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Abstract This paper continues the study of a kernel family which uses the Cauchy–
Stieltjes kernel 1/(1−θx) in place of the celebrated exponential kernel exp(θx) of the
exponential families theory. We extend the theory to cover generating measures with
support that is unbounded on one side. We illustrate the need for such an extension by
showing that cubic pseudo-variance functions correspond to free-infinitely divisible
laws without the first moment. We also determine the domain of means, advancing
the understanding of Cauchy–Stieltjes kernel families also for compactly supported
generating measures.
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1 Introduction and Definition

According to Wesołowski [16], the kernel family generated by a kernel k(x, θ) with
generating measure ν is the set of probability measures

{
k(x, θ)/L(θ)ν(dx): θ ∈ Θ

}
,
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where L(θ) = ∫
k(x, θ)ν(dx) is the normalizing constant, and ν is the generating

measure. The theory of exponential families is based on the kernel k(x, θ) = eθx ;
see, e.g., [9, 10], or [8, Sect. 2.3]. The author of [6] initiated the study of the Cauchy–
Stieltjes kernel

k(x, θ) = 1

1 − θx
,

for compactly supported generating measures ν. In the neighborhood of θ = 0, such
families can be parameterized by the mean, and under this parametrization the fam-
ily (and measure ν) is uniquely determined by the variance function V (m) and a
real number m0, which is the mean of ν. The Cauchy–Stieltjes Kernel (CSK) family
has some properties analogous to classical exponential families, with convolution of
measures replaced in some results by the free additive convolution.

For measures with unbounded support, one can still define the CSK family if the
support of the generating measure is bounded above or below. In such situation, the
family is parameterized by a “one-sided” range of θ of a fixed sign. In this note,
we consider generating measures with support bounded from above and our CSK
families are parameterized by θ > 0. Part of our motivation is to admit the free ad-
ditive 1/2-stable law [4, p. 1054] as a generating measure; for exponential families,
the celebrated inverse Gaussian law is 1/2-stable and corresponds to cubic variance
function.

Throughout the paper,

B = B(ν) = max
{
0, sup supp(ν)

}
(1.1)

denotes the (sometimes strict) non-negative upper bound for the support of ν. Oc-
casionally we will want to explain how the formulas change for the “dual case”
of measures with support bounded from below. Then we will use A = A(ν) =
min{0, inf supp(ν)}. Of course, supp(ν) ⊂ [A,B] when both expressions are finite.

Definition 1.1 Suppose ν is a non-degenerate (i.e., not a point mass) probability
measure with support bounded from above. For 0 ≤ θB(ν) < 1, let

M(θ) =
∫

1

1 − θx
ν(dx).

The (one-sided) Cauchy–Stieltjes kernel family generated by ν is the family of prob-
ability measures

K+(ν) =
{
Pθ(dx) = 1

M(θ)(1 − θx)
ν(dx): 0 < θ < θ+

}
, (1.2)

where θ+ = 1/B(ν) (here 1/0 is interpreted as ∞).

To simplify the statements such as reparameterization (2.2) of K+(ν), we chose
to exclude θ = 0 so that ν /∈ K+(ν). Alternatively, one could include ν as P0 in the
family K+(ν); then one would need to write (2.2) with the left-closed domain of
means [m0,m+) and one would need to allow also the extended value m0 = −∞.
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Similarly, one may define the one-sided CSK family for a generating measure ν

with support bounded from below. Then the one-sided CSK family K−(ν) is defined
for θ− < θ < 0, where θ− is either 1/A(ν) or −∞. Finally, if ν has compact support,
then the natural domain for the parameter θ of the two-sided CSK family K(ν) =
K−(ν) ∪ K+(ν) ∪ {ν} is θ− < θ < θ+. For definiteness, we concentrate on the case
of measures bounded from above, and we explicitly allow generating measures with
unbounded support, and perhaps without moments.

2 Parameterizations by the Mean

Since θ > 0, the mean m(θ) = ∫
xPθ (dx) exists for all measures in (1.2). A calcula-

tion gives

m(θ) = M(θ) − 1

θM(θ)
. (2.1)

Indeed,

m(θ) =
∫

(−∞,b]
1 − (1 − θx)

θM(θ)(1 − θx)
ν(dx) = 1

θ
− 1

θM(θ)
.

To verify that θ �→ M(θ) is differentiable on (0, θ+), we check that one can dif-
ferentiate under the integral sign. For this, we first observe that since supp(ν) ⊂
(−∞,B], for θ ∈ (0, θ+) the expression 1 − θx is positive for all x from the sup-
port of ν. So

∫ |x|
|1 − θx|2 ν(dx) ≤ 1

θ

∫ |θx − 1| + 1

|1 − θx|2 ν(dx)

= 1

θ

∫
(1 − θx) + 1

(1 − θx)2
ν(dx)

≤ M(θ)

θ
+ M(θ)

θ(1 − θB)
< ∞.

Now fix 0 < α < β < θ+. Then, since for x in the support of ν the map θ �→
∂
∂θ

( 1
1−θx

) = x

(1−θx)2 is increasing on (0, θ+), we have

x

(1 − αx)2
≤ x

(1 − θx)2
≤ x

(1 − βx)2
,

for all θ ∈ [α,β].
For x in the support of ν, define

g(x) = |x|
(1 − αx)2

+ |x|
(1 − βx)2

.

Then we have that g ≥ 0, g is ν-integrable because α and β are in (0, θ+), and
| ∂
∂θ

( 1
1−θx

)| = |x|
(1−θx)2 ≤ g(x), for all θ ∈ [α,β]. With this, we have that θ �→ M(θ)
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is differentiable on (0, θ+), and we can differentiate under the integral sign. The rea-
soning from [6] can now be repeated to show that m(θ) is increasing. Indeed, differ-
entiating (2.1) we get

m′(θ) = M(θ) + θM ′(θ) − (M(θ))2

θ2(M(θ))2
.

Since ν is non-degenerate,

M(θ) + θM ′(θ) − (
M(θ)

)2

=
∫

1

(1 − θx)2
ν(dx) −

(∫
1

1 − θx
ν(dx)

)2

> 0

for all 0 < θ < θ+. Thus the function θ �→ m(θ) is increasing on (0, θ+). Denoting
by ψ the inverse function, we are thus lead to parametrization of K+(ν) by the mean,

K+(ν) = {
Qm(dx) = Pψ(m)(dx): m ∈ (m0,m+)

}
, (2.2)

where the so-called domain of means (m0,m+) is the image under θ �→ m(θ) of the
interval (0, θ+). It is clear that m+ ≤ sup supp(ν) and

m0 = lim
θ↘0

m(θ) =
∫

xν(dx) ≥ −∞.

We will give alternative representations for m0 and m+ later in the paper, see Propo-
sitions 3.8(iii) and 3.4.

3 The Pseudo-Variance Function

The variance function

V (m) =
∫

(x − m)2Qm(dx) (3.1)

is the fundamental concept of the theory of exponential families, and also of the
theory of CSK families as presented in [6]. Unfortunately, if ν does not have the first
moment (which is the case for free 1/2-stable laws), all measures in the CSK family
generated by ν have infinite variance. We therefore introduce the following substitute
which coincides with the variance function when the mean of ν is zero.

Definition 3.1 For m ∈ (m0,m+), the pseudo-variance function is defined as

V(m) = m

(
1

ψ(m)
− m

)
. (3.2)

Note that the pseudo-variance function may take negative values: V(m) is negative
for all m0 < m < 0, as in this case 1/ψ(m) − m > 0.
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Since (3.2) is difficult to interpret, we will clarify in Proposition 3.2 how the
pseudo-variance is related to the variance function when

∫ |x|ν(dx) < ∞. To de-
rive this relation, we need first to point out how the pseudo-variance function enters
into the representation of a CSK family as a free-exponential or q-exponential family;
compare with [7].

Proposition 3.1 Suppose V is a pseudo-variance of the CSK family K(ν) generated
by a probability measure ν with support in (−∞, b] for some b ∈ R. The explicit
parametrization of K+(ν) by the mean (2.2) is as follows:

Qm(dx) = V(m)

V(m) + m(m − x)
ν(dx). (3.3)

Proof For completeness, we include a version of the argument implicit in [6]: If
θ = ψ(m) = m/(m2 + V(m)), then from (3.2) we get

1

M(θ)(1 − θx)
= m2 + V(m)

M(θ)(V(m) + m(m − x))
.

From (2.1), 1/M(θ) = 1 − ψ(m)m = V(m)/(m2 + V(m)), proving (3.3). �

The following result shows that the pseudo-variance functions are closely related
to the variance functions.

Proposition 3.2 If ν is non-degenerate with support bounded from above, and with
finite first moment m0 = ∫

xν(dx) then the variance function V as defined by (3.1)
exists, and

V(m) = m

m − m0
V (m)

for m ∈ (m0,m+). In particular, if m0 = 0 then V(m) = V (m) on (0,m+).

Proof For completeness, we include a version of the argument presented in [6]. A dif-
ferent argument based on (3.4) is presented in [7].

If ν has the first moment, then m0 = ∫
xν(dx) is a real number and x(x − m) is

integrable with respect to measures Qm ∈ K(ν) for all m ∈ (m0,m+). The following
calculation gives the answer:

V (m) =
∫

x(x − m)Qm(dx) =
∫

x(x − m)V(m)

V(m) + m(m − x)
ν(dx)

= V(m)

m

∫
xm(x − m)

V(m) + m(m − x)
ν(dx)

= V(m)

m

∫
xV(m) − x(V(m) + m(m − x))

V(m) + m(m − x)
ν(dx)

= V(m)

m

(∫
xQm(dx) −

∫
xν(dx)

)
= V(m)

m
(m − m0). �
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Remark 3.1 If ν has also finite second moment and m0 �= 0, then V(m) has a simple
pole at m = m0. In Corollary 3.9, we will verify that m/V(m) is positive, continuous,
and increasing on (m0,m+), so this must be the only pole.

Remark 3.2 Using the finite difference operator

(	mf )(m) := f (m) − f (0)

m
,

it is straightforward to verify that when 0 ∈ (m0,m+) the density g(m,x) :=
V(m)

V(m)+m(m−x)
satisfies the equation

	mg(m,x) = x − m

V(m)
g(m,x). (3.4)

This is a finite-difference analog of the differential equation satisfied by the density
of an exponential family [15]. In [7], this equation is used to verify directly from (3.3)
that m is the mean and that V(m) is the variance function when

∫
xν(dx) = 0.

In principle, the generating measure ν can be determined from the pseudo-variance
function V by the following method. Given V(m), solve (3.2) for ψ , find the inverse
function m(θ), and solve (2.1) for M(θ). This effectively determines the distribution
via Stieltjes inversion formula (3.8). To ensure that this procedure indeed works we
need several technical results.

Proposition 3.3 Suppose V is the pseudo-variance function of a CSK family gener-
ated by a probability measure with B = B(ν) < ∞ (recall (1.1)). Let

z = z(m) = m + V(m)

m
. (3.5)

Then m �→ z(m) is continuous, strictly decreasing on (m0,m+), z(m) > 0 on
(m0,m+), z(m) ↗ ∞ as m ↘ m0, and z(m) ↘ B as m ↗ m+.

Proof Rewriting (3.2), we see that z(m) = 1/ψ(m) is strictly decreasing, positive
and increases without bound as m ↘ m0. Clearly, as an inverse of the differentiable
function θ �→ m(θ), function ψ(m) is continuous. �

3.1 Cauchy Transform

The Cauchy transform of a probability measure ν on Borel sets of R is an analytic
mapping G from the upper complex half-plane C

+ into the lower half-plane C
− given

by

Gν(z) =
∫

1

z − x
ν(dx). (3.6)

(We will drop subscript ν when the measure is clear from the context.) It is known
(see [1] or [5, Proposition 5.1]) that an analytic function G : C

+ → C
− is a Cauchy
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transform if and only if

lim
t→∞ itG(it) = 1 (3.7)

and that the corresponding probability measure ν is determined uniquely from the
Stieltjes inversion formula

ν(dx) = lim
ε↘0

−�G(x + iε)

π
dx, (3.8)

where the limit is in the sense of weak convergence of measures (see e.g.,
[1, p. 125]).

For a probability measure ν with support in (−∞, b], Gν is analytic on the
slit complex plane C \ (−∞, b]. This shows that a probability measure ν with
support bounded from above is determined uniquely by Gν(z) on z ∈ (b,∞) for
some b.

Furthermore, limz→∞ zG(z) = 1, and since G is non-negative and decreasing on
(b,∞), the limit limz↘b Gν(z) exists as an extended number in (0,∞]. It will be
convenient to write 1/G(b) ∈ [0,∞) for the limit limz↘b 1/Gν(z) even if G(z) is
undefined at z = b.

The following shows how the upper end of the domain of means is related directly
to Cauchy transform.

Proposition 3.4 If ν has support bounded from above with B = B(ν) < ∞ given
by (1.1), then m+ = B − 1/G(B). (Here 1/G(B) := limz↘B 1/G(z) can be zero.)

Proof Since M(θ) = 1
θ
G( 1

θ
), from (2.1) we get m+ = limθ↗1/B m(θ) =

limθ↗1/B(1/θ − 1/G(1/θ)) = B − 1/G(B). �

Remark 3.3 (Precise Domain of Means) If ν is compactly supported and A =
min{0, inf supp(ν)} and B = B(ν), then the domain of means for the two sided
CSK family generated by ν is the interval (m−,m+) with m− = A − 1/G(A),
m+ = B−1/G(B). This gives a more precise information about the domain of means
considered in [6, Theorem 3.1].

From the fact that measures (3.3) integrate to 1, we get the following (see
[6, Theorem 3.1]).

Proposition 3.5 Suppose V is the pseudo-variance function of the CSK family K+(ν)

generated by a probability measure ν with support bounded from above. For z given
by (3.5), the Cauchy–Stieltjes transform of ν satisfies

G(z) = m

V(m)
. (3.9)

In particular, 0 < m
V(m)

< G(B(ν)). The generating measure ν is determined uniquely
by the pseudo-variance function V(·).
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Proof Integrating each measure in (3.3), we get (3.9). Since G is positive and de-
creasing on (B(ν),∞), from (3.9) we see that 0 < m/V(m) < G(B(ν)) on (m0,m+).
By Proposition 3.3, this determines G(z) on an interval. Thus by the uniqueness of
analytic extension, this determines G(z) for all z ∈ C

+, and hence it determines ν

via (3.8). �

Corollary 3.6 If V is a pseudo-variance function of a CSK family generated by prob-

ability measure with support bounded from above, then m
V(m)

→ 0 and m2

V(m)
→ 0 as

m ↘ m0.

Proof By Proposition 3.3, z(m) → ∞. So (3.9) and the properties of the Cauchy
transform imply that G(z(m)) = m/V(m) → 0 and zG(z) = 1 + m2/V(m) → 1. �

Remark 3.4 Proposition 3.5 shows that pseudo-variance function m �→ V(m) con-
tains more information than the variance function m �→ V (m): V is defined for ν

without moments, and it determines the generating measure ν without the need to
supply its mean. In particular, for a two-sided family with the domain of means
(m−,m+) as in Remark 3.3, its pseudo-variance function determines also m0 =∫

xν(dx).

The following technical result is needed later on to verify that the R-transform
is strictly increasing on an interval. (The inequality gives the lower bound for the
difference quotient of F = 1/G on (b,∞); compare [12, Proposition 2.1].)

Proposition 3.7 If ν is a non-degenerate probability measure with the support
bounded above by b ∈ R, then for b < z1 < z2,

G(z1) − G(z2) > (z2 − z1)G(z1)G(z2). (3.10)

Proof We have

G(z1) − G(z2) = (z2 − z1)

∫

(−∞,b]
1

(z1 − x)(z2 − x)
ν(dx). (3.11)

Note that for x, y ≤ b,

(
1

z1 − x
− 1

z1 − y

)(
1

z2 − x
− 1

z2 − y

)

= (y − x)2

(z1 − x)(z1 − y)(z2 − x)(z2 − y)
≥ 0.

Choose a < b such that ν((a, b]) > 0. Since ν is non-degenerate,

∫ ∫

(a,b]×(a,b]
(y − x)2ν(dx)ν(dy) > 0.
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Therefore,

2
∫

(−∞,b]
1

(z1 − x)(z2 − x)
ν(dx) − 2G(z1)G(z2)

=
∫ ∫

(−∞,b]×(−∞,b]

(
1

z1 − x
− 1

z1 − y

)(
1

z2 − x
− 1

z2 − y

)
ν(dx)ν(dy)

=
∫ ∫

(−∞,b]×(−∞,b]
(y − x)2

(z1 − x)(z1 − y)(z2 − x)(z2 − y)
ν(dx)ν(dy)

≥ 1

(z2 − a)4

∫ ∫

(a,b]×(a,b]
(y − x)2ν(dx)ν(dy) > 0.

Since z2 > z1, this together with (3.11) ends the proof. �

3.2 Free Convolution

It is known (see [5]) that if G is a Cauchy transform of a probability measure, then
there exist b > 0 such that G is univalent in the domain

Γ +
b = {

z ∈ C
+: �z > b, �z < �z

}
. (3.12)

Since G(z̄) = G(z), G is also univalent in Γ −
b = Γ +

b . For measures with support
bounded from above by b > 0, G is also one-to-one on (b,∞). So increasing b if
necessary, we can extend the region of univalence to

Γb = {
z ∈ C: �z > b, |�z| < �z

}
. (3.13)

Then the composition-inverse function Kν(z) = G
〈−1〉
ν (z) exists and is analytic for

z in the domain G(Γb). The R-transform is an analytic function in the same region,
and is defined by

Rν(z) = Kν(z) − 1/z . (3.14)

(A warning is in place: some authors use R(z) = zR(z) as the R-transform!) As
an analytic function, Rν is determined uniquely by its values on the interval R ∩
G(Γb) = (0,G(b)). In fact, on the real line Rν is defined on a potentially larger
interval (0,G(B(ν))).

Our interest in the R-transform stems from its relation to free convolution: a free
convolution μ � ν of probability measures μ,ν on Borel sets of the real line is a
uniquely defined probability measure μ � ν such that

Rμ�ν(z) = Rμ(z) + Rν(z)

for all z in an appropriate domain (see [5, Sect. 5] for details; the exact form of this
domain is not relevant for us, as we will be working only with the intervals in R and
then appeal to the uniqueness of analytic extension.)
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For α > 0 we denote by ν�α the free convolution power of a probability mea-
sure ν, which is defined by

Rν�α (z) = αRν(z). (3.15)

Convolution power of order α ∈ [1,∞) exists by [3, Sect. 2]. Convolution power of
order α > 0 exists for �-infinitely divisible laws. The following result lists properties
of R-transform that we need.

Proposition 3.8 Suppose V is a pseudo-variance function of the CSK family K+(ν)

generated by a probability measure ν with b = sup supp(ν) < ∞. Then

(i) Rν is strictly increasing on (0,G(b)).
(ii) For m ∈ (m0,m+),

Rν

(
m

V(m)

)
= m. (3.16)

(iii) limz↘0 Rν(z) = m0 ≥ −∞.
(iv) limz↘0 zRν(z) = 0.

(Of course, the only new contribution of (iv) is the case m0 = −∞.)

Proof

(i) Choose 0 < x1 < x2 < G(b). Then Rν(xj ) = Kν(xj ) − 1/xj are well defined.
Let uj = Kν(xj ) = Rν(xj ) + 1/xj so that xj = Gν(uj ). Clearly, u1 > u2 > b.
Then (3.10) says 1/G(u1) − 1/G(u2) > u1 − u2 so 1/x1 − 1/x2 > Kν(x1) −
Kν(x2), i.e., Rν(x1) < Rν(x2).

(ii) This is the same as (3.9).
(iii) Since the limit exists by part (i), this is a consequence of (3.16).
(iv) By (3.16) with z = m/V(m), we have zRν(z) = m2/V(m) → 0 as m → m0 by

Corollary 3.6. Since Rν is increasing on (0,G(b)), this ends the proof. �

Corollary 3.9 m �→ m/V(m) is strictly increasing and smooth function on (m0,m+).

Proof We rewrite (3.16) as m/V(m) = R〈−1〉
ν (m), and use the fact that R is smooth

and strictly increasing. �

It is worth mentioning here that one can use the R-transform to determine the do-
main of means and the pseudo-variance function of a CSK family, and even to define
them. In fact, (m0,m+) = Rν((0,G(B(ν)))), and V is nothing but the function which
gives Rν(z)/z as a function of Rν(z). For example, if ν is the inverse semicircle law

with Rν(z) = −p/
√

z, we have that Rν(z)/z = (Rν(z))3

p2 so that the pseudo-variance

function of the generated CSK family is equal to m3

p2 . This is the analogue of the fact
that, for the classical exponential families, the variance function is the function which
gives the second derivative of the cumulant function in terms of the first derivative.
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Proposition 3.10 Let Vν be the pseudo-variance function of the one sided CSK fam-
ily generated by a probability measure ν with support bounded from above and with
the mean −∞ ≤ m0 < ∞. Then for α > 0 such that ν�α is defined, the support of
ν�α is bounded from above and for m > αm0 close enough to αm0,

Vν�α (m) = αVν(m/α). (3.17)

Proof We first show that the support of ν�α is bounded from above. For functions
with support bounded from above, Rν is univalent in a domain that contains some
open interval (0, δ). Therefore, Rν�α is univalent in the same domain. This shows
that Gν�α is analytic on a domain that contains (c,∞), where c = Kν�α (δ). So the
support of ν�α is bounded from above by c, see [5, Proposition 6.1].

From Proposition 3.8(iii), we see that the domain of means for one sided CSK
generated by ν�α starts at limz↘0 Rν�α (z) = αm0. So for m > αm0 close enough to
αm0 so that m/α ∈ (m0,m+) and m/Vν�α (m) ∈ (0,G(B(ν))) (recall Corollary 3.6)
we can apply (3.16) and (3.15) to see that

Rν

(
m

Vν�α (m)

)
= 1

α
Rν�α

(
m

Vν�α (m)

)
= m/α = Rν

(
m/α

Vν(m/α)

)
.

From Proposition 3.8(i), we know that Rν is one-to-one on (0,G(B(ν))), so

m

Vν�α (m)
= m/α

Vν(m/α)
,

and formula (3.17) follows. �

We remark that the restriction of (3.17) to m “close enough” to αm0 cannot be
easily avoided, as we do not have a general formula for the upper end of the domain
of means for να�. (For the freely r-stable laws the upper end of the domain of means
is αrm+, so we do not expect a simple general formula.)

3.3 Affine Transformations

Here we collect the formulas that describe the effects of applying an affine transfor-
mation to the generating measure.

For δ �= 0 and γ ∈ R, let ϕ(ν) be the image of ν under the affine map x �→ x−γ
δ

. In
other words, if X is a random variable with law ν then ϕ(ν) is the law of (X − γ )/δ,
or ϕ(ν) = D1/δ(ν �δ−γ ), where Dr(μ) denotes the dilation of measure μ by a number
r �= 0, i.e., Dr(μ)(U) = μ(U/r).

It is well known that Gϕ(ν)(z) = δGν(δz+γ ) and Rϕ(ν)(z) = 1/δRν(z/δ)−γ /δ.
The effects of the affine transformation on the corresponding CSK family are as fol-
lows:

• Point m0 is transformed to (m0 −γ )/δ. In particular, if δ < 0 then ϕ(ν) has support
bounded from below and then it generates the left-sided K−(ϕ(ν)).
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• For m close enough to (m0 − γ )/δ the pseudo-variance function is

Vϕ(ν)(m) = m

δ(mδ + γ )
Vν(δm + γ ). (3.18)

In particular, if the variance function exists, then Vϕ(ν)(m) = 1
δ2 Vν(δm + γ ).

A special case worth noting is the reflection ϕ(x) = −x. If ν has support bounded
from above and its right-sided CSK family K+(ν) has domain of means (m0,m+)

and pseudo-variance function Vν(m), then ϕ(ν) generates the left-sided CSK family
K−(ϕ(ν)) with the domain of means (−m+,−m0) and the pseudo-variance function
Vϕ(ν)(m) = Vν(−m).

3.4 Reproductive Property

Proposition 3.11 If V is a pseudo-variance function of a CSK family generated by a
probability measure ν with support bounded from above, then for λ ≥ 1 measure

νλ := D1/λ

(
ν�λ

)

has also support bounded from above and there is δ > 0 such that the pseudo-
variance function of the one sided CSK family generated by νλ is V(m)/λ for
m ∈ (m0,m0 + δ).

If ν is free-infinitely divisible, then the above holds for every λ > 0. Conversely, if
for every λ > 0, there is δ = δ(λ) > 0 such that V(m)/λ is a pseudo-variance function
of some CSK family on (m0,m0 + δ), then ν is free-infinitely divisible.

Proof This is closely related to Proposition 3.10 and is similar to [7, Proposition 4.3],
see also [6]; the details are omitted. �

4 Quadratic and Cubic Pseudo-Variance Functions

In this section, we review the description of CSK families with quadratic variance
functions, adding the precise domain of means, then we analyze certain cubic vari-
ance functions and point out the reciprocity relation between these two cases.

4.1 CSK Families with Quadratic Variance Functions

The generating measures of CSK families with quadratic variance functions V (m) =
a − bm + cm2 with a > 0, i.e., with the pseudo-variance functions of the form

V(m) = m(a − bm + cm2)

m − m0
(4.1)

were determined in [7]. (Up to affine transformations, it is enough to consider m0 = 0
and a = 1.) These are the so-called free Meixner laws ([2, 14]). Since free Meixner
laws are compactly supported, they generate two-sided CSK families. Remark 3.3
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can be used to determine the precise domain of means which was not previously
available, except for an ad-hoc technique for the semi-circle law in [6, Example 4.1].

Unsurprisingly, the domain of means ends at the rightmost atom of ν when there
is one; but may fall strictly inside the support of ν when there are no atoms in (0,∞).
When m0 = 0, a calculation gives

m+ =

⎧
⎪⎨

⎪⎩

b−
√

b2−4ac
2c

if either c > 0, b > 2
√

ac or −1 ≤ c < 0;

a/b if c = 0 and b >
√

a ;√
a/(1 + c) when ν has no atoms in (0,∞).

(4.2)

(We recommend [14] for the treatment of atoms.)

4.2 A Class of Families with Cubic Pseudo-Variance Function

Next, we describe the class of Cauchy–Stieltjes kernel families with pseudo-variance
functions of the form

V(m) = m
(
am2 + bm + c

)
, (4.3)

with a > 0. This class is important because it is related to the quadratic class by a
relation of reciprocity which will be introduced in the next section.

Suppose that (4.3) is the pseudo-variance function generated by a distribution ν.
Then (3.5) is a quadratic equation for m, so we can use (3.9) to express G as a function
of real z large enough. By uniqueness of the analytic extension, we get

Gν(z) = b + 1 + 2az − √
(b + 1)2 + 4a(z − c)

2(c + bz + az2)

for all z in the upper half plane C
+. The Stieltjes inversion formula (3.8) gives

ν(dx) =
√

4ac − (b + 1)2 − 4ax

2π(c + bx + ax2)
1(−∞,c−(b+1)2/(4a))(x) dx

+ p(a, b, c)δ−(b+
√

b2−4ac)/(2a)
, (4.4)

where the weight of the atom p(a, b, c) = 1 − 1/
√

b2 − 4ac if b2 > 4ac + 1, and is
0 otherwise. (In particular for c = 0, there is an atom at −b/a if b > 1, or an atom at
0 if b < −1.)

From Proposition 3.4, we see that the domain of means is (−∞,m+) with m+ =
B(ν) − 1/G(B(ν)). A calculation that goes over the cases when the support contains
positive numbers shows that

m+ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 1+b
2a

if c > 0, −√
1 + 4ac ≤ b ≤ 2

√
ac − 1;

− (b+
√

b2−4ac)
2a

if c > 0 and b ≤ −√
1 + 4ac;

− b+1+
√

(b+1)2−4ac

2a
if either c ≤ 0, or b > 2

√
ac − 1.

(4.5)
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The most interesting example in this class is the inverse semicircle law with the
pseudo-variance function V(m) = m3/p2 which corresponds to the case a = 1/p2,
b = 0 and c = 0. We have that

Gν(z) = p2 + 2z − p
√

4z + p2

2z2
,

and the density of ν is

f (x) = p
√−p2 − 4x

2πx2
(4.6)

on (−∞,−p2/4). This is a free 1/2-stable density, see [4, p. 1054], see also [13].
The domain of means is (m0,m+) = (−∞,−p2); this can be read out either from

ψ(m) = p2

m(m+p2)
, or from Proposition 3.4 where the last case of (4.5) is relevant here.

Similarly, one can use (4.3), (4.4) and (4.5) to get the free analogous of the five
other members of the Letac–Mora class with variance function of degree 3. Keeping
the names given in [11], we have

(i) Free Abel (or Free Borel–Tanner)

ν(dx) = 1

π(1 − x)
√−x

1(−∞,0)(x) dx,

with pseudo-variance function V(m) = m2(m − 1) and domain of the means
(−∞,0).

(ii) Free Ressel (or Free Kendall)

ν(dx) = −1

πx
√−1 − x

1(−∞,−1)(x) dx,

with pseudo-variance function V(m) = m2(m + 1) and domain of the means
(−∞,−2).

(iii) Free strict arcsine

ν(dx) =
√

3 − 4x

2π(1 + x2)
1(−∞,3/4)(x) dx,

with pseudo-variance function V(m) = m(1 + m2) and domain of the means
(−∞,−1/2).

(iv) Free large arcsine

ν(dx) = r
√

4 − 5r2 − 4(1 + r2)x

2π(x2 + r2(1 + x)2)
1S(x) dx,

where r > 0 and S = (−∞, 4−5r2

4(1+r2)
). The pseudo-variance function is

V(m) = m

(
1 + 2m + 1 + r2

r2
m2

)
,
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and domain of the means is (−∞,− 3r2

2(1+r2)
), if r2 ≤ 4/5, and (−∞,

− 3r2+r
√

5r2−4
2(1+r2)

), if r2 > 4/5.
(v) Free Takács

ν(dx) =
√−5r2 − 2r − 1 − 4r(1 + r)x

2πr(1 + x)(1 + (1 + 1/r)x)
1S(x) dx + (1 − r)+δ−1,

where r > 0 and S = (−∞,1 − (1+3r)2

4r(1+r)
). The pseudo-variance function is

V(m) = m(1 + m)

(
1 + 1 + r

r
m

)
,

and domain of the means is (−∞,− 1+3r+
√

5r2+2r+1
2(1+r)

).

4.3 Reciprocity

The notion of reciprocity between two natural exponential families is defined by a
symmetric relation between the cumulant functions of two generating measures (see
[11, Sect. 5]). Similarly, we can define the reciprocity between two Cauchy–Stieltjes
Kernel Families by a relation between the R-transforms of the generating distribu-
tions.

Definition 4.1 Suppose ν̃, ν are probability measures with support bounded from
above. We say that the corresponding one-sided Cauchy–Stieltjes kernel families
K+( ν̃ ) and K+(ν) are reciprocal if m0 := ∫

xν(dx) and m̃0 := ∫
xν̃(dx) are of op-

posite signs and there is δ > 0 such that

Rν̃

(
z
∣∣Rν(z)

∣∣) = − 1

Rν(z)
(4.7)

for all z in (0, δ).
In this case, we also say that the distributions ν̃ and ν are reciprocal.

We note that Rν is defined for z > 0 small enough so, by Proposition 3.8(iv), both
sides of the expression (4.7) are well defined for all z ∈ (0, δ) when δ > 0 is small
enough. We also remark that with m0 := ∫

xν(dx) ∈ [−∞,∞), in (4.7) we actually
have

∣∣Rν(z)
∣∣ =

{ Rν(z) if m0 ≥ 0;

−Rν(z) if m0 < 0

for z > 0 close enough to 0.
Note that (4.7) is equivalent to

Rν

(
z′∣∣Rν̃

(
z′)∣∣) = − 1

Rν̃ (z′)
(4.8)
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for all z′ > 0 small enough, so reciprocity is a symmetric relation. Indeed, we first
note that (4.7) implies m0 = −1/m̃0 even if m0 = 0 or m̃0 = 0. We consider sepa-
rately the cases m0 ≥ 0 and m0 < 0.

If m0 ≥ 0, we set z′ = zRν(z). From Proposition 3.8(iv), we see that Rν(z
′) is

well defined for small enough z > 0. Then (4.7) is equivalent to

Rν̃

(
z′) = − 1

Rν(z)
and z = −z′Rν̃

(
z′). (4.9)

Hence

Rν

(−z′Rν̃

(
z′)) = − 1

Rν̃ (z′)
. (4.10)

Since Rν̃ (z
′) < 0, because m̃0 < 0, this is nothing but (4.8).

If m0 < 0, we use the same reasoning using z′ = −zRν(z).
The reciprocity between K+( ν̃ ) and K+(ν) may also be expressed using the vari-

ance functions. More precisely, we have:

Theorem 4.1 Let Vν̃ and Vν be the pseudo-variance functions of the right-sided
Cauchy–Stieltjes kernel families generated by ν̃ and ν, with means m̃0 and m0, re-
spectively. Then K+( ν̃ ) and K+(ν) are reciprocal if and only if m0 = −1/m̃0 (it is
understood that −1/0 = −∞), and

Vν̃ (m) = −|m|3Vν

(
− 1

m

)
(4.11)

for all m > m̃0 close enough to m̃0.

Proof Suppose m0 = −1/m̃0 and (4.11) holds for all m̃0 < m < M . Decreasing M

if necessary, we may ensure that 1/m ∈ (m0,m+). Choose z′ > 0 such that z′ <

M/Vν̃ (M). Since m �→ m/Vν̃ (m) is a continuous function, we can find m′ > m̃0

such that z′ = m′/Vν̃ (m
′). Let m = −1/m′ and z := m/Vν(m). For our choice of

m,m′, from (3.16) we get

Rν̃

(
z′) = − 1

Rν(z)
, (4.12)

and to deduce (4.7) we only need to note that z′ = z|Rν(z)|. The latter is a conse-
quence of (4.11) and (3.16).

To prove the converse implication, suppose that (4.7) holds. Then taking the limit
as z ↘ 0 we deduce that m0 = −1/m̃0. Therefore, for all m > m0 close enough to m0

so that z := m/Vν(m) and z′ := z|Rν(z)| are within the domain of (4.7), we deduce
that (4.12) holds. As previously, for m close enough to m0, z′ is close enough to 0 so
that we can find m′ > m̃0 such that z′ = m′/Vν̃ (m

′). Then (4.12) says that mm′ = −1
(here we use (3.16) again), so the identities z = m/Vν(m) and z′ = m′/Vν̃ (m

′) im-
ply (4.11). �
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Remark 4.1 In particular, if m0 ≥ 0 then (4.11) says that for m < 0 close enough to
m0 we have Vν̃ (m) = m3

Vν(−1/m).
Of course, one can combine reciprocity with affine action ϕ(x) = −x. Corre-

spondingly, one can extend the definition of reciprocity to pairs K±(ν) and K±( ν̃ ).

4.3.1 Example

As mentioned above, we have been interested in the class of the Cauchy–Stieltjes
kernel families with pseudo-variance functions of the form (4.3) because it is the
class the Cauchy–Stieltjes kernel families with pseudo-variance functions of degree
three which are obtained by reciprocity from the families with quadratic variance
functions. In fact, the CSK family generated with pseudo-variance (4.3) is reciprocal
with the right-sided part of the quadratic CSK family with (pseudo)-variance (4.1)
for m0 = 0. In particular, the semicircle family with variance function equal to 1

p2 ,
m+ = 1/p and the inverse semicircle family with pseudo-variance function equal

to m3

p2 , m+ = −p2 are reciprocal. For z > 0, their R-transforms Rν̃ (z) = z/p2 and

Rν(z) = −p/
√

z are related by formula (4.7).
Comparing (4.2) and (4.5), we see that for reciprocal families the upper ends of

the domain of means do not satisfy a simple relation.
We remark that for c < 0 the reciprocal of the free-infinitely divisible cubic family

is free-binomial law which is not free-infinitely divisible.
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