namely,

[Y,Z]ct := [Y,Z]t −
∑

0<s≤t

�[Y,Z]s = [Y,Z]t −
∑

0<s≤t

�Ys · �Zs.

It follows by comparing this definition with Theorem 4.52 in [7, Chap. I] that
[Y,Z]c = [Y c,Zc].

The following are some of the basic but key properties of stochastic integrals
which will be employed in the subsequent sections.

Properties 2.1 Let Y and Z be (Ft )-semimartingales. Let H ∈ L(Z, Ft ).

(1) H • Z is again an (Ft )-semimartingale.
(2) �(H • Z) = H · �Z.
(3) Additionally, if H ∈ L(Y, Ft ), then H • (Z + Y) = H • Z + H • Y .
(4) If J ∈ L(H • Z, Ft ), then J • (H • Z) = (J · H) • Z.
(5) If K ∈ L(Y, Ft ), then [H • Z,K • Y ] = (H · K) • [Z,Y ].

An (Ft )-time-change is a càdlàg, nondecreasing family of (Ft )-stopping times. It
is said to be finite if each stopping time is finite almost surely. Let (Tt ) be a finite (Ft )-
time-change and define a new filtration (Gt ) by Gt = FTt . Then (Gt ) also satisfies the
usual conditions since the right-continuity of (Ft ) and (Tt ) implies that of (Gt ). In
addition, for any (Ft )-adapted process Z, the time-changed process (ZTt ) is known
to be (Gt )-adapted. In fact, more can be said.
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Lemma 2.2 [6, Corollary 10.12] Let Z be an (Ft )-semimartingale. Let (Tt ) be a
finite (Ft )-time-change. Then (ZTt ) is a (Gt )-semimartingale where Gt := FTt .

On the other hand, the local martingale property is not always preserved under
a finite time-change. A simple example is a standard (Ft )-Brownian motion Z = B

with the finite (Ft )-time-change (Tt ) defined by Tt := inf{s > 0; Bs = t}. In this
case, BTt = t for every t ≥ 0. Thus, the time-changed Brownian motion is no longer
a local martingale.

One way to exclude this unexpected possibility is to introduce the notion of syn-
chronization, which turns out to be an essential concept in developing a stochastic
calculus for integrals driven by a time-changed semimartingale. A process Z is said
to be in synchronization with the time-change (Tt ) if Z is constant on every interval
[Tt−, Tt ] almost surely. We occasionally write Z ∼synch T for shorthand. Other prop-
erties that a time-change preserves appear in [6, Theorem 10.16]. In the literature,
Jacod [6], Kallsen and Shiryaev [8] use the expression (Tt )-adapted in describing a
process being in synchronization with a time-change (Tt ). A different terminology
(Tt )-continuous is used by Revuz and Yor [15]. Nevertheless, the term synchroniza-
tion is adopted here to avoid any possible confusions or misunderstandings that the
other expressions may create.

One quite simple yet significant observation, which connects the notion of syn-
chronization with stochastic integrals, is that if an (Ft )-semimartingale Z is in
synchronization with a finite (Ft )-time-change (Tt ) and if H ∈ L(Z, Ft ), then
(HT (t−)) ∈ L(Z ◦ T , Gt ), where, HT (t−) denotes the process H evaluated at the left
limit point Tt− of T at t . This observation leads to the consideration of two inte-
gral processes (

∫ t

0 Hs dZs) and (
∫ t

0 HT (s−) dZTs ). By Property 2.1(1), these are semi-
martingales with respect to the filtrations (Ft ) and (Gt ), respectively. By Lemma 2.2,
the former stochastic integral can be time-changed by (Tt ) to produce another (Gt )-
semimartingale. Jacod [6] shows that the two (Gt )-semimartingales (

∫ Tt

0 Hs dZs) and
(
∫ t

0 HT (s−) dZTs ) coincide for any H ∈ L(Z, Ft ). This fact plays a significant role in
establishing the basic Theorem 3.1; hence, it is stated here as a lemma.

Lemma 2.3 (First Change-of-Variable Formula [6, Proposition 10.21]) Let Z be
an (Ft )-semimartingale which is in synchronization with a finite (Ft )-time-change
(Tt ). If H ∈ L(Z, Ft ), then (HT (t−)) ∈ L(Z ◦ T , Gt ) where Gt := FTt . Moreover, with
probability one, for all t ≥ 0,

∫ Tt

0
Hs dZs =

∫ t

0
HT (s−) dZTs . (2.2)

Lemma 2.4 [6, Theorem 10.17] Let Z be an (Ft )-semimartingale which is in syn-
chronization with a finite (Ft )-time-change (Tt ). Then Zc and [Z,Z] are also in
synchronization with (Tt ). Moreover,

[Z ◦ T ,Z ◦ T ] = [Z,Z] ◦ T , (Z ◦ T )c = Zc ◦ T . (2.3)

The following simple example explains the significance of the synchronization
assumption in Lemmas 2.3 and 2.4.
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Example 2.5 Let Z = B be a standard (Ft )-Brownian motion, and define a deter-
ministic time-change (Tt ) by Tt := I[1,∞)(t), where I� denotes the indicator func-
tion over a set �. Let H be a deterministic process given by Ht = I(1/2,∞)(t), then
HT (t−) = I(1,∞)(t). Hence,

∫ T1

0
Hs dBs =

∫ 1

0
Hs dBs =

∫ 1

1/2
dBs = B1 − B1/2;

∫ 1

0
HT (s−) dBTs =

∫ 1

0
0dBTs = 0.

Therefore, the two integrals in (2.2) fail to coincide. Moreover, it follows from (2.1)
that

[B ◦ T ,B ◦ T ]1 = (BT1)
2 − 2

∫ 1

0
BTs− dBTs = B2

1 − 2
∫ 1

0
0dBTs = B2

1 ,

whereas the fact that [B,B]t = t yields ([B,B] ◦ T )1 = T1 = 1. Therefore, the first
equality in (2.3) does not hold. Furthermore, since B ◦ T is not a continuous process,
(B ◦ T )c and Bc ◦ T (= B ◦ T ) fail to coincide. Thus, the second equality in (2.3)
does not hold either. Note that the Brownian motion B never stays flat on any time
interval, and hence is not in synchronization with the above time-change (Tt ).

The next lemma will be used in the proof of Theorem 3.1.

Lemma 2.6 Let Z be an (Ft )-semimartingale which is in synchronization with a
finite (Ft )-time-change (Tt ). Let H ∈ L(Z, Ft ). Then the stochastic integral H • Z

is also in synchronization with (Tt ).

Proof Fix t ≥ 0, and let u ∈ [Tt−, Tt ]. Since Z ∼synch T , Z is constant on [u,Tt ];
hence, (H • Z)Tt − (H • Z)u = ∫ Tt

u+ Hs dZs = 0. Therefore, (H • Z)Tt = (H • Z)u.
Thus, H • Z is constant on [Tt−, Tt ]. �

The following lemma and its corollary clarify the situation of main concern in this
paper. The first hitting time process, or the generalized inverse, of a given càdlàg,
nondecreasing process S is a process T defined by Tt := inf{u > 0; Su > t}. It is
easy to see that T is also càdlàg and nondecreasing. Note that every (Ft )-adapted,
càdlàg, nondecreasing process has paths of finite variation on compact sets; hence,
a priori it is an (Ft )-semimartingale.

Lemma 2.7

(1) Let S be a nondecreasing (Ft )-semimartingale such that limt→∞ St = ∞. Then
the first hitting time process T of S is a finite (Ft )-time-change such that
limt→∞ Tt = ∞. Moreover, if S is strictly increasing, then T has continuous
paths.
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(2) Let T be a finite (Ft )-time-change such that limt→∞ Tt = ∞. Then the first
hitting time process S of T is a nondecreasing (Ft )-semimartingale such that
limt→∞ St = ∞. Moreover, if T has continuous paths, then S is strictly increas-
ing.

Proof (1) The assumption limt→∞ St = ∞ implies that each random variable Tt

is finite. In addition, since each St is a real-valued random variable, it follows
that limt→∞ Tt = ∞. Fix t ≥ 0. Since S is (Ft )-adapted, {Tt < s} = {Ss− > t} ∈
Fs− ⊂ Fs for any s > 0, and obviously {Tt < 0} = ∅ ∈ F0. Hence, Tt is an (Ft )-op-
tional time. It follows from the right-continuity of (Ft ) that Tt is an (Ft )-stopping
time (see [9, Proposition 1.2.3]). Thus, T is a finite (Ft )-time-change. Moreover, if
S is strictly increasing, then T obviously has continuous paths.

(2) The assumption limt→∞ Tt = ∞ implies that each random variable St is fi-
nite. In addition, since each Tt is a real-valued random variable, it follows that
limt→∞ St = ∞. Fix s ≥ 0. For any t > 0, since Tt− is also an (Ft )-stopping time,
{Ss ≥ t} = {Tt− ≤ s} ∈ Fs . Also, {Ss ≥ 0} = � ∈ Fs . Hence, Ss is Fs -measurable.
Therefore, S is (Ft )-adapted. Since S is also càdlàg and nondecreasing, it is an
(Ft )-semimartingale. Moreover, if T has continuous paths, then it is clear that S

is strictly increasing. �

Remarks 2.8

(a) Lemma 2.7 establishes that a nondecreasing (Ft )-semimartingale S and a finite
(Ft )-time-change T are ‘dual’ in the sense that either process with the specified
condition induces the other.

(b) Part (1) of Lemma 2.7 assumes that limt→∞ St = ∞, which ensures that T does
not blow up in finite time. We may lift this condition by restricting attention to
Tt with t ∈ [0, t∗) where t∗ = sup0≤s<∞ Ss , the explosion time of T . The same
argument applies to the assumption on T in Part (2).

Notation 2.9 In light of Remark 2.8(a), for a pair of a nondecreasing (Ft )-semi-
martingale S and a finite (Ft )-time-change T , [S �−→ T ] and [S �−→ T ] are used
to indicate respectively that S induces T and that T induces S as described in
Lemma 2.7. If S is strictly increasing and T has continuous paths, then the double
brackets �S �−→ T � and �S �−→ T � are employed instead. Hence, the double bracket
notation assumes stronger conditions than the single bracket notation. Hereafter, the
notation D and E will be used to denote a pair of a strictly increasing semimartingale
and a continuous time-change. This notation is chosen to be compatible with the con-
tinuous time-change E, which is induced by a strictly increasing, stable subordinator
D of index between 0 and 1, in the papers of Meerschaert and Scheffler [10, 11] on
continuous time random walks.

3 Stochastic Calculus for Stochastic Integrals Driven by a Time-Changed
Semimartingale

This section establishes a stochastic calculus for integrals driven by a time-changed
semimartingale. The central problem is to understand such integrals by rephrasing
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them in terms of integrals driven by the original semimartingale. Solving this problem
is almost equivalent to providing a way to recognize SDEs driven by a time-changed
semimartingale, which aids the analysis of problems that appear in applications.

The following theorem, at first glance, may seem quite simple, but its impact on the
formulation of our stochastic calculus is profound. Recall that all processes, unless
specified otherwise, are assumed to take values in R and start at 0 throughout the
paper.

Theorem 3.1 (Second Change-of-Variable Formula) Let Z be an (Ft )-semimartin-
gale. Let S and T be a pair satisfying [S �−→ T ] or [S �−→ T ]. Suppose Z is
in synchronization with T . If K ∈ L(Z ◦ T , Gt ), then (KS(t−)) ∈ L(Z, GSt ) where
Gt := FTt . Moreover, with probability one, for all t ≥ 0,

∫ t

0
Ks dZTs =

∫ Tt

0
KS(s−) dZs. (3.1)

Proof By Lemma 2.2, both T and Y := Z ◦T are (Gt )-semimartingales. Since T is a
nondecreasing (Gt )-semimartingale such that limt→∞ Tt = ∞ and T0 = 0, it follows
from Part (1) of Lemma 2.7 along with Remark 2.8(b) that S is a finite (Gt )-time-
change. On any half open interval [Ss−, Ss), T is obviously constant by construction
and hence so is Y . Moreover, since Z ∼synch T ,

(Z ◦ T )S(s) = ZT (S(s)) = ZT (S(s)−) = ZT (S(s−)) = (Z ◦ T )S(s−).

Hence, YSs = YS(s−). Thus, Y is constant on any closed interval [Ss−, Ss]. Therefore,
Y ∼synch S.

Now, let K ∈ L(Y, Gt ). Then it follows from Lemma 2.3 that (KS(t−)) ∈
L(Y ◦ S, GSt ). By the 1st change-of-variable formula (2.2) and the assumption
Z ∼synch T , with probability one

∫ St

0
Ks dYs =

∫ t

0
KS(s−) dYSs =

∫ t

0
KS(s−) dZT (S(s)) =

∫ t

0
KS(s−) dZs

for all t ≥ 0. Hence, with probability one,

∫ STt

0
Ks dYs =

∫ Tt

0
KS(s−) dZs (3.2)

for all t ≥ 0. Since Y ∼synch S, Lemma 2.6 yields K • Y ∼synch S. Any t is contained
in the interval [ST (t)−, STt ], so (K •Y)STt

= (K •Y)t . Thus, (3.2) establishes (3.1). �

Remarks 3.2

(a) Theorem 3.1 guarantees that any stochastic integral driven by a time-changed
semimartingale is a time-changed stochastic integral driven by the original semi-
martingale, as long as the semimartingale is in synchronization with the time-
change.
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(b) If a pair D and E satisfies �D �−→ E� or �D �−→ E�, then any process Z is
automatically in synchronization with E due to the continuity of E. Therefore,
under either of these stronger conditions, Theorem 3.1 is valid for an arbitrary
(Ft )-semimartingale Z.

In light of Remark 3.2(b), when �D �−→ E� or �D �−→ E�, the Itô formula for
stochastic integrals driven by a time-changed semimartingale can be reformulated in
a nice way via the 2nd change-of-variable formula (3.1) obtained in Theorem 3.1.
The proof of Theorem 3.3 is provided in full detail since it demonstrates impor-
tant computational techniques on quadratic variations which are frequently employed
in Sect. 4.

Theorem 3.3 (Time-changed Itô Formula) Let Z be an (Ft )-semimartingale. Let D

and E be a pair satisfying �D �−→ E� or �D �−→ E�. Define a filtration (Gt ) by
Gt := FEt . Let X be a process defined by

Xt := (A • m)t + (F • E)t + (
G • (Z ◦ E)

)
t

=
∫ t

0
As ds +

∫ t

0
Fs dEs +

∫ t

0
Gs dZEs (3.3)

where A ∈ L(m, Gt ), F ∈ L(E, Gt ), G ∈ L(Z ◦ E, Gt ), and m is the identity map on
R corresponding to Lebesgue measure. If f : R −→ R is a C2 function, then f (X)

is a (Gt )-semimartingale, and with probability one, for all t ≥ 0,

f (Xt ) − f (0) =
∫ t

0
f ′(Xs−)As ds +

∫ Et

0
f ′(XD(s−)−)FD(s−) ds

+
∫ Et

0
f ′(XD(s−)−)GD(s−) dZs

+ 1

2

∫ Et

0
f ′′(XD(s−)−){GD(s−)}2 d[Z,Z]cs

+
∑

0<s≤t

{
f (Xs) − f (Xs−) − f ′(Xs−)�Xs

}
. (3.4)

In particular, if Z is a standard Brownian motion B , then with probability one, for
all t ≥ 0,

f (Xt ) − f (0) =
∫ t

0
f ′(Xs)As ds +

∫ Et

0
f ′(XD(s−))FD(s−) ds

+
∫ Et

0
f ′(XD(s−))GD(s−) dBs

+ 1

2

∫ Et

0
f ′′(XD(s−)){GD(s−)}2 ds. (3.5)
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Proof Since the process X in (3.3) is defined to be a sum of stochastic integrals driven
by (Gt )-semimartingales, X itself is also a (Gt )-semimartingale by Property 2.1(1).
The Itô formula (1.1) with d = 1 yields, for all t ≥ 0,

f (Xt ) − f (0) =
∫ t

0
f ′(Xs−) dXs + 1

2

∫ t

0
f ′′(Xs−)d[X,X]cs

+
∑

0<s≤t

{
f (Xs) − f (Xs−) − f ′(Xs−)�Xs

}
. (3.6)

Using Properties 2.1(3), (4) and the 2nd change-of-variable formula (3.1),

∫ t

0
f ′(Xs−) dXs

=
∫ t

0
f ′(Xs−)As ds +

∫ t

0
f ′(Xs−)Fs dEs +

∫ t

0
f ′(Xs−)Gs dZEs

=
∫ t

0
f ′(Xs−)As ds +

∫ Et

0
f ′(XD(s−)−)FD(s−) ds

+
∫ Et

0
f ′(XD(s−)−)GD(s−) dZs. (3.7)

For the second integral on the right hand side of (3.6), first let Y := Z ◦ E. We
claim that

[X,X]ct =
∫ t

0
G2

s d[Y,Y ]cs . (3.8)

To prove this, first note that m and E are both continuous processes of finite variation
on compact sets. By [14, II. Theorem 26],

[m,Y ]t =
∑

0<s≤t

�[m,Y ]s =
∑

0<s≤t

(�ms) · (�Xs) = 0

for all t ≥ 0. Hence, [m,Y ] = 0. Similarly, [m,m] = [m,E] = [E,E] = [E,Y ] = 0.
Therefore, the bilinearity of [·,·] and Property 2.1(5) imply

[X,X] = [A • m + F • E + G • Y, A • m + F • E + G • Y ] = G2 • [Y,Y ]. (3.9)

Now, let Jt := ∑
0<s≤t �[Y,Y ]s so that [Y,Y ]ct = [Y,Y ]t − Jt . Then the pure jump

process, J , shares with [Y,Y ] the same jump times and sizes. Therefore,

∑

0<s≤t

G2
s�[Y,Y ]s =

∑

0<s≤t

G2
s�Js =

∫ t

0
G2

s dJs.

Hence, it follows from (3.9) together with Properties 2.1(2), (3) that
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[X,X]ct = [X,X]t −
∑

0<s≤t

�[X,X]s = (
G2 • [Y,Y ])

t
−

∑

0<s≤t

G2
s�[Y,Y ]s

=
∫ t

0
G2

s d[Y,Y ]s −
∫ t

0
G2

s dJs =
∫ t

0
G2

s d[Y,Y ]cs ,

thereby establishing (3.8).
Since Z ∼synch E, repeated use of Lemma 2.4 yields

[Y,Y ]c = [
Y c,Y c

] = [
Zc ◦ E,Zc ◦ E

] = [
Zc,Zc

] ◦ E = [Z,Z]c ◦ E. (3.10)

Together (3.8) and (3.10) yield [X,X]ct = ∫ t

0 G2
s d[Z,Z]cEs

. Therefore, it follows from
Property 2.1(4) and the 2nd change-of-variable formula (3.1) that

∫ t

0
f ′′(Xs−) d[X,X]cs =

∫ t

0
f ′′(Xs−)G2

s d[Z,Z]c
Es

=
∫ Et

0
f ′′(XD(s−)−){GD(s−)}2 d[Z,Z]cs . (3.11)

Equality (3.4) follows by plugging (3.7) and (3.11) into formula (3.6).
If Z = B is a standard Brownian motion, then the continuity of m, E and B ◦E to-

gether with Property 2.1(2) imply X is also continuous. Since [B,B]ct = [B,B]t = t ,
statement (3.5) follows immediately. �

A similar proof yields the multidimensional version of Theorem 3.3. For a multi-
dimensional process W , its i-th component is denoted Wi .

Corollary 3.4 Let Z be an n-dimensional (Ft )-semimartingale starting at 0. Let D

and E be a pair satisfying �D �−→ E� or �D �−→ E�. Define a filtration (Gt ) by
Gt := FEt . Let X be a d-dimensional process defined by

Xt :=
∫ t

0
As ds +

∫ t

0
Fs dEs +

n∑

k=1

∫ t

0
Gk

s dZk
Es

where A, F and Gk = (Gk,1, . . . ,Gk,d) (k = 1, . . . , n) are d-dimensional processes
for which all the above integrals are defined. If f : R

d −→ R is a C2 function, then
f (X) is a (Gt )-semimartingale, and with probability one, for all t ≥ 0,

f (Xt ) − f (0)

=
d∑

i=1

∫ t

0

∂f

∂xi
(Xs−)Ai

s ds +
d∑

i=1

∫ Et

0

∂f

∂xi
(XD(s−)−)F i

D(s−) ds

+
d∑

i=1

n∑

k=1

∫ Et

0

∂f

∂xi
(XD(s−)−)G

k,i
D(s−) dZk

s
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+ 1

2

d∑

i,j=1

n∑

k,	=1

∫ Et

0

∂2f

∂xi∂xj
(XD(s−)−)G

k,i
D(s−)G

	,j

D(s−) d
[
Zk,Z	

]c
s

+
∑

0<s≤t

{
f (Xs) − f (Xs−) −

d∑

i=1

∂f

∂xi
(Xs−)�Xi

s

}
. (3.12)

Remarks 3.5

(a) The first integral in formula (3.4) can also be expressed as a time-changed sto-
chastic integral. By the 2nd change-of-variable formula (3.1),

∫ t

0
f ′(Xs−)As ds

=
∫ t

0
f ′(Xs−)As dDEs +

∑

0<s≤t

f ′(Xs−)As�(D ◦ E)s

=
∫ Et

0
f ′(XD(s−)−)AD(s−) dDs +

∑

0<s≤t

f ′(Xs−)As�(D ◦ E)s (3.13)

as long as all integrals are defined. The additional term arises due to the discon-
tinuities of D.

(b) The stronger condition �D �−→ E� or �D �−→ E�, rather than [D �−→ E] or
[D �−→ E], is essential in establishing the nice representations (3.4) and (3.12).
For example, if E has jumps, then the stochastic integral

∫ t

0 f ′(Xs−)Fs dEs

in (3.7) may not be rephrased as a time-changed integral driven by ds since the
identity map m(s) = s is no longer in synchronization with E. Moreover, the
equalities [E,E] = 0 and [E,Y ] = 0 both may fail, which implies more terms
need to be included in (3.8).

(c) In real situations, the distributions of Z, D and E are known through statistical
data, and scientists will seek to reveal the behavior of a process X described via
an SDE of the form

dXt = ρ(t,Et ,Xt ) dt + μ(t,Et ,Xt ) dEt + σ(t,Et ,Xt ) dZEt . (3.14)

Formula (3.4) encourages handling the solution to (3.14) via conditioning. In
particular, when Z is continuous and A ≡ 0, the right hand side of formula (3.4),
conditioned on Et , can be regarded as usual stochastic integrals driven simply by
Lebesgue measure, Z and [Z,Z].

The following example provides a sense of the kinds of results that can be obtained
using Theorem 3.3 together with conditioning.

Example 3.6 Let D be an (Ft )-stable subordinator of index β ∈ (0,1) which is in-
dependent of a standard (Ft )-Brownian motion Z = B . The process D is strictly
increasing. Let E be the associated continuous time-change so that �D �−→ E�. Then
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under a certain condition, the transition probability density pX(t, y) ≡ pX(t, y|0, x)

of a solution X to the SDE

dXt = μ(Xt) dEt + σ(Xt ) dBEt with X0 = x (3.15)

satisfies the following time-fractional PDE in the weak sense:

Dβ∗pX(t, y) = − ∂

∂y

{
μ(y)pX(t, y)

} + 1

2

∂2

∂y2

{
σ 2(y)pX(t, y)

}
, (3.16)

with initial condition pX(0, y) = δx(y). Here, Dβ∗ is the Caputo fractional derivative
of order β with respect to the time variable t (see [4]), and δx is the Dirac delta
function with mass at x. For the proof, see Hahn, Kobayashi and Umarov [5, Theo-
rem 4.1]. Furthermore, that paper provides a more general perspective on this mat-
ter in the framework of time-changed Lévy processes and their associated pseudo-
differential equations, with the time-change being the first hitting time process of a
mixture of independent stable subordinators. Moreover, the above result is derived
there without the use of Theorem 3.3, but based on Theorem 4.2 of the present paper.
The advantage of the approach which employs the time-changed Itô formula (3.5)
is that it reveals the connection between the stochastic calculus for a time-changed
Brownian motion and its associated time-fractional PDE (3.16). A further remark on
(3.15) and (3.16) is provided in this paper in Example 5.4.

Remark 3.7 With regards to Example 3.6, it is possible to discuss SDEs and associ-
ated time-fractional PDEs with smooth boundary conditions. Time-fractional PDEs
with Dirichlet boundary conditions are treated in [12], but without specifying the
connection to SDEs of the form (3.15).

4 SDEs Including Terms Driven by a Time-Changed Semimartingale

A classical Itô SDE is of the form

dYt = b(t, Yt ) dt + τ(t, Yt ) dBt

where B is a standard Brownian motion. As stated in Remark 3.5(c), the 2nd change-
of-variable formula (3.1) is a useful tool in handling a larger class of SDEs of the
form

dXt = ρ(t,Et ,Xt ) dt + μ(t,Et ,Xt ) dEt + σ(t,Et ,Xt ) dBEt ,

where E is a continuous time-change. Note that the sample path t �→ Et is not neces-
sarily absolutely continuous with respect to Lebesgue measure; hence, the dEt term
appearing above in general cannot be rewritten in terms of dt . For example, if E is
the first hitting time process of a stable subordinator D of index between 0 and 1, then
the sample path t �→ Et is flat almost everywhere. Therefore, if Et had a representa-
tion Et = ∫ t

0 g(s) ds for some integrable function g, then it would follow that Et = 0



802 J Theor Probab (2011) 24:789–820

for all t ≥ 0, contradicting the fact that limt→∞ Et = ∞. More generally, if E is the
first hitting time process of a strictly increasing Lévy process with infinite jumps and
no drift, then E is not absolutely continuous with respect to Lebesgue measure. For
definition and properties of Lévy processes, consult [1] or [16].

The new feature of this larger class of SDEs is the coexistence of a usual drift
term along with a term representing a factor ascribed to the time-change. The aim
of this section is to provide ways of recognizing this new larger class of SDEs by
analyzing their solutions and making comparisons between the two classes of SDEs.
For a general treatment of classical Itô SDEs, see [9] or [13]. Regarding methods
for obtaining explicit forms of solutions to classical Itô SDEs, consult [3, Chap. 4].
Many basic models are introduced in [17] with an abundance of interpretations and
insights.

Let Z be an (Ft )-semimartingale and let E be a continuous (Ft )-time-change.
The general form of SDEs discussed here is

dXt = ρ(t,Et ,Xt−) dt + μ(t,Et ,Xt−) dEt + σ(t,Et ,Xt−) dZEt

with X0 = x0, (4.1)

which is understood in the following integral form:

Xt = x0 +
∫ t

0
ρ(s,Es,Xs−) ds +

∫ t

0
μ(s,Es,Xs−) dEs

+
∫ t

0
σ(s,Es,Xs−) dZEs , (4.2)

where x0 is a real constant, and ρ, μ, σ are real-valued functions, defined on
R+ × R+ × R, which satisfy the following Lipschitz condition: there exists a pos-
itive constant L such that

∣∣ρ(t, u, x) − ρ(t, u, y)
∣∣ + ∣∣μ(t, u, x) − μ(t, u, y)

∣∣

+ ∣∣σ(t, u, x) − σ(t, u, y)
∣∣ ≤ L|x − y| (4.3)

for all t, u ∈ R+ and x, y ∈ R. For technical reasons, we require assumption

X ∈ D(Gt ) �⇒
(
ρ(t,Et ,Xt−)

)
,
(
μ(t,Et ,Xt−)

)
,
(
σ(t,Et ,Xt−)

) ∈ L(Gt ), (4.4)

where Gt := FEt . One example of such functions is a ‘linear’ map ρ(t, u, x) =
ρ1(t, u) + ρ2(t, u) · x, where ρ1, ρ2 are bounded continuous functions on R+ × R+.

Lemma 4.1 (Existence and Uniqueness of Solution) Let Z be an (Ft )-semimartin-
gale. Let D and E be a pair satisfying �D �−→ E� or �D �−→ E�. Suppose ρ, μ,
σ are real-valued functions defined on R+ × R+ × R satisfying Lipschitz condition
(4.3) and assumption (4.4). Then there exists a unique (Gt )-semimartingale X for
which (4.1) holds, where Gt := FEt .
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Proof The identity map m corresponding to Lebesgue measure can be regarded as
a (Gt )-semimartingale. Moreover, E and Z ◦ E are also (Gt )-semimartingales due
to Lemma 2.2. The existence and uniqueness of a strong solution X to SDE (4.1)
is guaranteed by conditions (4.3) and (4.4), upon reformulating Theorem 7 of [14,
Chap. V] with operators Fj : D(Gt ) −→ L(Gt ) (j = 1,2,3) defined by

F1(X)t = ρ(t,Et ,Xt−), F2(X)t = μ(t,Et ,Xt−), F3(X)t = σ(t,Et ,Xt−).

Furthermore, it follows from Property 2.1(1) and the integral expression (4.2) that X

is a (Gt )-semimartingale. �

Now that the existence and uniqueness of a solution to an SDE of the form (4.1)
is established, the following two SDEs both make sense:

dXt = μ(Et ,Xt−) dEt + σ(Et ,Xt−) dZEt with X0 = x0; (4.5)

dYt = μ(t, Yt−) dt + σ(t, Yt−) dZt with Y0 = x0. (4.6)

Together the change-of-variable formulas (2.2) and (3.1) yield Theorem 4.2, which
in turn reveals a close connection between the classical Itô-type SDE (4.6) and our
new class of SDEs in (4.5).

Theorem 4.2 (Duality of SDEs) Let Z be an (Ft )-semimartingale. Let D and E be
a pair satisfying �D �−→ E� or �D �−→ E�.

(1) If a process Y satisfies SDE (4.6), then X := Y ◦ E satisfies SDE (4.5).
(2) If a process X satisfies SDE (4.5), then Y := X ◦ D satisfies SDE (4.6).

Proof (1) Suppose Y satisfies SDE (4.6), and let X := Y ◦ E. Since any process is in
synchronization with the continuous (Ft )-time-change E, the 1st change-of-variable
formula (2.2) yields

Xt = x0 +
∫ Et

0
μ(s,Ys−) ds +

∫ Et

0
σ(s,Ys−) dZs

= x0 +
∫ t

0
μ(Es,YE(s)−) dEs +

∫ t

0
σ(Es,YE(s)−) dZEs . (4.7)

In general, the equality YE(s)− = (Y ◦ E)s− may fail. The failure can occur only
when E is constant on some interval [s − ε, s] with ε > 0. However, the integrators
E and Z ◦ E on the right hand side of (4.7) are constant on this interval; hence, the
difference between the two values YE(s)− and (Y ◦ E)s− does not affect the value of
the integrals. Thus, (4.7) can be reexpressed as

Xt = x0 +
∫ t

0
μ

(
Es, (Y ◦ E)s−

)
dEs +

∫ t

0
σ
(
Es, (Y ◦ E)s−

)
dZEs , (4.8)

thereby yielding SDE (4.5).
(2) Next, suppose X satisfying SDE (4.5) is given. Since D is strictly increasing,

XD(s−)− = (X ◦ D)s− for any s > 0. Again, since any process is in synchronization
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with the continuous (Ft )-time-change E, the 2nd change-of-variable formula (3.1)
applied to the integral form of SDE (4.5) yields

Xt = x0 +
∫ Et

0
μ(ED(s−),XD(s−)−) ds +

∫ Et

0
σ(ED(s−),XD(s−)−) dZs

= x0 +
∫ Et

0
μ

(
s, (X ◦ D)s−

)
ds +

∫ Et

0
σ
(
s, (X ◦ D)s−

)
dZs. (4.9)

Let Y := X ◦ D, then (4.9) immediately yields SDE (4.6), which completes the
proof. �

Remark 4.3 One may wonder whether the SDE

dXt = ρ(Et ,Xt−) dt + μ(Et ,Xt−) dEt + σ(Et ,Xt−) dZEt with X0 = x0

can be reduced in the same manner as Theorem 4.2(2). This is a question of whether
the new driving process dt can be replaced by dDEt , which is possible only in very
special cases; e.g., if D is continuous or ρ(Et ,Xt−) vanishes on every nonempty
open interval (Du−,Du).

For the remainder of this section, consideration mainly focuses on linear SDEs of
the form

dXt = (
ρ1(t,Et ) + ρ2(t,Et )Xt

)
dt + (

μ1(t,Et ) + μ2(t,Et )Xt

)
dEt

+ (
σ1(t,Et ) + σ2(t,Et )Xt

)
dBEt with X0 = x0. (4.10)

Here B is a standard (Ft )-Brownian motion, E is a continuous (Ft )-time-change, and
ρj , μj , σj (j = 1,2) are real-valued functions on R+ × R+ satisfying the following
conditions:

∣∣ρ2(t, u)
∣∣ + ∣∣μ2(t, u)

∣∣ + ∣∣σ2(t, u)
∣∣ ≤ L for all t, u ∈ R+, (4.3′)

(
ρj (t,Et )

)
,
(
μj (t,Et )

)
,
(
σj (t,Et )

) ∈ L(Gt ) for j = 1,2, (4.4′)

where L is a positive constant and Gt := FEt . Note that a strong solution X to SDE
(4.10) always has continuous paths due to the continuity of the driving processes.
Conditions (4.3′) and (4.4′) respectively imply conditions (4.3) and (4.4); therefore,
the uniqueness and existence of the strong solution X is guaranteed by Lemma 4.1.

As demonstrated in the proof of Theorem 3.3, we have the handy calculus rules
{ [m,m] = [m,E] = [m,B ◦ E] = [E,E] = [E,B ◦ E] = 0,

[B ◦ E,B ◦ E] = E,
(4.11)

where m denotes the identity map corresponding to Lebesgue measure. Remark 4.3
implies that the simple substitution Yt := XDt fails to reduce even the most basic
type of SDE (4.10) into a classical Itô SDE due to the presence of the dt term. This
observation suggests that we establish a general form of solution to (4.10) via a di-
rect approach rather than via such a simple substitution. It also calls into question
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the possibility of developing reduction schemes for converting SDEs of the form
(4.10) into less complicated SDEs. Propositions 4.4 and 4.8 together with Theo-
rem 4.5 largely settle this issue. The linear SDE (4.10) is said to be homogeneous
if ρ1 = μ1 = σ1 ≡ 0.

Proposition 4.4 (Solution Form for Homogeneous Linear SDEs) Let B be a stan-
dard (Ft )-Brownian motion. Let D and E be a pair satisfying �D �−→ E� or
�D �−→ E�. Then the unique strong solution to the homogeneous linear SDE with
initial condition

dXt = ρ2(t,Et )Xt dt + μ2(t,Et )Xt dEt + σ2(t,Et )Xt dBEt , X0 = x0 (4.12)

is explicitly written as

Xt = x0 exp

{∫ t

0
ρ2(s,Es) ds +

∫ t

0

(
μ2(s,Es) − 1

2
σ 2

2 (s,Es)

)
dEs

+
∫ t

0
σ2(s,Es) dBEs

}
, (4.13)

or equivalently as

Xt = x0 exp

{∫ t

0
ρ2(s,Es) ds +

∫ Et

0

(
μ2(Ds−, s) − 1

2
σ 2

2 (Ds−, s)

)
ds

+
∫ Et

0
σ2(Ds−, s) dBs

}
. (4.14)

Proof (4.14) follows from (4.13) together with the 2nd change-of-variable for-
mula (3.1). Due to the uniqueness of the solution, it suffices to show that the process
X given in (4.13) satisfies SDE (4.12).

Let X be the process in (4.13) and write Xt = x0 eAt . A calculation similar to (3.9),
via (4.11), yields [A,A] = σ 2

2 (·,E) • E. By the Itô formula (1.1) with f (a) = x0 ea ,

dXt = x0 eAt dAt + 1

2
x0 eAt d[A,A]t

= Xt

{
ρ2(t,Et ) dt +

(
μ2(t,Et ) − 1

2
σ 2

2 (t,Et )

)
dEt + σ2(t,Et ) dBEt

}

+ 1

2
Xtσ

2
2 (t,Et ) dEt

= ρ2(t,Et )Xt dt + μ2(t,Et )Xt dEt + σ2(t,Et )Xt dBEt . (4.15)

In addition, X0 = x0. Thus, X satisfies (4.12), completing the proof. �

Theorem 4.5 (General Solution Form for Linear SDEs) Let B be a standard (Ft )-
Brownian motion and D and E be a pair satisfying �D �−→ E� or �D �−→ E�. Then
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the unique strong solution to a general linear SDE (4.10) is explicitly written as

Xt = Φt

[
x0 +

∫ t

0

ρ1(s,Es)

Φs

ds

+
∫ t

0

μ1(s,Es) − σ2(s,Es)σ1(s,Es)

Φs

dEs +
∫ t

0

σ1(s,Es)

Φs

dBEs

]
, (4.16)

or equivalently as

Xt = Φt

[
x0 +

∫ t

0

ρ1(s,Es)

Φs

ds

+
∫ Et

0

μ1(Ds−, s) − σ2(Ds−, s)σ1(Ds−, s)

ΦD(s−)

ds +
∫ Et

0

σ1(Ds−, s)

ΦD(s−)

dBs

]
,

(4.17)

where Φ is the unique strong solution (4.13) to the homogeneous linear SDE (4.12)
with x0 replaced by 1. Φ is called the fundamental solution to the homogeneous
SDE (4.12).

Proof Since Φ0 = 1 > 0, the explicit form (4.13) of Φ shows that Φt > 0 for all t ≥ 0.
Hence, the right hand side of (4.16) is meaningful. As in the proof of Proposition 4.4,
it is sufficient to check that the process X in (4.16) satisfies SDE (4.10). For notational
convenience, we suppress the dependence of the coefficients on Et and simply write
ρj (t) = ρj (t,Et ), μj (t) = μj (t,Et ), σj (t) = σj (t,Et ) for j = 1,2.

Let X be the process in (4.16) and write Xt = ΦtZt . Since Φ is the solution to
SDE (4.12), the calculus rule (4.11) yields [Φ,Z] = (σ2Φ ·(σ1/Φ))•E = (σ2σ1)•E.
Hence, using the product formula (1.2),

dXt = Φt dZt + Zt dΦt + d[Φ,Z]t
= ρ1(t) dt + (

μ1(t) − σ2(t)σ1(t)
)
dEt + σ1(t) dBEt

+ Zt

(
ρ2(t)Φt dt + μ2(t)Φt dEt + σ2(t)Φt dBEt

) + σ2(t)σ1(t) dEt , (4.18)

the right hand side of which yields that of SDE (4.10) upon replacing ΦtZt by Xt .
Moreover, X0 = x0, completing the proof. �

A multidimensional version of Theorem 4.5 can be obtained in a similar way by
applying the Itô formula componentwise.

Corollary 4.6 Let B be an n-dimensional standard (Ft )-Brownian motion starting
at 0. Let (ρ2(t,Et )), (μ2(t,Et )), (σ k

2 (t,Et )) (k = 1, . . . , n) be d × d-matrix-valued
processes, (ρ1(t,Et )), (μ1(t,Et )), (σ k

1 (t,Et )) (k = 1, . . . , n) be d-dimensional
processes. Let x0 ∈ R

d . Then the unique strong solution X to the SDE

dXt = (
ρ1(t,Et ) + ρ2(t,Et )Xt

)
dt + (

μ1(t,Et ) + μ2(t,Et )Xt

)
dEt

+
n∑

k=1

(
σk

1 (t,Et ) + σk
2 (t,Et )Xt

)
dBk

Et
with X0 = x0, (4.19)
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which is a d-dimensional process, is explicitly written as

Xt = Φt

[
x0 +

∫ t

0
Φ−1

s ρ1(s,Es) ds

+
∫ t

0
Φ−1

s

(
μ1(s,Es) −

n∑

k=1

σk
2 (s,Es)σ

k
1 (s,Es)

)
dEs

+
∫ t

0
Φ−1

s

n∑

k=1

σk
1 (s,Es) dBk

Es

]
, (4.20)

or equivalently as

Xt = Φt

[
x0 +

∫ t

0
Φ−1

s ρ1(s,Es) ds

+
∫ Et

0
Φ−1

D(s−)

(
μ1(Ds−, s) −

n∑

k=1

σk
2 (Ds−, s)σ k

1 (Ds−, s)

)
ds

+
∫ Et

0
Φ−1

D(s−)

n∑

k=1

σk
1 (Ds−, s) dBk

s

]
, (4.21)

where Φ = (Φt ) is the fundamental solution to the homogeneous linear SDE corre-
sponding to (4.19). Namely, Φ is the unique d × d-matrix-valued process satisfying
the homogeneous SDE

dΦt = ρ2(t,Et )Φt dt + μ2(t,Et )Φt dEt +
n∑

k=1

σk
2 (t,Et )Φt dBk

Et
, (4.22)

with initial condition Φ0 = Id , where Id denotes the d × d-identity matrix.

Proof We first claim that for each path, Φt is invertible for all t ≥ 0. Otherwise, there
would exist t0 ≥ 0 and λ ∈ R

d \ {0} such that Φt0λ = 0. The d-dimensional process
(Φtλ) satisfies the homogeneous linear SDE

d�t = ρ2(t,Et )�t dt + μ2(t,Et )�t dEt +
n∑

k=1

σk
2 (t,Et )�t dBk

Et
. (4.23)

The zero process is the unique solution to (4.23) for which �t0 = 0 ∈ R
d . Therefore,

it follows that Φtλ = 0 for all t ≥ 0, which contradicts Φ0λ = λ �= 0. Thus, Φt is
invertible for all t ≥ 0, and the right hand side of SDE (4.20) is meaningful.

As in the proof of Proposition 4.4, it suffices to show that X given in (4.20) satisfies
SDE (4.19). Using the calculus rule

[
m,Bk ◦ E

] = [
E,Bk ◦ E

] = 0 and
[
Bk ◦ E,B	 ◦ E

] = δk,	E,
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where δk,	 is the Kronecker delta, and applying the Itô formula componentwise, the
proof is carried out in the same way as in Theorem 4.5. �

Remarks 4.7 (a) The advantage of rewriting solutions in the forms (4.14) and (4.17)
is that they can be handled via conditioning on the random variable Et . This is espe-
cially useful in analyzing statistical data of a solution, such as its mean and variance.
If Y is the solution to a classical Itô SDE with linear coefficients dYt = (b1(t) +
b2(t)Yt ) dt + (τ1(t) + τ2(t)Yt ) dBt , then the first two moments of Yt are character-
ized as solutions to linear ordinary differential equations (ODEs), from which some
information on statistics can be derived. (See [3, Theorem 4.5] for a general case, or
[9, Problem 5.6.1] for a special case when τ2 ≡ 0.) However, it is generally impos-
sible to obtain such ODEs for the solution X to SDE (4.10), even when ρj , μj , σj

are deterministic. For example, consider the SDE dXt = μ2(t)Xt dEt , a special case
of (4.10). Taking expectations in the integral form, E[Xt ] = x0 +E[∫ t

0 μ2(s)Xs dEs].
The expectation and integral are not interchangeable due to the presence of the ran-
dom integrator dEs . As a result, unlike the case of a classical Itô SDE, a general
form of an ODE satisfied by E[Xt ] cannot be obtained. This observation heightens
the importance of expressions such as (4.14) and (4.17). Moreover, since these ex-
pressions are derived via the 2nd change-of-variable formula (3.1), there is no doubt
that formula (3.1) is an indispensable tool for dealing with SDEs of the form (4.1).

(b) Recognizing how our new class of SDEs of the form (4.10) arise: Viewpoint 1.
If Et = t and ρj , μj , σj (j = 1,2) are all deterministic, then Proposition 4.4 and
Theorem 4.5 respectively reduce to well-known results for classical Itô SDEs with
linear coefficients

dYt = (
b1(t) + b2(t)Yt

)
dt + (

σ1(t) + σ2(t)Yt

)
dBt , (4.24)

where bj (t) = ρj (t) + μj (t) (j = 1,2). (See [3, Theorem 4.2].) This observation
suggests that an SDE of the form (4.10) might be constructed via continuously al-
tering the clock from t to Et in (4.24), but with the drift factor bj splitting into two
components ρj and μj , the former reflecting the effect of the original clock t and
the latter of the new clock Et . Allocation of the weight of bj to ρj and μj is due
to consideration of how much the time-changed model is affected by the new clock.
If the absolute value of ρj is big (resp. small) in comparison to that of μj , then the
model (4.10) contains a large (resp. small) effect of the original clock. SDE (4.5) with
Z = B provides an example where there is no effect of the original clock. Note that
ρj and μj may take negative values as well.

Viewpoint 2. Again assume μj , σj (j = 1,2) are all deterministic. Adopt a classi-
cal Itô SDE

dZt = (
ρ1(t) + ρ2(t)Zt

)
dt + (

τ1(t) + τ2(t)Zt

)
dBt (4.25)

as the starting form of SDE (4.10). This interpretation is valid when path properties
or statistical data of the solution to a simple SDE of the form (4.25) fail to match the
real data (especially in terms of the volatility coefficients τj ), but clearly possesses a
drift similar to (ρ1(t) + ρ2(t)Zt ) dt . In this situation, one prefers to ‘break’ the dBt

term via changing the clock from t to Et so that the model has more flexibility in
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describing the volatility. As a result, dEt and dBEt terms are obtained as in (4.10),
without changing the drift coefficients ρj . Note that the arguments from both view-
points apply to a general class of SDEs of the form (4.1) as well.

(c) The general form of solutions obtained in Proposition 4.4, Theorem 4.5 and
Corollary 4.6 are all valid even when SDE (4.10) has general process coefficients.
More precisely, if the coefficients ρj , μj , σj (j = 1,2) are processes in L(Gt ) with
Gt := FEt such that the absolute values of ρ2, μ2, σ2 are dominated by some random
variable L, then it can be shown by reformulating Theorem 7 of [14, Chap. V] that
SDE (4.10), with the coefficients evaluated at (t,ω) rather than (t,Et (ω)), has a
unique strong solution; moreover, the explicit form of the solution has exactly the
same expression as in the previous results.

Just as there is a reduction method for classical Itô SDEs with nonlinear coeffi-
cients

dYt = b(t, Yt ) dt + τ(t)Yt dBt with Y0 = x0, (4.26)

Proposition 4.8 provides an analogous technique for approaching a certain type of
nonlinear SDE including terms driven by a time-changed Brownian motion. The ‘in-
tegrating factor’

Ut := exp

{
1

2

∫ t

0
τ 2(s) ds −

∫ t

0
τ(s) dBs

}

reduces (4.26) to a path-by-path ODE d(UtYt ) = Ut · b(t, Yt ) dt , with U0Y0 = x0,
computation of which almost traces the proof of Proposition 4.8. Applications of this
reduction scheme are provided in Examples 5.5 and 5.6.

Proposition 4.8 (Reduction Method) Let B be a standard (Ft )-Brownian motion.
Let E be a continuous (Ft )-time-change. Then the ‘integrating factor’ U defined by

Ut := exp

{∫ t

0

(
1

2
σ 2

2 (s,Es) − μ2(s,Es)

)
dEs −

∫ t

0
σ2(s,Es) dBEs

}
(4.27)

reduces the nonlinear SDE

dXt = ρ(t,Et ,Xt ) dt + μ2(t,Et )Xt dEt + σ2(t,Et )Xt dBEt , X0 = x0, (4.28)

to a path-by-path ODE

dWt

dt
= Ut · ρ(

t,Et ,U
−1
t Wt

)
, W0 = x0, (4.29)

where Wt := UtXt so that Xt = U−1
t Wt .

Proof For notational convenience, we suppress the dependence on Et and sim-
ply write ρ(t,Xt ) = ρ(t,Et ,Xt ), μ2(t) = μ2(t,Et ) and σ2(t) = σ2(t,Et ). Write
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Ut = eAt so that

At =
∫ t

0

(
1

2
σ 2

2 (s) − μ2(s)

)
dEs −

∫ t

0
σ2(s) dBEs .

Then the Itô formula (1.1) with f (a) = ea together with the calculus rules in (4.11)
yield

dUt = Ut dAt + 1

2
Ut d[A,A]t = Ut

{(
σ 2

2 (t) − μ2(t)
)
dEt − σ2(t) dBEt

}
.

Hence, by the product formula (1.2),

d(UtXt ) = Ut dXt + Xt dUt + d[U,X]t
= Ut

{
ρ(t,Xt ) dt + μ2(t)Xt dEt + σ2(t)Xt dBEt

}

+ XtUt

{(
σ 2

2 (t) − μ2(t)
)
dEt − σ2(t) dBEt

} − σ 2
2 (t)XtUt dEt

= Ut · ρ(t,Xt ) dt. (4.30)

By setting Wt := UtXt , (4.30) immediately yields (4.29). �

5 Examples

The examples below are drawn from the classical Itô SDEs; however, the driving
processes involve a continuous time-change E and the time-changed Brownian mo-
tion B ◦ E. Assume that all coefficients of SDEs appearing in this section satisfy the
conditions (4.3) and (4.4).

Example 5.1 The most basic linear SDE is the homogeneous one with constant coef-
ficients, which is an analogue of the so-called Black–Scholes SDE. Consider

dXt = ρXt dt + μXt dEt + σXt dBEt with X0 = x0, (5.1)

where ρ, μ, σ are real constants and x0 > 0, σ > 0.
The case where Et = t corresponds to the Black–Scholes model dYt = bYt dt +

σYt dBt with Y0 = x0, where b = ρ + μ. The solution

Yt = x0 exp

{(
b − 1

2
σ 2

)
t + σBt

}

has the following asymptotic behavior:

(Y.1) If b > σ 2/2, then limt→∞ Yt = ∞.
(Y.2) If b < σ 2/2, then limt→∞ Yt = 0+.
(Y.3) If b = σ 2/2, then Yt asymptotically fluctuates between arbitrarily large and

arbitrarily small positive values infinitely often.
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This follows by rewriting the solution as Yt = x0 exp{t[(b − σ 2/2) + σ · Bt/t]} and
using the law of the iterated logarithm for paths of Brownian motion

lim sup
t→∞

Bt√
2t log log t

= 1 and lim inf
t→∞

Bt√
2t log log t

= −1. (5.2)

For details of this classical model, consult [17].
Analysis of the asymptotic behavior of the solution to SDE (5.1) is accomplished

with the help of the explicit solution form obtained from (4.13),

Xt = x0 exp

{
ρt +

(
μ − 1

2
σ 2

)
Et + σBEt

}
. (5.3)

First, if ρ = 0, i.e., if there is no effect of the original clock upon the solution of
SDE (5.1), then, by Theorem 4.2(2), (XDt ) satisfies the classical Itô SDE dXDt =
μXDt dt + σXDt dBt . Since limt→∞ Dt = ∞, X has the same asymptotic behavior
as the above-mentioned Y with b replaced by μ:

(X.a.1) If ρ = 0 and μ > σ 2/2, then limt→∞ Xt = ∞.
(X.a.2) If ρ = 0 and μ < σ 2/2, then limt→∞ Xt = 0+.
(X.a.3) If ρ = 0 and μ = σ 2/2, then Xt asymptotically fluctuates between arbitrarily

large and arbitrarily small positive values infinitely often.

Next, suppose ρ �= 0. Assume limt→∞ Et = ∞ and limt→∞ Et/t = 0; i.e., Et is
asymptotically slower than t . By rewriting (5.3) as

Xt = x0 exp

{
t

[
ρ +

(
μ − 1

2
σ 2

)
Et

t
+ σ · BEt

Et

· Et

t

]}

and using (5.2) again, we easily observe

(X.b.1) If ρ > 0 and Et is asymptotically slower than t , then limt→∞ Xt = ∞.
(X.b.2) If ρ < 0 and Et is asymptotically slower than t , then limt→∞ Xt = 0+.

These cases match with our intuition: if the original clock t asymptotically ticks more
frequently than the new clock Et , then the ρ describing the effect of the original clock
completely determines the future behavior of the solution X, no matter what values
μ and σ take.

On the other hand, if Et grows faster than t , i.e., if limt→∞ Et/t = ∞, then the
situation becomes much more complicated. Rewrite (5.3) as

Xt = x0 exp

{
Et

[
ρ

t

Et

+
(

μ − 1

2
σ 2

)
+ σ

BEt

Et

]}
.

By noting (5.2) again, we observe

(X.c.1) If ρ �= 0, μ > σ 2/2 and Et grows faster than t , then limt→∞ Xt = ∞.
(X.c.2) If ρ �= 0, μ < σ 2/2 and Et grows faster than t , then limt→∞ Xt = 0+.
(X.c.3) If ρ �= 0, μ = σ 2/2 and Et grows faster than t , then the fluctuation of Xt

varies depending on the coefficients of the SDE and also the speed at which
Et grows.
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The first two cases show that if μ �= σ 2/2 and Et grows faster than t , then the as-
ymptotic behavior of X, regardless of the value of ρ(�= 0), coincides with (X.a.1)
and (X.a.2). This is due to the fact that the effect of the faster clock Et is strongly
reflected on μ to the extent that ρ is ignored.

In the special situation (X.c.3), if limt→∞
√

2Et log logEt/t = ∞ so that Et

grows extremely fast, then Xt asymptotically takes arbitrary values on the positive
real line infinitely many times. This is immediate upon writing

Xt = x0 exp

{
t

[
ρ + σ · BEt√

2Et log logEt

·
√

2Et log logEt

t

]}
.

On the other hand, if, e.g., limt→∞
√

2Et log logEt/t = 0, then Xt asymptotically
goes off to ∞ if ρ > 0 and decreases to 0 if ρ < 0.

These observations establish that as the time-change E accelerates the speed at
which time passes, dependence of the behavior of the solution X upon ρ and μ re-
spectively becomes lighter and heavier.

Example 5.2 Assume B is independent of D, or equivalently, of E. The homoge-
neous linear SDE

dXt = ρ(t)Xt dt + μ(Et)Xt dEt + σ(Et )Xt dBEt with X0 = x0, (5.4)

where x0 > 0, has a unique strong solution X expressed as (4.14).
The value of the mean function E[Xt ] can be investigated by conditioning on Et

and using the independence of B and E:

E[Xt ] = x0 exp

{∫ t

0
ρ(s) ds

}

× E

[
exp

{∫ Et

0

(
μ(s) − 1

2
σ 2(s)

)
ds +

∫ Et

0
σ(s) dBs

}]

= x0 exp

{∫ t

0
ρ(s) ds

}

×
∫ ∞

0
E

[
exp

{∫ v

0

(
μ(s) − 1

2
σ 2(s)

)
ds +

∫ v

0
σ(s) dBs

}]
pt(dv)

= x0 exp

{∫ t

0
ρ(s) ds

}
·
∫ ∞

0
exp

{∫ v

0
μ(s) ds

}
· E[Mv]pt (dv), (5.5)

where pt denotes the law of the random variable Et and M is a continuous (Ft )-local
martingale given by

Mv := exp

{
−1

2

∫ v

0
σ 2(s) ds +

∫ v

0
σ(s) dBs

}
. (5.6)

Actually M is a martingale since σ satisfies the Novikov condition; i.e.,
E[exp{ 1

2

∫ v

0 σ 2(s) ds}] < ∞ for all v ≥ 0. (See [9, Proposition 3.5.12].) Hence,
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E[Mv] = 1 for all v ≥ 0. Thus, (5.5) yields

E[Xt ] = x0 exp

{∫ t

0
ρ(s) ds

}
·
∫ ∞

0
exp

{∫ v

0
μ(s) ds

}
pt (dv). (5.7)

If Et = t , then pt = δt , the Dirac measure with mass at t . Hence, (5.7) yields E[Xt ] =
x0 exp{∫ t

0 (ρ(s)+μ(s)) ds}, which, of course, coincides with the mean function E[Yt ]
of the solution Y to the classical Itô SDE dYt = (ρ(t)+μ(t))Yt dt +σ(t)Yt dBt with
Y0 = x0. The result (5.7) shows that the behaviors of ρ and μ together govern the
range of fluctuation of the mean function E[Xt ]. Moreover, even when the coefficient
of dEt in SDE (5.4) is replaced by a more general μ(t,Et )Xt , some form of estimate
on E[Xt ] can still be obtained. For instance, if

∫ v

0 μ(Ds−, s) ds ≥ 0 for all v ≥ 0, then
E[Xt ] ≥ x0 exp{∫ t

0 ρ(s) ds}.
The variance function V[Xt ] of the solution X is computed similarly:

V[Xt ] = x2
0 exp

{
2
∫ t

0
ρ(s) ds

}
·
[∫ ∞

0
exp

{
2
∫ v

0
μ(s) ds +

∫ v

0
σ 2(s) ds

}
pt(dv)

−
(∫ ∞

0
exp

{∫ v

0
μ(s) ds

}
pt(dv)

)2]
.

Unlike the explicit form of the mean function in (5.7), V[Xt ] involves the information
σ concerning the weight of the dBEt term in SDE (5.4).

As a special case of SDE (5.4), assume μ(u) ≡ −λ for some λ > 0. Then (5.7) is
expressed in terms of the Laplace transform of the law of Et :

E[Xt ] = x0 exp

{∫ t

0
ρ(s) ds

}
·
∫ ∞

0
e−λvpt (dv). (5.8)

Moreover, if E is the first hitting time process of an (Ft )-stable subordinator of index
β ∈ (0,1) which is independent of B , then the Laplace transform in (5.8) is associated
with the Mittag–Leffler function due to [2, Theorem 4.3]:

E[Xt ] = x0 exp

{∫ t

0
ρ(s) ds

}
· Eβ

(−λtβ
)
, (5.9)

where Eβ(z) := ∑∞
n=0 zn/�(βn + 1) with �(·) being the Gamma function.

Example 5.3 Consider the inhomogeneous linear SDE

dXt =
(

b

1 − t
− γ

1 − t
Xt

)
dt +

(
c

1 − Et

− η

1 − Et

Xt

)
dEt + dBEt ,

t ∈ [0,1) with X0 = a, (5.10)

where a, b, c, γ , η ∈ R and Et increases to 1 as t increases to 1.
The fundamental solution to the homogeneous linear SDE corresponding to (5.10)

is Φt = (1 − t)γ (1 − Et)
η . Hence, (4.16) yields
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Xt = (1 − t)γ (1 − Et)
ηa +

∫ t

0

b

1 − s

(
1 − t

1 − s

)γ (
1 − Et

1 − Es

)η

ds

+
∫ t

0

c

1 − Es

(
1 − t

1 − s

)γ (
1 − Et

1 − Es

)η

dEs

+
∫ t

0

(
1 − t

1 − s

)γ (
1 − Et

1 − Es

)η

dBEs . (5.11)

If Et = t , then the solution (5.11) reduces to

Xt = (1 − t)a − t (b + c) + (1 − t)

∫ t

0

1

1 − s
dBs, (5.12)

a Brownian bridge from a to (b + c). Moreover, the class of SDEs of the form (5.10)
contains a ‘time-changed Brownian bridge’ from a to c. In fact, if b = 0, γ = 0 and
η = 1, then X satisfies the SDE

dXt =
(

c

1 − Et

− 1

1 − Et

Xt

)
dEt + dBEt , t ∈ [0,1) with X0 = a, (5.13)

which is, by Theorem 4.2, associated with the classical Brownian bridge SDE

dYt =
(

c

1 − t
− 1

1 − t
Yt

)
dt + dBt , t ∈ [0,1) with Y0 = a, (5.14)

via the relation X = Y ◦ E. Thus, in this particular case, X is a process obtained by
time-changing the Brownian bridge Y .

Viewpoint 1 of Remark 4.7(b) states that it is possible to recognize that the two
components ρj and μj of SDE (4.10) are produced by splitting the drift factor of
some classical Itô SDE. Examples 5.1, 5.2 and 5.3 are all discussed from this view-
point. However, as mentioned in Viewpoint 2 of the remark, it is also possible to
attribute the presence of μj to the dBt term in a classical Itô SDE. Example 5.4
illustrates this viewpoint.

Example 5.4 This example investigates statistical data obtained from the solution to
the inhomogeneous linear SDE

dXt = −αXt dt + μdEt + σ dBEt with X0 = x0, (5.15)

where α, σ > 0, μ ∈ R, and x0 �= 0. SDE (5.15) with Et = t and μ = 0 is called the
Langevin equation or the Ornstein–Uhlenbeck model, and its solution is referred to
as the Ornstein–Uhlenbeck process. The coefficient −αXt of the dt term is negative
(resp. positive) when Xt is positive (resp. negative), which implies Xt is drawn back
to zero once it drifts away. Since the coefficient μ describing the drift based on the
new clock Et is not proportional to the current position Xt , if, e.g., Et represents the
business time at the calendar time t , then Xt , regardless of its value, is always affected
by the evolution of the business time. In other words, the model has a certain factor
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of weight μ which pushes the position either up or down during business hours, and
its effect on the position becomes larger (resp. smaller) when the business time grows
faster (resp. slower). Moreover, the dispersion coefficient σ does not depend on the
position either. Therefore, unless the time-change E either stays flat or accelerates
or decelerates drastically on an interval, Xt fluctuates on this interval at a certain
rate with mild error even when it approaches close to zero. In finance, the Ornstein–
Uhlenbeck-type model (5.15), which incorporates a possible time-change, could be
used to describe the deviation of an interest rate around a central bank’s target rate.

Assume both of the following technical conditions are satisfied:

(a) each random variable Et is bounded; i.e., P(Et ≤ ct ) = 1 for some finite positive
constant ct ;

(b) E[∫ t

0 e2αDs− ds] < ∞ for all t ≥ 0.

The monotonicity of D implies that the condition (b) is equivalent to:

(b′) E[e2αDt−] < ∞ for all t ≥ 0.

Let us analyze the mean E[Xt ] of the solution X to SDE (5.15). By (4.16) and
(4.17), X can be represented in two ways:

Xt = e−αt

{
x0 + μ

∫ t

0
eαs dEs + σ

∫ t

0
eαs dBEs

}

= e−αt

{
x0 + μ

∫ Et

0
eαDs− ds + σ

∫ Et

0
eαDs− dBs

}
. (5.16)

By assumption (b), the process N defined by Nt := ∫ t

0 eαDs− dBs is an (Ft )-
martingale. Since each Et is a bounded (Ft )-stopping time due to (a), Doob’s op-
tional sampling theorem yields E[NEt ] = E[N0] = 0. (See [9, Problem 1.3.23(i)].)
Hence, taking expectations in (5.16),

E[Xt ] = e−αt

{
x0 + μE

[∫ t

0
eαs dEs

]}

= e−αt

{
x0 + μE

[∫ Et

0
eαDs− ds

]}
. (5.17)

Consequently, the asymptotic behavior of the mean function E[Xt ] completely
depends on the distributions of the processes E and D. In the special case
where Et(ω) = R(ω) · t for some positive random variable R, E[Xt ] = x0 e−αt +
(μE[R]/α)(1−e−αt ), which approaches μE[R]/α as t → ∞. Therefore, if the force
attracting Xt to zero is sufficiently strong compared to the factor producing the effect
of the evolution of the time (i.e., if α is much larger than the absolute value of μ and
E[R]), then the expected value of the position tends to a level close to zero as t → ∞.
On the other hand, the bigger the weight μ or the expected rate E[R] of acceleration
of the new clock, the greater the asymptotic value of the expected position.
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Another way to observe the fluctuation of E[Xt ] is to directly analyze the integral
form of the SDE (5.15). Taking the expectation,

E[Xt ] = −α

∫ t

0
E[Xs]ds + μE[Et ] + σE[BEt ]. (5.18)

The last term vanishes again due to the assumption (a) and Doob’s optional sampling
theorem. Hence, we obtain a differential equation

d

dt
E[Xt ] = −αE[Xt ] + μ

d

dt
E[Et ] with E[X0] = x0, E[E0] = 0. (5.19)

Although this is not the explicit form of E[Xt ] obtained in (5.17), it still provides
information on the relationship between the time evolutions of E[Xt ] and E[Et ].

The term E[BEt ] in (5.18) vanishes even when the assumption (a) is replaced by
one of the following:

(c) E[√Et ] < ∞ for all t ≥ 0;
(d) B is independent of E.

If condition (c) holds, which is weaker than (a), then the ‘Wald identity’ E[BEt ] = 0
holds for each t ≥ 0. (See [9, Problem 3.2.12, Exercise 3.3.35].) On the other hand,
(d) encourages conditioning on the random variable Et to obtain E[BEt ] = 0.

Suppose E is the first hitting time process of an (Ft )-stable subordinator of in-
dex β ∈ (0,1) which is independent of B , so condition (d) holds by assumption.
There is a positive constant c(β) such that E[Et ] = c(β) tβ for all t ≥ 0, due to [10,
Corollary 3.1]. Hence, (c) also holds. Moreover, using this moment result, (5.19) is
reexpressed as

d

dt
E[Xt ] = −αE[Xt ] + μβ c(β) tβ−1 with E[X0] = x0. (5.20)

The solution of the first order linear ODE (5.20) is given by

E[Xt ] = e−αt

{
x0 + μβc(β)

∫ t

0
eαssβ−1 ds

}

= e−αt

{
x0 + μβc(β)

∫ t

0
gα,t (r)(t − r)β−1 dr

}

= e−αt
{
x0 + μβc(β)�(β) · (Jβgα,t

)
(t)

}
, (5.21)

where gα,t (r) := eα(t−r), and �(·) and Jβ respectively denote the Gamma func-
tion and the fractional integral of order β . (For the definition of fractional integrals,
see [4].)

An interesting conjecture can be made by comparing SDE (3.15) in Example 3.6
and SDE (5.15), both for the particular E discussed in the above paragraph which
is assumed independent of B . First, SDE (5.15) is particularly different from SDE
(3.15) due to the presence of the dt term. Second, Theorem 4.1 in Hahn, Kobayashi
and Umarov [5] shows that the transition probability density of the solution to SDE
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(3.15) satisfies PDE (3.16), and the proof is carried out by taking the expectation in
the time-changed Itô formula (3.5). Consequently, (5.21) suggests that if SDE (3.15)
is replaced by an SDE having a term ρ(Xt ) dt , then the corresponding PDE may
involve a fractional integral term.

The following two examples clarify how to apply the reduction method obtained
in Proposition 4.8.

Example 5.5 Solution (5.3) to the homogeneous linear SDE (5.1) discussed in Ex-
ample 5.1 can also be obtained by using the technique provided in Proposition 4.8.
In this case, the integrating factor is Ut = exp{(σ 2/2 − μ)Et − σBEt } and (4.29)
becomes the path-by-path ODE dWt = ρWt dt with W0 = x0, which has the solution
Wt = x0 eρt . Hence, the relation Xt = U−1

t Wt immediately yields the desired solu-
tion form (5.3). More generally, the same reduction scheme proves Proposition 4.4.

Example 5.6 As another application of the reduction method introduced in Proposi-
tion 4.8, consider a generalized population growth model

dXt = qXt(K − Xt)dt + μXt dEt + σXt dBEt with X0 = x0 (5.22)

where q , K , x0 > 0 and μ, σ ∈ R. This model describes the growth of a population
of size Xt in some environment. q and K represent the quality and the carrying
capacity of the environment, respectively. If the quality of life is good and the current
population is less than the carrying capacity, i.e., if q is large and 0 < Xt < K , then
the population will grow, i.e., the drift coefficient qXt(K − Xt) is positive. On the
other hand, a population exceeding the capacity of the environment is expected to
decrease even when the quality is good, i.e. if Xt > K , then the drift qXt(K − Xt) is
negative, regardless of the value of q(> 0).

Note that SDE (5.22) possesses a distinct form of coefficients in dt and dEt terms,
unlike Examples 5.1, 5.2 and 5.3. Hence, this model is constructed based on View-
point 2 of Remark 4.7(b). The presence of the term μXt dEt implies that a certain
factor originating in the new clock affects the growth of the population, and the effect
is proportional to the current position Xt . σ describes the noise of the system as in
the classical population growth model (i.e., SDE (5.22) with Et = t and μ = 0).

Theorem 4.5 cannot be applied to the nonlinear SDE (5.22). Instead, Proposi-
tion 4.8 with Wt = UtXt where Ut = exp{(σ 2/2 − μ)Et − σBEt }, yields the path-
by-path ODE

dWt

dt
= qWt

(
K − U−1

t Wt

)
with W0 = x0. (5.23)

Consider a Bernoulli-type ODE

y′(t) = f (t)y2(t) + ky(t) with y(0) = x0, (5.24)

where k is a real constant and the symbol ′ denotes the derivative with respect to t .
By the substitution z(t) = y−1(t), the ODE (5.24) reduces to z′(t) + kz(t) = −f (t)
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with z(0) = x−1
0 . Multiplication of both sides by ekt leads to {ekt z(t)}′ = −ektf (t),

whose solution is

ekt z(t) − x−1
0 = −

∫ t

0
eksf (s) ds, or y(t) = ekt

x−1
0 − ∫ t

0 eksf (s) ds
. (5.25)

By the substitutions, y(t) = Wt , f (t) = −qU−1
t , k = qK in (5.25),

Xt = U−1
t Wt = U−1

t · exp{qKt}
x−1

0 + ∫ t

0 exp{qKs} · qU−1
s ds

= exp{qKt + (μ − 1
2σ 2)Et + σBEt }

x−1
0 + q

∫ t

0 exp{qKs + (μ − 1
2σ 2)Es + σBEs }ds

, (5.26)

yielding the solution to the generalized population growth model (5.22).
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Appendix: Construction of Stochastic Integrals

The aim of this appendix is to make explicit the class L(Z, Ft ) of Z-integrable pre-
dictable processes treated in this paper. For details regarding the construction of sto-
chastic integrals driven by a semimartingale, consult [14, II–IV].

Throughout, a filtration (Ft ) satisfying the usual conditions is fixed. Write
D = D(Ft ) (càdlàg adapted processes), L = L(Ft ) (càglàd adapted processes), and
P = P (Ft ) (predictable processes). Let bL and bP denote bounded processes in
the specified class. Let S be a subset of L consisting of all processes of the form
Ht = H0I{0}(t) + ∑n

i=1 HiI(Ti ,Ti+1](t), where n is a positive integer, {Ti}n+1
i=1 is an

increasing sequence of finite stopping times with T1 = 0, and each Hi is an FTi
-

measurable random variable.
First, endow D, L and S with the topology induced by “Hm −→ H if and only

if for each t ≥ 0, sup0≤s≤t |Hm
s − Hs | −→ 0 in probability as m → ∞.” Then S is

a dense subspace of L, and D becomes a complete metric space with a compatible
metric d(Y,Z) := ∑∞

n=1(1/2n)E[min(1, sup0≤s≤t |Ys − Zs |)]. Given a semimartin-
gale Z starting at 0, the stochastic integral of H ∈ S of the above form is defined to be
H • Z := JZ(H) := ∑n

i=1 Hi(Z
Ti+1 − ZTi ) where ZT

t := Zmin(t,T ). The continuous
linear operator JZ : S −→ D uniquely extends to an operator defined on L. For the
moment, denote JZ(H) as [D1-]H • Z for H ∈ L. Note that the quadratic variation
of Z is defined by (2.1) via this integral operator.

The next step is to introduce the space H2 of semimartingales starting at 0 with
a unique decomposition Z̃ = M̃ + Ã where M̃ is a local martingale and Ã is a pre-
dictable process of finite variation such that

‖Z̃‖H2 := ∥∥[M̃, M̃]1/2∞
∥∥

L2 +
∥∥∥∥
∫ ∞

0
|dÃs |

∥∥∥∥
L2

< ∞.
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The real vector space H2 with the norm ‖ · ‖H2 forms a Banach space. To extend a
class of integrands, first fix an integrator Z̃ = M̃ + Ã ∈ H2 and introduce a metric dZ̃

on bP by

dZ̃(H,K) :=
∥∥∥∥

{∫ ∞

0
(Hs − Ks)

2 d[M̃, M̃]s
}1/2∥∥∥∥

L2
+

∥∥∥∥
∫ ∞

0
|Hs − Ks ||dÃs |

∥∥∥∥
L2

where |dÃs | denotes the integral with respect to the total variation measure. The
integrals appearing in this definition are understood path-by-path in the Lebesgue–
Stieltjes sense, and it follows that dZ̃(H,K) = ‖H •Z̃−K •Z̃‖H2 . Under this metric,
bL is dense in bP . For H ∈ bP , it is easy to see that a unique H2-limit of the se-
quence {[D1-]Hn • Z̃} exists where {Hn} is an approximating sequence in bL for H .
Moreover, the limit is determined independently of the choice of the approximating
sequence. Hence, the stochastic integral [D2-]H • Z̃ := H2- limn→∞[D1-]Hn • Z̃ is
well-defined.

The third step requires another class of integrands, denoted LH2(Z̃, Ft ), which
consists of predictable processes with

∥∥∥∥

{∫ ∞

0
H 2

s d[M̃, M̃]s
}1/2∥∥∥∥

L2
+

∥∥∥∥
∫ ∞

0
|Hs ||dÃs |

∥∥∥∥
L2

< ∞,

where Z̃ = M̃ + Ã ∈ H2. Associate to H ∈ LH2(Z̃, Ft ), the truncation processes
{Hk} in bP , given by Hk := H I{|H |≤k}. Again, via the same reasoning as above, the
stochastic integral [D3-]H • Z̃ is defined to be the unique H2-limit of the sequence
{[D2-]Hk • Z̃}. That is, [D3-]H • Z̃ := H2- limn→∞[D2-]Hn • Z̃.

Finally, given a general semimartingale Z starting at 0, a predictable process H

is said to be Z-integrable, denoted H ∈ L(Z, Ft ), if there exists a sequence {σn} of
stopping times increasing to ∞ such that Z̃n := Zσn− ∈ H2 and H ∈ LH2(Z̃n, Ft )

for each n, where Zσ−
t := Zt I[0,σ )(t) + Zσ−I[σ,∞)(t). With this sequence {σn}, the

stochastic integral of H driven by Z is defined to be H • Z := [D3-]H • Z̃n on
[0, σ n). This definition is consistent and independent of the choice of the localizing
sequence {σn}.

One important special case is when Z = M is a continuous (Ft )-local martingale.
In this case, H ∈ L(M, Ft ) if and only if H ∈ P (Ft ) and P(

∫ t

0 H 2
s d[M,M]s < ∞) =

1 for all t ≥ 0. Moreover, the stochastic integral H •M is also a continuous (Ft )-local
martingale. In particular, if Z = B is a standard (Ft )-Brownian motion and E is a
continuous (Ft )-time-change, then it is easily shown that (BEt ) is a continuous (Gt )-
local martingale, where Gt := FEt . Thus, for any K ∈ L(B ◦ E, Gt ), the stochastic
integral K • (B ◦ E) is also a continuous (Gt )-local martingale.
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