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In this paper we introduce a large class of subordinators called special
subordinators and study their potential theory. Then we study the poten-
tial theory of processes obtained by subordinating a killed symmetric stable
process in a bounded open set D with special subordinators. We establish
a one-to-one correspondence between the nonnegative harmonic functions of
the killed symmetric stable process and the nonnegative harmonic functions
of the subordinate killed symmetric stable process. We show that nonnega-
tive harmonic functions of the subordinate killed symmetric stable process
are continuous and satisfy a Harnack inequality. We then show that, when D

is a bounded κ-fat set, both the Martin boundary and the minimal Martin
boundary of the subordinate killed symmetric stable process in D coincide
with the Euclidean boundary ∂D.
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1. INTRODUCTION

Let D be a bounded open set in R
d , d ≥ 3, and let �|D be the

Dirichlet Laplacian in D. This operator is the infinitesimal generator of
the semigroup (PDt : t ≥ 0) corresponding to the process XD = (XDt : t ≥
0), the Brownian motion killed upon exiting D. Let S = (St : t ≥ 0) be
an α/2-stable subordinator independent of XD, where 0<α < 2, and let
ZDα = (ZDα (t) : t ≥0) be the process XD subordinate by S :ZDα (t) :=XD(St ).
The infinitesimal generator of the semigroup of ZDα is the fractional power
−(−�|D)α/2 of the negative Dirichlet Laplacian. Despite the importance
of this operator in analysis, the probabilistic and potential-theoretic prop-
erties of the corresponding process ZDα began to be studied only recently.
The study of the process ZDα was initiated in Ref. 16. In Ref. 18 (see also
Ref. 14) the domain of the Dirichlet form of ZDα was identified when D is
a bounded smooth domain and α �=1. In Ref. 24 and Ref. 23, the process
ZDα was studied in detail and sharp upper and lower bounds on the jump-
ing function and the Green function of ZDα were established when D is a
bounded C1,1 domain.

One of the most intriguing aspects of the potential theory of ZDα
was discovered in Ref. 16, and completely described in Ref. 15. Let us
introduce another subordinate process, ZD2−α, obtained by subordinating
killed Brownian motion XD by an independent (1−α/2)-stable subordina-
tor. Let GD,GDα and GD2−α denote the potential operators of XD,ZDα and
ZD2−α, respectively. Then the following factorization identity holds true:

GD =GDα GD2−α = GD2−αG
D
α . (1.1)

If it is assumed that the semigroup (PDt : t ≥ 0) of XD is intrinsically
ultracontractive (a rather mild assumption on the domain D), then (1.1)
has the following important consequence: the operator GDα is a one-
to-one mapping from the set of excessive (respectively, nonnegative
harmonic) functions of ZD2−α onto the set of excessive (respectively, non-
negative harmonic) functions of XD. Moreover, the inverse mapping is
given by the following explicit formula:

(GDα )
−1s(x)= α

2�(1−α/2)
∫ ∞

0
t−α/2−1(s(x)−PDt s(x))dt , (1.2)

where s is excessive (respectively, nonnegative harmonic) for XD. This for-
mula is used to prove that all nonnegative harmonic functions of ZDα are
continuous, which together with (1.1) and the intrinsic ultracontractivi-
ty of (PDt ) enables a novel proof of Harnack inequality. Another conse-
quence of (1.2) is the identification of the Martin boundary with respect
to ZDα of a Lipschitz domain D with its Euclidean boundary ∂D.
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The Laplace exponent of the α/2-stable subordinator is φ(λ) =
λα/2, λ > 0. Clearly, λ/λα/2 = λ1−α/2 is the Laplace exponent of the (1 −
α/2)-stable subordinator. This existence of a “dual” subordinator is the
key for the factorization (1.1). Motivated by this fact, we introduce in
this paper subordinators whose Laplace exponent φ(λ) has the property
that λ/φ(λ) is again the Laplace exponent of a subordinator. We call such
subordinators special, and argue in Section 2 that they comprise a large
subclass of subordinators. We show that special subordinators can be
characterized by the following very useful property: a subordinator S =
(St , t≥0) is special if and only if its potential measure restricted to (0,∞)

has a decreasing density.
The main contribution of this paper, besides introducing the concepts

of special Bernstein functions and special subordinators, is the realiza-
tion that the key point for the main results of Ref. 16 and Ref. 15, is
the fact that stable subordinators are special. We will show in this paper
that the main results of Ref. 16 and Ref. 15, remain valid for the killed
Brownian motion XD subordinate by a special subordinator with infinite
Lévy measure or positive drift (or both). The resulting class of subordinate
processes is a significant extension of the one studied in Ref. 15. In par-
ticular, this class contains discontinuous processes with a continuous com-
ponent. Moreover, if the Lévy measure of the subordinator is finite, the
jumping times of the subordinate process will be discrete. The Harnack
inequality that we prove for nonnegative harmonic functions of such pro-
cesses is to the best of our knowledge the first one in the literature.

Another generalization that we introduce consists of replacing the
underlying killed Brownian motion XD by a rotationally invariant α-stable
process, 0 < α ≤ 2, killed upon exiting D. For 0 < α < 2, this process is
discontinuous which introduces some technical, but not essential, difficul-
ties. For simplicity, from now on we will use the term symmetric α-stable
process, instead of the more precise one – rotationally invariant. So, the
process that we are going to study is the symmetric α-stable process killed
upon exiting D, subordinate by a special subordinator with infinite Lévy
measure or positive drift.

The content of this paper is organized as follows. In Section 2 we first
introduce the concepts of special Bernstein functions and special subordi-
nators, show that this class is large and contains most of the known sub-
ordinators. Then we study some potential theoretical properties of special
subordinators. In particular, we characterize special subordinators in terms
of their potential measures. In Section 3 we introduce killed symmetric sta-
ble processes in a bounded open set subordinate by special subordinators
“dual” to each other. One of the subordinators is assumed to have an infi-
nite Lévy measure or positive drift, while the other subordinator may be
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a compound Poisson process. Clearly, these two subordinate processes do
not have symmetric roles. We are interested in the potential theory of the
process XD subordinate by special subordinators having an infinite Lévy
measure or positive drift. The main result that we establish is a one-to-one
correspondence between the family of excessive (respectively nonnegative
harmonic) functions of killed symmetric stable processes and the family of
excessive (respectively nonnegative harmonic) functions of the subordinate
process. We are in particular interested in nonnegative harmonic functions
of the subordinate process. We prove that they are continuous and present
the Harnack inequality. In Section 4 we show that when D is a bounded
κ-fat set, the Martin boundary and minimal Martin boundary of the sub-
ordinate killed symmetric stable process both coincide with the Euclidean
boundary ∂D.

In the remainder of this section we shall recall the definitions of har-
monic functions and excessive functions with respect to a standard process
X= (Xt ,Px) in a domain D in R

d . A Borel function h on D is said to be
harmonic with respect to X if h is not identically infinite in D and if for
every relatively compact open subset U ⊂U ⊂D,

h(x)=Ex [h(X(τU ))], ∀x ∈U,

where τU = inf{t :Xt /∈U} is the first exit time of U . We are going to use
H(X) to denote the collection of all the functions on D which are har-
monic with respect to X and H+(X) to denote the collection of all the
nonnegative functions on D which are harmonic with respect to X. A
nonnegative function which is not identically infinite on D is said to be
excessive with respect to X if (i) Ex [f (Xt )]≤f (x) for every t >0 and every
x∈D; and (ii) limt↓0 Ex [f (Xt )]=f (x) for every x∈D. We are going to use
S(X) to denote the collection of all the excessive functions with respect to
X. It is well known that H+(X)⊂S(X).

2. SPECIAL SUBORDINATORS AND COMPLETE BERNSTEIN
FUNCTIONS

Let S = (St : t ≥ 0) be a subordinator, that is, an increasing Lévy
process taking values in [0,∞] with S0 = 0. We remark that our subordi-
nators are what some authors call killed subordinators. The Laplace trans-
form of the law of S is given by the formula

E[exp(−λSt )]= exp(−tφ(λ)) , λ>0. (2.1)
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The function φ : (0,∞)→R is called the Laplace exponent of S, and it can
be written in the form

φ(λ)=a+bλ+
∫ ∞

0
(1− e−λt )µ(dt) . (2.2)

Here a, b≥0, and µ is a σ -finite measure on (0,∞) satisfying

∫ ∞

0
(t ∧1)µ(dt)<∞ . (2.3)

The constant a is called the killing rate, b the drift, and µ the Lévy mea-
sure of the subordinator S. By using condition (2.3) above one can easily
check that

lim
t→0

t µ(t,∞)=0 (2.4)
∫ 1

0
µ(t,∞) dt <∞ . (2.5)

Recall that a C∞ function φ : (0,∞)→ [0,∞) is called a Bernstein
function if (−1)nDnφ≤0 for every n∈N. It is well known that a function
φ : (0,∞)→R is a Bernstein function if and only if it has the representa-
tion given by (2.2).

We now introduce the concepts of special Bernstein functions and
special subordinators.

Definition 2.1. A Bernstein function φ is called a special Bernstein
function if λ/φ(λ) is also a Bernstein function. A subordinator S is called
a special subordinator if its Laplace exponent is a special Bernstein func-
tion.

Special subordinators occur naturally in various situations. For
instance, they appear as the ladder time process for a Lévy process which
is not a compound Poisson process, see page 166 of Ref. 3. Yet another
situation in which they appear naturally is in connection with the expo-
nential functional of subordinators (see Ref. 4).

Our prime example of special Bernstein functions are complete
Bernstein functions, also called operator monotone functions in some lit-
erature. A function φ : (0,∞)→R is called a complete Bernstein function
if there exists a Bernstein function η such that

φ(λ)=λ2Lη(λ), λ>0,
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where L stands for the Laplace transform. It is known (see, for instance,
Remark 3.9.28 and Theorem 3.9.29 of Ref. 17) that every complete Bern-
stein function is a Bernstein function and that the following three condi-
tions are equivalent:

(i) φ is a complete Bernstein function;
(ii) ψ(λ) :=λ/φ(λ) is a complete Bernstein function;

(iii) φ is a Bernstein function whose Lévy measure µ is given by

µ(dt)=
∫ ∞

0
e−st γ (ds)dt

where γ is a measure on (0,∞) satisfying
∫ 1

0

1
s
γ (ds)+

∫ ∞

1

1
s2
γ (ds)<∞.

The equivalence of (i) and (ii) says that every complete Bernstein
function is a special Bernstein function. Note also that it follows from
the condition (iii) above that being a complete Bernstein function only
depends on the Lévy measure and that the Lévy measure µ(dt) of any
complete Bernstein function has a completely monotone density.

The family of all complete Bernstein functions is a closed convex cone
containing positive constants. The following properties of complete Bern-
stein functions are well known, see, for instance, Ref. 20: (i) If φ is a
nonzero complete Bernstein function, then so are φ(λ−1)−1 and λφ(λ−1);
(ii) if φ1 and φ2 are nonzero complete Bernstein functions and β ∈ (0,1),
then φ

β

1 (λ)φ
1−β
2 (λ) is also a complete Bernstein function; (iii) if φ1 and

φ2 are nonzero complete Bernstein functions and β ∈ (−1,0)∪ (0,1), then
(φ
β

1 (λ)+φβ2 (λ))1/β is also a complete Bernstein function.
Recall that a probability distribution function on [0,∞) is called a

generalized Gamma convolution (GGC for short) if it is infinitely divisi-
ble and its Lévy measure has a density l such that the function

x→xl(x), x >0

is completely monotone. The class of GGC distribution can be charac-
terized as the smallest class of distributions on [0,∞) that contains the
Gamma distributions and is closed with respect to convolutions and weak
limits. It is known that if a probability distribution function on [0,∞) is
a GGC, then its Laplace exponent must be a complete Bernstein function.
For these and other results about GGC, please see Ref. 8.

Most of the familiar Bernstein functions are complete Bernstein func-
tions. The following are some examples of complete Bernstein functions
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(Ref. 17): (i) λα,α ∈ (0,1]; (ii) (λ+ 1)α − 1, α ∈ (0,1); (iii) log(1 + λ); (iv)
λ
λ+1 . The first family corresponds to α-stable subordinators (0< α < 1),
and pure drift (α=1), the second family corresponds to relativistic α-sta-
ble subordinators, and the third corresponds to the gamma subordinator.
The distributions corresponding to the complete Bernstein functions in the
first three families are GGC. An example of a Bernstein function which
is not a complete Bernstein function is 1 − e−λ. One can also check that
1− e−λ is not a special Bernstein function as well.

After showing that the family of special Bernstein functions is indeed
large and that it contains other important classes of Bernstein functions
from the literature, we come back to the main development of this section.
The potential measure of the subordinator S is defined by

U(A)=E

∫ ∞

0
1(St∈A) dt , (2.6)

and its Laplace transform is given by

LU(λ)=
∫ ∞

0
e−λt dU(t)=E

∫ ∞

0
exp(−λSt ) dt= 1

φ(λ)
. (2.7)

We are going to derive a characterization of special subordinators in
terms of their potential measures. Roughly, a subordinator S is special if
and only if its potential measure U restricted to (0,∞) has a decreas-
ing density. To be more precise, let S be a special subordinator with the
Laplace exponent φ given by

φ(λ)=a+bλ+
∫ ∞

0
(1− e−λt )µ(dt) .

Then

lim
λ→0

λ

φ(λ)
=
{

0 , a >0
1

b+∫∞
0 t µ(dt)

, a=0

lim
λ→∞

1
φ(λ)

=
{

0 , b>0 or µ(0,∞)=∞
1

a+µ(0,∞)
, b=0 and µ(0,∞)<∞ .

Since λ/φ(λ) is a Bernstein function, we must have

λ

φ(λ)
= ã+ b̃λ+

∫ ∞

0
(1− e−λt ) ν(dt) , (2.8)
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for some Lévy measure ν, and

ã =
{

0 , a >0
1

b+∫∞
0 t µ(dt)

, a=0 (2.9)

b̃ =
{

0 , b>0 or µ(0,∞)=∞
1

a+µ(0,∞)
, b=0 and µ(0,∞)<∞ .

(2.10)

Equivalently,

1
φ(λ)

= b̃+
∫ ∞

0
e−λt �̃(t) dt (2.11)

with

�̃(t)= ã+ν(t,∞) , t >0 .

Let τ(dt) := b̃ε0(dt)+ �̃(t) dt . Then the right-hand side in (2.11) is the
Laplace transform of the measure τ . Since 1/φ(λ)= LU(λ), the Laplace
transform of the potential measure U of S, we have that

LU(λ)=Lτ(λ) .
Therefore,

U(dt)= b̃ε0(dt)+u(t) dt ,
with a decreasing function u(t)= �̃(t).

Conversely, suppose that S is a subordinator with potential measure
given by

U(dt)= cε0(dt)+u(t) dt ,
for some c≥0 and some decreasing function u : (0,∞)→ (0,∞) satisfying∫ 1

0 u(t) dt <∞. Then

1
φ(λ)

=LU(λ)= c+
∫ ∞

0
e−λtu(t) dt .

It follows that

λ

φ(λ)
= cλ+

∫ ∞

0
u(t) d(1− e−λt )

= cλ+u(t)(1− e−λt ) |∞0 −
∫ ∞

0
(1− e−λt ) u(dt)

= cλ+u(∞)+
∫ ∞

0
(1− e−λt ) γ (dt) , (2.12)



Potential Theory 825

withγ (dt)=−u(dt). In the last equality we used that limt→0 u(t)(1−e−λt )=0.
This is a consequence of the assumption

∫ 1
0 u(t) dt <∞. It is easy to check,

by using the same integrability condition on u, that
∫∞

0 (1 ∧ t) γ (dt) <∞,
so that γ is a Lévy measure. Therefore, λ/φ(λ) is a Bernstein function,
implying that S is a special subordinator.

In this way we have proved the following

Theorem 2.1. Let S be a subordinator with potential measure U .
Then S is special if and only if

U(dt)= cε0(dt)+u(t) dt
for some c≥0 and some decreasing function u : (0,∞)→ (0,∞) satisfying∫ 1

0 u(t) dt <∞.

Remark 2.2. Note that from the proof above we have the explicit
form of the density u: u(t)= �̃(t) where �̃(t)= ã+ ν(t,∞). Here ν is the
Lévy measure of λ/φ(λ). In case when φ(λ) (and therefore also λ/φ(λ))
is a complete Bernstein function, it follows from the property (iii) of com-
plete Bernstein function that the tail t 
→ ν(t,∞) of Lévy measure ν is
a complete monotone function. Therefore, the potential density u of S is
also completely monotone. This was first proved in Ref. 21.

Note that by comparing expressions (2.8) and (2.12) for λ/φ(λ), and
by using formulae (2.9) and (2.10), it immediately follows that

c = b̃=
{

0 , b>0 or µ(0,∞)=∞
1

a+µ(0,∞)
, b=0 and µ(0,∞)<∞

u(∞) = ã=
{

0 , a >0
1

b+∫∞
0 t µ(dt)

, a=0

u(t) = ã+ν(t,∞) .

In particular, it cannot happen that both a and ã are positive, and simi-
larly, that both b and b̃ are positive. Moreover, it is clear from the defini-
tion of b̃ that b̃ >0 if and only if b=0 and µ(0,∞)<∞.

We record now some consequences of Theorem 2.1 and the formulae
above.

Corollary 2.3. Suppose that S = (St : t ≥ 0) is a subordinator whose
Laplace exponent

φ(λ)=a+bλ+
∫ ∞

0
(1− e−λt )µ(dt)
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is a special Bernstein function with b > 0 or µ(0,∞) = ∞. Then the
potential measure U of S has a decreasing density u satisfying

lim
t→0

t u(t) = 0 (2.13)

lim
t→0

∫ t

0
s du(s) = 0 . (2.14)

Proof. The formulae follow immediately from u(t)= ã+ν(t,∞) and
(2.4), (2.5) applied to ν.

Corollary 2.4. Suppose that S = (St : t ≥ 0) is a special subordinator
with the Laplace exponent given by

φ(λ)=a+
∫ ∞

0
(1− e−λt )µ(dt)

where µ satisfies µ(0,∞)=∞. Then

ψ(λ) := λ

φ(λ)
= ã+

∫ ∞

0
(1− e−λt ) ν(dt) (2.15)

where the Lévy measure ν satisfies ν(0,∞)=∞.
Let T be the subordinator with the Laplace exponent ψ . If u and v

denote the potential density of S and T respectively, then

v(t)=a+µ(t,∞) . (2.16)

In particular, a=v(∞) and ã=u(∞). Moreover, a and ã cannot be both
positive.

In the rest of the paper we will assume that φ is a special Bern-
stein function with the representation (2.2) where b> 0 or µ(0,∞)= ∞.
Let S be a subordinator with the Laplace exponent φ, and let U denote
its potential measure. By Corollary 2.3, U has a decreasing density u :
(0,∞) → (0,∞). Let T be a subordinator with the Laplace exponent
ψ(λ) = λ/φ(λ) and let V denote its potential measure. Then V (dt) =
bε0(dt)+v(t) dt where v : (0,∞)→ (0,∞) is a decreasing function. If b>0,
the potential measure V has an atom at zero, and hence the subordina-
tor T is a compound Poisson process (this can be also seen as follows:
since b>0, we have u(0+)<∞, and hence ν(0,∞)=u(0+)− ã <∞). Note
that in case b> 0, the Lévy measure µ can be finite. If b= 0, we require
that µ(0,∞)=∞, and then, by Corollary 2.4, ψ(λ)=λ/φ(λ) has the same
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form as φ, namely b̃= 0 and ν(0,∞)= ∞. In this case, subordinators S
and T play symmetric roles.

The following result is crucial for the development in the remainder
of this paper.

Theorem 2.5. Let φ be a special Bernstein function with representa-
tion (2.2) satisfying b>0 or µ(0,∞)=∞. Then

bu(t)+
∫ t

0
u(s)v(t− s)ds=bu(t)+

∫ t

0
v(s)u(t− s)ds=1, t >0.

Proof. Since for all λ>0 we have

1
φ(λ)

= Lu(λ)
φ(λ)

λ
= b+Lv(λ) ,

after multiplying we get

1
λ

= bLu(λ)+Lu(λ)Lv(λ)
= bLu(λ)+L(u∗v)(λ) .

Inverting this equality gives

1=bu(t)+
∫ t

0
u(s)v(t− s) ds , t >0.

3. NONNEGATIVE HARMONIC FUNCTIONS OF THE
SUBORDINATE PROCESS

Suppose that α∈ (0,2] and let X= (Xt : t≥0) be a symmetric α-stable
process in R

d with characteristic function

E[exp(iξ · (Xt −X0))]= e−t |ξ |α , ξ ∈R
d , t ≥0.

Let D be a bounded open set in R
d which is further assumed to be con-

nected when α= 2, and let τD = inf{t > 0 :Xt /∈D} be the exit time of X
from D. Define

XDt =
{
Xt, t <τD ,

∂ , t ≥ τD ,
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where ∂ is the cemetery. We call XD the symmetric α-stable process killed
upon exiting D. The semigroup of XD will be denoted by (PDt )t≥0, and
its transition density by pD(t, x, y), t ≥ 0, x, y ∈R

d . The transition density
pD(t, x, y) is strictly positive, and hence the eigenfunction ϕ0 of the oper-
ator (−�)α2 |D corresponding to the smallest eigenvalue λ0 can be chosen
to be strictly positive, see, for instance, Ref. 11. The potential operator of
XD is given by

GDf (x)=
∫ ∞

0
PDt f (x) dt ,

and has a density GD(x, y), x, y∈D. Here, and further below, f denotes a
nonnegative Borel function on D. The potential theory of the killed sym-
metric α-stable process, 0<α< 2, has been studied extensively in the late
nineties. We will need the following two facts: If h is a nonnegative har-
monic function for XD, then h and PDt h are continuous in D. The conti-
nuity of harmonic functions is proved in Ref. 7. To show the second fact,
note that from the explicit formula for the Poisson kernel for the ball, it
follows that

∫
D\B h(y) dy <∞ for every ball B contained in D. Since h

is bounded on B, it follows that h ∈L1(D). By use of the boundedness
and the joint continuity of (x, y) 
→pD(t, x, y) (see Ref. 9), it follows by
the dominated convergence theorem that PDt h(x) is continuous. For α=2,
these facts are well known.

In this paper we always assume that (PDt )t≥0 is intrinsically ultracon-
tractive, that is, for each t >0 there exists a constant ct such that

pD(t, x, y)≤ ctϕ0(x)ϕ0(y), x, y ∈D,

where ϕ0 is the positive eigenfunction corresponding to the smallest eigen-
value λ0 of the Dirichlet Laplacian (−�)α/2|D. It is well known that (see,
for instance, Ref. 12) when (PDt )t≥0 is intrinsically ultracontractive there is
c̃t >0 such that

pD(t, x, y)≥ c̃t ϕ0(x)ϕ0(y), x, y ∈D.

Intrinsic ultracontractivity was introduced by Davies and Simon in
Ref. 12. It is well known that (see, for instance, Ref. 1), in the case of
α=2, (PDt )t≥0 is intrinsically ultracontractive when D is a bounded Lips-
chitz domain, or a Hölder domain of order 0, or a uniformly Hölder
domain of order β ∈ (0,2). The intrinsic ultracontractivity of (PDt )t≥0
when α ∈ (0,2) was first studied in Ref. 9. From Ref. 19 we know that,
in the case of α ∈ (0,2), (PDt )t≥0 is intrinsically ultracontractive for any
bounded open set D in R

d .
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Let S = (St : t ≥ 0) and T = (Tt : t ≥ 0) be two special subordinators.
Suppose that X, S and T are independent. We assume that the Laplace
exponents of S and T , denoted by φ and ψ respectively, are related by

λ=φ(λ)ψ(λ) .
We also assume that φ has the representation (2.2) with b>0 or µ(0,∞)=
∞. We define subordinate processes by

YDt = XD(St ), t ≥0

ZDt = XD(Tt ), t ≥0.

Then YD= (YDt : t≥0) and ZD= (ZDt : t≥0) are symmetric Hunt processes
on D. If we use ρt (ds) and θt (ds) to denote the distributions of St and Tt
respectively, the semigroups of YD and ZD are given by

QD
t f (x) =

∫ ∞

0
PDs f (x)ρt (ds),

RDt f (x) =
∫ ∞

0
PDs f (x)θt (ds),

respectively. The semigroup QD
t has a density given by

qD(t, x, y)=
∫ ∞

0
pD(s, x, y)ρt (ds) .

The semigroup RDt will have a density

rD(t, x, y)=
∫ ∞

0
pD(s, x, y)θt (ds)

in case b=0, while for b>0, RDt is not absolutely continuous with respect
to the Lebesgue measure. Let U and V denote the potential measures of
S and T , respectively. Then there are decreasing functions on u and v

defined on (0,∞) such that U(dt)= u(t) dt and V (dt)= bε0(dt)+ v(t) dt .
The potential kernels of YD and ZD are given by

UDf (x) =
∫ ∞

0
PDt f (x)U(dt)=

∫ ∞

0
PDt f (x)u(t) dt,

V Df (x) =
∫ ∞

0
PDt f (x)V (dt)=bf (x)+

∫ ∞

0
PDt f (x) v(t)dt

respectively. The potential kernel UD has a density given by

UD(x, y)=
∫ ∞

0
pD(t, x, y)u(t)dt ,
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while VD need not be absolutely continuous with respect to the Lebesgue
measure. For the process YD we define the potential of a Borel measure
m on D by

UDm(x) :=
∫
D

UD(x, y)m(dy)=
∫ ∞

0
PDt m(x)u(t) dt .

Let (UDλ , λ> 0) be the resolvent of the semigroup (QD
t , t ≥ 0). Then UDλ

is given by a kernel which is absolutely continuous with respect to the
Lebesgue measure. Moreover, one can easily show that for a bounded
Borel function f vanishing outside a compact subset of D, the functions
x 
→UDλ f (x), λ> 0, and x 
→UDf (x) are continuous. This implies (e.g.,
Ref. 6, p.266) that excessive functions of YD are lower semicontinuous.

The factorization in the next proposition is similar in spirit to Theo-
rem 4.1 (5) in Ref. 22.

Proposition 3.1. (a) For any nonnegative Borel function f on D we
have

UDVDf (x)=VDUDf (x)=GDf (x), x ∈D.

(b) For any Borel measure m on D we have

VDUDm(x)=GDm(x)

Proof. (a) We are only going to show that UDVDf (x)=GDf (x) for
all x ∈D. For the proof of VDUDf (x)=GDf (x) see part (b). For any
nonnegative Borel function f on D, by using the Markov property and
Theorem 2.5 we get that

UDVDf (x) =
∫ ∞

0
PDt V

Df (x)u(t)dt

=
∫ ∞

0
PDt

(
bf (x)+

∫ ∞

0
PDs f (x)v(s)ds

)
u(t)dt

= bUDf (x)+
∫ ∞

0
PDt

(∫ ∞

0
PDs f (x)v(s)ds

)
u(t)dt

= bUDf (x)+
∫ ∞

0

∫ ∞

0
PDt+sf (x)v(s)ds u(t)dt



Potential Theory 831

= bUDf (x)+
∫ ∞

0

∫ ∞

t

PDr f (x)v(r− t)dr u(t)dt

= bUDf (x)+
∫ ∞

0

(∫ r

0
u(t)v(r− t)dt

)
PDr f (x)dr

=
∫ ∞

0

(
bu(r)+

∫ r

0
u(t)v(r− t)dt

)
PDr f (x)dr

=
∫ ∞

0
PDr f (x)dr=GDf (x).

(b) Similarly as above,

VDUDm(x) = bUDm(x)+
∫ ∞

0
PDt U

Dm(x)v(t) dt

= bUDm(x)+
∫ ∞

0
PDt

(∫ ∞

0
PDs m(x)u(s) ds

)
v(t) dt

= bUDm(x)+
∫ ∞

0

∫ ∞

0
PDt+sm(x)u(s) ds v(t) dt

= bUDm(x)+
∫ ∞

0

∫ ∞

r

PDr m(x)u(r− t) dr v(t) dt

= bUDm(x)+
∫ ∞

0

(∫ r

0
u(r− t)v(t) dt

)
PDr m(x) dr

=
∫ ∞

0

(
b+

∫ r

0
u(r− t)v(t) dt

)
PDr m(x) dr

=
∫ ∞

0
PDr m(x) dr=GDm(x)

Proposition 3.2. Let g be an excessive function for YD. Then VDg is
excessive for XD.

Proof. We first observe that if g is excessive with respect to YD, then
g is the increasing limit of UDfn for some fn. Hence it follows from Prop-
osition 3.1 that

VDg= lim
n→∞V

DUDfn= lim
n→∞G

Dfn,

which implies that VDg is either identically infinite or excessive with
respect to XD. We prove now that VDg is not identically infinite. In fact,
since g is excessive with respect to YD, there exists x0 ∈D such that for
every t >0,
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∞>g(x0)≥QD
t g(x0)=

∫ ∞

0
PDs g(x0)ρt (ds).

Thus there is s >0 such that PDs g(x0) is finite. Hence

∞>PDs g(x0)=
∫
D

pD(s, x0, y)g(y) dy≥ c̃sϕ0(x0)

∫
D

ϕ0(y)g(y) dy,

so we have
∫
D
ϕ0(y)g(y) dy <∞. Since (PDt )t≥0 is intrinsically ultracon-

tractive, by Theorem 4.2.5 of Ref. 11 there exists T >0 such that

pD(t, x, y)≤ 3
2
e−λ0t ϕ0(x)ϕ0(y), t ≥T , x, y ∈D. (3.1)

Consequently

∫
D

VDg(x)ϕ0(x) dx =
∫
D

g(x)V Dϕ0(x) dx

=
∫
D

g(x)

(
bϕ0(x)+

∫ ∞

0
PDt ϕ0(x)v(t) dt

)
dx

=
∫
D

g(x)

(
bϕ0(x)+

∫ ∞

0
e−λ0t ϕ0(x)v(t) dt

)
dx

=
∫
D

ϕ0(x)g(x)dy

(
b+

∫ ∞

0
e−λ0t v(t) dt

)
<∞.

Therefore s=VDg is not identically infinite in D.

Remark 3.3. Note that the proposition above is valid with YD and
ZD interchanged: if g is excessive for ZD, then UDg is excessive for XD.
Using this we can easily get the following simple fact: if f and g are two
nonnegative Borel functions on D such that VDf and VDg are not identi-
cally infinite, and that VDf =VDg a.e., then f =g a.e. In fact, since VDf
and VDg are excessive for ZD, we know that GDf =UDVDf and GDg=
UDVDg are excessive for XD. Moreover, by the absolute continuity of UD,
we have that GDf =GDg. The a.e. equality of f and g follows from the
uniqueness principle for GD.

The second part of Proposition 3.1 shows that if s = GDm is the
potential of a measure, then s=VDg where g=UDm is excessive for YD.
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The function g can be written in the following way:

g(x) =
∫ ∞

0
PDs m(x)u(s) ds

=
∫ ∞

0
PDs m(x)

(
u(∞)+

∫ ∞

s

−du(t)
)
ds

=
∫ ∞

0
PDs m(x)u(∞) ds+

∫ ∞

0
PDs m(x)

(∫ ∞

s

−du(t)
)
ds

= u(∞)s(x)+
∫ ∞

0

(∫ t

0
PDs m(x) ds

)
(−du(t))

= u(∞)s(x)+
∫ ∞

0
(PDt s(x)− s(x)) du(t) (3.2)

In the next proposition we will show that every excessive function s

for XD can be represented as a potential VDg, where g, given by (3.2), is
excessive for YD. This result was first stated in Ref. 16 as Theorem 2 for
the case of stable subordinators and used in Ref. 15. However, the proof
given in Ref. 16 does not seem to be complete because of the following
two reasons. First, it is only shown that g is almost everywhere equal to
an excessive function, while for later applications it is essential that g itself
is excessive. Secondly, the use of Lemma 1 in that proof does not seem to
be justified. We therefore give a complete proof here which is based on the
approach in Ref. 16.

We need the following important lemma.

Lemma 3.4. Let h be a nonnegative harmonic function for XD, and
let

g(x)=u(∞)h(x)+
∫ ∞

0
(PDt h(x)−h(x)) du(t) . (3..3)

Then g is continuous.

Proof. We only give the proof in the case when α∈ (0,2), the proof
in the case α=2 is similar and essentially given in Ref. 16. Since the first
term in the formula (3.3) is continuous, we have to prove that the second
term is also continuous. Let us extend h to R

d \D by setting h(x)=0 for
all x ∈R

d \D. This extended h is harmonic for X in D.
For any ε >0 we have

∣∣∣∣
∫ ∞

ε

du(t)

∣∣∣∣≤u(ε).
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We first note that from continuity of h and PDt h it follows by the
dominated convergence theorem that the function

x 
→
∫ ∞

ε

(PDt h(x)−h(x)) du(t), x ∈D,

is continuous. Hence we only need to prove that the function

x 
→
∫ ε

0
(PDt h(x)−h(x)) du(t), x ∈D,

is continuous. For any x0 ∈D choose r > 0 such that B(x0,5r)⊂D. Put
Bi =B(x0, ir) for i= 1, . . . ,4, and let τBi be the exit time of X from Bi ,
i=1, . . . ,4. It is enough to show that

lim
ε↓0

∫ ε

0
(PDt h(x)−h(x)) du(t)=0

uniformly on B1. For any x ∈B2, h(Xt∧τB2
) is a Px-martingale. Therefore,

0 ≤ h(x)−PDt h(x)=Ex [h(Xt∧τB2
)]−Ex [h(Xt ), t <τD]

= Ex [h(Xt ), t <τB2 ]+Ex [h(XτB2
), τB2 ≤ t ]

−Ex [h(Xt ), t <τB2 ]−Ex [h(Xt ), τB2 ≤ t <τD]

= Ex [h(XτB2
), τB2 ≤ t ]−Ex [h(Xt ), τB2 ≤ t <τD]

≤ Ex [h(XτB2
), τB2 ≤ t ]

= Ex [h(XτB2
)1{X(τB2 )∈B4}, τB2 ≤ t ]+Ex [h(XτB2

)1{X(τB2 )∈Bc4}, τB2 ≤ t ]
Since h is continuous, there exists a constant M>0 such that h(y)≤M for
all y ∈B4. Therefore, we get

Ex [h(XτB2
)1{X(τB2 )∈B4}, τB2 ≤ t ]≤MPx(τB2 ≤ t) .

For every x ∈B1, we have

{τB2 ≤ t}⊂
{

sup
0≤s≤t

|Xs −x|≥ r
}

almost surely with respect to Px . Therefore one can easily show (see, for
instance, Lemma 3.1 of Ref. 25) that there exists c1>0 such that

Px(τB2 ≤ t)≤ c1t, x ∈B1.

Thus we have shown that

Ex [h(XτB2
)1{X(τB2 )∈B4}, τB2 ≤ t ]≤ c1Mt, x ∈B1.
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Now let us deal with the term Ex [h(XτB2
)1{X(τB2 )∈Bc4}, τB2 ≤ t ]. Using

the definition of harmonicity and the explicit formula for the Poisson ker-
nel for a ball we can see that c2 := ∫

D\B4
h(y)dy is finite. Therefore for

every x ∈B1,

Ex [h(XτB2
)1{X(τB2 )∈Bc4}, τB2 ≤ t ]

≤C(d,α)Ex
∫ τB2 ∧t

0

∫
D\B4

h(y)

|Xs −y|d+α dy ds
≤ c2c3C(d,α)t.

Hence we have

0≤h(x)−PDt h(x)≤ c4t, x ∈B1.

Therefore we have for every x ∈B1,∣∣∣∣
∫ ε

0
(PDt h−h)(x) du(t)

∣∣∣∣≤ c4

∣∣∣∣
∫ ε

0
t du(t)

∣∣∣∣ .
By use of (2.14) we get that

lim
ε↓0

∫ ε

0
(PDt h(x)−h(x)) du(t)=0

uniformly on B1. The proof is now complete.

Proposition 3.5. If s is an excessive function with respect to XD,
then

s(x)=VDg(x), x ∈D ,
where g is the excessive function for YD given by the formula

g(x) = u(∞)s(x)+
∫ ∞

0
(PDt s(x)− s(x)) du(t) (3.4)

= ψ(0)s(x)+
∫ ∞

0
(s(x)−PDt s(x)) dν(t) . (3.5)

Proof. We know that the result is true when s is the potential of
a measure. Let s be an arbitrary excessive function of XD. By the Riesz
decomposition theorem (see, for instance, Chapter 6 of Ref. 6), s=GDm+
h, where m is a measure on D, and h is a nonnegative harmonic function
for XD. By linearity, it suffices to prove the result for nonnegative har-
monic functions.
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In the rest of the proof we assume therefore that s is a nonnegative
harmonic function for XD. Define the function g by formula (3.4). We
have to prove that g is excessive for YD and s=VDg. By Lemma 3.4, we
know that g is continuous.

Further, since s is excessive, there exists a sequence of nonnegative
functions fn such that sn :=GDfn increases to s. Then also PDt sn ↑PDt s,
implying sn−PDt sn→ s−PDt s. If

gn=u(∞)sn+
∫ ∞

0
(sn−PDt sn)(−du(t)) ,

then we know that sn = VDgn and gn is excessive for YD. By use of
Fatou’s lemma we get that

g = u(∞)s+
∫ ∞

0
(s−PDt s)(−du(t))

= lim
n
u(∞)sn+

∫ ∞

0
lim
n
(sn−PDt sn)(−du(t))

≤ lim inf
n

(
u(∞)sn+

∫ ∞

0
(sn−PDt sn)(−du(t))

)

= lim inf
n

gn .

This implies (again by Fatou’s lemma) that

VDg ≤ VD(lim inf gn) (3.6)

≤ lim inf VDgn= lim inf
n

sn= s

For any nonnegative function f , put GD1 f (x) := ∫∞
0 e−tPDt f (x) dt .

Using the excessivity of s, we can easily check that s1 := s −GD1 s is an
excessive function of XD. Using an argument similar to that of the proof
of Proposition 3.2 we can show that GDs is not identically infinite. Thus
by the resolvent equation we get GDs1 =GDs−GDGD1 s=GD1 s, or equiv-
alently,

s(x)= s1(x)+GD1 s(x)= s1(x)+GDs1(x), x ∈D,

By use of formula (3.2) for the potential GDs1 and the easy fact that VD

and GD1 commute, we have
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GD1 s = GDs1 =VD
(
u(∞)GDs1 +

∫ ∞

0
(PDt G

Ds1 −GDs1) du(t)

)

= VD
(
u(∞)GD1 s+

∫ ∞

0
(PDt G

D
1 s−GD1 s) du(t)

)

= GD1 V
D

(
u(∞)s+

∫ ∞

0
(PDt s− s) du(t)

)
.

By the uniqueness principle it follows that

s=VD
(
u(∞)s+

∫ ∞

0
(PDt s− s) du(t)

)
=VDg a.e. in D .

Together with (3.6), this implies that VDg = VD(lim infn gn) a.e. From
Remark 3.3 it follows that

g= lim inf
n

gn a.e. (3.7)

By Fatou’s lemma and YD-excessiveness of gn we get that,

λUDλ g=λUDλ (lim inf gn)≤ lim inf
n

λUDλ gn≤ lim inf gn=g a.e .

We want to show that, in fact, λUDλ g ≤ g everywhere, i.e., that g is su-
permedian. In order to do this we define g̃ := supn∈N nU

D
n g. Then g̃ ≤ g

a.e., hence, by the absolute continuity of UDn , nUDn g̃ ≤ nUDn g ≤ g̃ every-
where. This implies that λ 
→λUDλ g̃ is increasing (see, e.g., Lemma 3.6 in
Ref. 5), hence g̃ is supermedian. The same argument gives that n 
→nUDn g

is increasing a.e. Define

˜̃g := sup
λ>0

λUDλ g̃= sup
n
nUDn g̃ .

Then ˜̃g is excessive, and therefore lower semicontinuous. Moreover,

˜̃g= sup
n
nUDn g̃≤ g̃≤g a.e.

Combining this with the continuity of g and the lower semicontinuity
of ˜̃g, we can get that ˜̃g ≤ g everywhere. Further, for x ∈ D such that
g̃(x)<∞, we have by the monotone convergence theorem and the resol-
vent equation

λUDλ g̃(x) = lim
n→∞λU

D
λ (nU

D
n )g(x)

= lim
n→∞

nλ

n−λ(U
D
λ g(x)−UDn g(x))

= λUDλ g(x) .
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Since g̃ <∞ a.e., we have

λUDλ g̃=λUDλ g a.e.

Together with the definition of g̃ this implies that

˜̃g= g̃ a.e. (3.8)

By the continuity of g and the fact that the measures nUDn (x, ·) converge
weakly to the point mass at x, we have that for every x ∈D

g(x)≤ lim inf
n→∞ nUDn g(x)≤ g̃(x) .

Hence, by using (3.8), it follows that g ≤ ˜̃g a.e. Since we already proved
that ˜̃g≤ g, it holds that g= ˜̃g a.e. By the absolute continuity of UDλ , g≥
˜̃g≥λUDλ ˜̃g=λUDλ g everywhere, i.e., g is supermedian.

Since it is well known (see e.g. Ref. 10) that a supermedian function
which is lower semicontinuous is in fact excessive, this proves that g is
excessive for YD. By Proposition 3.2 we then have that VDg≤ s is exces-
sive for XD. Moreover, VDg= s a.e., and both functions being excessive
for XD, they are equal everywhere.

It remains to notice that the formula (3.5) follows immediately from
(3.4) by noting that u(∞)=ψ(0) and du(t)=−dν(t).

Propositions 3.1 and 3.5 can be combined in the following theorem
containing additional information on harmonic functions.

Theorem 3.6. If s is excessive with respect to XD, then there is a
function g excessive with respect to YD such that s=VDg. The function
g is given by the formula (3.2). Furthermore, if s is harmonic with respect
to XD, then g is harmonic with respect to YD.

Conversely, if g is excessive with respect to YD, then the function s

defined by s=VDg is excessive with respect to XD. If, moreover, g is har-
monic with respect to YD, then s is harmonic with respect to XD.

Every nonnegative harmonic function for YD is continuous.

Proof. It remains to show the statements about harmonic functions.
First note that every excessive functions g for YD admits the Riesz decom-
position g=UDm+h where m is a Borel measure on D and h is harmonic
function of YD (see Chapter 6 of Ref. 6 and note that the assumptions
on pp. 265, 266 are satisfied). We have already mentioned that excessive
functions of XD admit such a decomposition. Since excessive functions of
XD and YD are in 1–1 correspondence, and since potentials of measures
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of XD and YD are in 1–1 correspondence, the same must hold for non-
negative harmonic functions of XD and YD.

The continuity of nonnegative harmonic functions for YD follows
from Lemma 3.4 and Proposition 3.5.

It follows from the theorem above that VD is a bijection from S(YD)
to S(XD), and is also a bijection from H+(YD) to H+(XD). We are going
to use (V D)−1 to denote the inverse map and so we have for any s ∈
S(YD),

(V D)−1s(x) = u(∞)s(x)+
∫ ∞

0
(PDt s(x)− s(x)) du(t) (3.9)

= ψ(0)s(x)+
∫ ∞

0
(s(x)−PDt s(x)) dν(t)

Although the map VD is order preserving, we do not know if the inverse
map (V D)−1 is order preserving on S(XD). However from the formula
above we can see that (V D)−1 is order preserving on H+(XD).

By combining Proposition 3.1 and Theorem 3.6 we get the following
relation which we are going to use later.

Proposition 3.7. For any x, y ∈D, we have

UD(x, y)= (V D)−1(GD(·, y))(x).

The continuity of harmonic functions, together with the intrinsic
ultracontractivity of the semigroup (PDt ), is sufficient to prove the Har-
nack inequality for nonnegative harmonic functions for the process YD.
Here we will only state two necessary lemmas and the theorem. For argu-
ments of proofs we refer the reader to Section 4 of Ref. 15.

Lemma 3.8. Suppose that (PDt ) is intrinsically ultracontractive. There
exists a constant C>0 such that

VDs≤Cs, ∀s ∈S(YD) . (3.10)

Lemma 3.9. Suppose (PDt ) is intrinsically ultracontractive. If s ∈
S(YD), then for any x ∈D,

s(x)≥ 1
2C
e−λ0T

1
ψ(λ0)

ϕ0(x)

∫
D

s(y)ϕ0(y) dy,

where T is the constant in (3.1) and C is the constant in (3.10).
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Theorem 3.10. Suppose that (PDt ) is intrinsically ultracontractive.
For any compact subset K of D, there exists a constant C depending on
K and D such that for any h∈H+(YD),

sup
x∈K

h(x)≤C inf
x∈K

h(x).

4. MARTIN BOUNDARY OF THE SUBORDINATE PROCESS

In this section we will always assume the following
Assumption A: D is a bounded κ-fat set for some κ ∈ (0,1) when α∈ (0,2),
and D is a bounded Lipschitz domain when α=2.

Recall (see Ref. 26) that, for κ ∈ (0,1), an open set D in R
d is called

a κ-fat set if there exists R> 0 such that for every z∈ ∂D and r ∈ (0,R),
D∩B(z, r) contains a ball B(Ar(z), κr).

Fix a point x0 ∈D and set

MD(x, y)= GD(x, y)

GD(x0, y)
, x, y ∈D.

It is well known that the limit

lim
D�y→z

MD(x, y)

exists for every x ∈D and z∈ ∂D. The function MD(x, z) := limD�y→z M
D

(x, y) on D×∂D defined above is called the Martin kernel of XD based at
x0. The Martin boundary and minimal Martin boundary of XD both coin-
cide with the Euclidean boundary ∂D. For these and other results about
the Martin boundary of XD in the case α = 2, one can see Ref. 2; For
these and other results about the Martin boundary of XD in the case α∈
(0,2), one can see Ref. 26. One of the goals of this section is to determine
the Martin boundary of YD.

By using the Harnack inequality (in the case α∈ (0,2), we need to use
the version in Ref. 7), one can easily show that (see, for instance, pages
17–18 of Ref. 13), if (hj ) is a sequence of functions in H+(XD) converg-
ing pointwise to a function h ∈ H+(XD), then (hj ) is locally uniformly
bounded in D and equicontinuous at every point in D. Using this one can
get that, if (hj ) is a sequence of functions in H+(XD) converging point-
wise to a function h ∈ H+(XD), then (hj ) converges to h uniformly on
compact subsets of D. We are going to use this fact below.

Lemma 4.1. Suppose that x0 ∈D is a fixed point.
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(a) Let (xj ) be a sequence of points in D converging to x ∈D and
let (hj ) be a sequence of functions in H+(XD) with hj (x0)=1
for all j . If the sequence (hj ) converges to a function h ∈
H+(XD), then for each t >0

lim
j
PDt hj (xj )=PDt h(x) .

(b) If (yj , j ≥1) is a sequence of points in D such that limj yj =z∈
∂D, then for each t >0 and for each x ∈D

lim
j
PDt

(
GD(·, yj )
GD(x0, yj )

)
(x)=PDt (MD(·, z))(x) .

Proof. In the case α= 2, this lemma is just Lemma 5.1 of Ref. 15.
The proof of the case when α ∈ (0,2) is similar to that of Lemma 5.1 of
Ref. 15, only now we use the result on the identification of Martin bound-
aries for κ-fat sets in Ref. 26 and the 3G inequality there. We omit the
details.

Theorem 4.2. Suppose that x0 ∈D is a fixed point.

(a) If (xj ) is a sequence of points in D converging to x∈D and (hj )
is a sequence of functions in H+(XD) converging to a function
h∈H+(XD), then

lim
j
(V D)−1hj (xj )= (V D)−1h(x) .

(b) If (yj ) is a sequence of points in D converging to z∈ ∂D, then
for every x ∈D,

lim
j
(V D)−1(

GD(·, yj )
GD(x0, yj )

)(x) = lim
j

(V D)−1(GD(·, yj ))(x)
GD(x0, yj )

= (V D)−1MD(·, z)(x) .

Proof. We only give the proof in the case when α∈ (0,2), the proof
in the case α=2 is similar.

(a) Normalizing by hj (x0) if necessary, we may assume without loss
of generality that hj (x0)=1 for all j ≥1. Let ε >0. We have
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|(V D)−1hj (xj )− (V D)−1h(x)|
= |
∫ ∞

0
(PDt hj (xj )−hj (xj ) du(t)−

∫ ∞

0
(PDt h(x)−h(x)) du(t)+u(∞)(hj (xj )

−h(x))|≤
∫ ε

0
(PDt hj (xj )−hj (xj )) du(t)+

∫ ε

0
(PDt h(x)−h(x)) du(t)

+|
∫ ∞

ε

(PDt hj (xj )−hj (xj )) du(t)−
∫ ∞

ε

(PDt h(x)−h(x)) du(t)|
+u(∞)|hj (xj )−h(x)| .

The last term clearly converges to zero as j→∞.
For any x ∈D choose r > 0 such that B(x,5r)⊂D. Put Bi =B(x, ir)

for i = 1, . . . ,4. Without loss of generality we may and do assume that
xj ∈B1 for all j ≥ 1. Similarly as in the proof of Lemma 3.4, we extend
functions h and hj to be identically zero outside D. Since h and hj are
continuous in D and (hj ) is locally uniformly bounded in D, there is a
constant M > 0 such that h and hj , j = 1,2, . . . , are all bounded from
above by M on B4. Now from the proof of Lemma 3.4 we know that there
is a constant c1>0 such that

Ey [h(XτB2
)1{X(τB2 )∈B4}, τB2 ≤ t ]≤ c1Mt, y ∈B1,

and

Ey [hj (XτB2
)1{X(τB2 )∈B4}, τB2 ≤ t ]≤ c1Mt, y ∈B1, j ≥1.

Using the boundedness of (hj (x)), the definition of harmonicity and the
explicit formula for the Poisson kernel of a ball one can show that

c2 :=
(∫

D\B4

h(z)dz

)
∨
(

sup
j

∫
D\B4

hj (z) dz

)
<∞.

Therefore we have for every y ∈B1,

Ey [h(XτB2
)1{X(τB2 )∈Bc4}, τB2 ≤ t ]

≤C(d,α)Ey ×
∫ τB2 ∧t

0

∫
D\B4

h(y)

|Xs −y|d+α dy ds≤ c2c3C(d,α)t ,

and for every j ≥1,

Ey [hj (XτB2
)1{X(τB2 )∈Bc4}, τB2 ≤ t ]

≤C(d,α)Ey ×
∫ τB2 ∧t

0

∫
D\B4

hj (y)

|Xs −y|d+α dy ds≤ c2c3C(d,α)t .
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Hence we have

0≤h(y)−PDt h(y)≤ c4t, y ∈B1 ,

and

0≤hj (y)−PDt hj (y)≤ c4t, y ∈B1, j ≥1 .

Therefore we have,∣∣∣∣
∫ ε

0
(PDt h−h)(y) du(t)

∣∣∣∣≤ c4

∣∣∣∣
∫ ε

0
t du(t)

∣∣∣∣, y ∈B1

and ∣∣∣∣
∫ ε

0
(PDt hj −hj )(y) du(t)

∣∣∣∣≤ c4

∣∣∣∣
∫ ε

0
t du(t)

∣∣∣∣, y ∈B1, j ≥1.

Using (2.14) we get that

lim
ε↓0

∫ ε

0
(PDt h(x)−h(x)) du(t)=0,

and

lim
ε↓0

∫ ε

0
(PDt hj (xj )−hj (xj )) du(t)=0,

Further,∣∣∣∣
∫ ∞

ε

(PDt hj (xj )−hj (xj )) du(t)−
∫ ∞

ε

(PDt h(x)−h(x)) du(t)
∣∣∣∣

≤
∫ ∞

ε

(|hj (xj )−h(xj )|+ |h(xj )−h(x)|) du(t)

+
∫ ∞

ε

|PDt hj (xj )−PDt h(x)|du(t) .

Since |hj (xj )−h(xj )|+ |h(xj )−h(x)|≤ 2M and |PDt hj (xj )−PDt h(x)|≤M
for all j ≥1 and all x∈B1, we can apply Lemma 4.1(a) and the dominated
convergence theorem to get

lim
j

∫ ∞

ε

(|hj (xj )−h(xj )|+ |h(xj )−h(x)|) du(t)=0

and

lim
j

∫ ∞

ε

|PDt hj (xj )−PDt h(x)|v(t)=0.
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The proof of (a) is now complete. (b) The proof of (b) is similar to (a).
The only difference is that we use 4.1(b) in this case. We omit the details.

Let us define the function KD
Y (x, z) := (V D)−1MD(·, z)(x) on D×∂D.

For each fixed z ∈ ∂D, KD
Y (·, z) ∈ H+(YD). By the first part of Theo-

rem 4.2, we know that KD
Y (x, z) is continuous on D× ∂D. Let (yj ) be a

sequence of points in D converging to z∈ ∂D, then from Theorem 4.2(b)
we get that

KD
Y (x, z) = lim

j→∞
(V D)−1

(
GD(·, yj )
GD(x0, yj )

)
(x)

= lim
j→∞

(V D)−1(GD(·, yj ))(x)
GD(x0, yj )

= lim
j→∞

UD(x, yj )

GD(x0, yj )
(4.1)

where the last line follows from Proposition 3.7. In particular, there exists
the limit

lim
j→∞

UD(x0, yj )

GD(x0, yj )
=KD

Y (x0, z) . (4.2)

Now we define a function MD
Y on D× ∂D by

MD
Y (x, z) := KD

Y (x, z)

KD
Y (x0, z)

, x ∈D,z∈ ∂D. (4.3)

For each z∈ ∂D, MD
Y (·, z)∈H+(YD). Moreover, MD

Y is jointly continuous
on D× ∂D. From the definition above and (4.1) we can easily see that

lim
D�y→z

UD(x, y)

UD(x0, y)
=MD

Y (x, z), x ∈D,z∈ ∂D. (4.4)

Theorem 4.3. The Martin boundary and the minimal Martin bound-
ary of YD both coincide with the Euclidean boundary ∂D, and the Martin
kernel based at x0 is given by the function MD

Y .

Proof. The fact that MD
Y is the Martin kernel of YD based at x0

has been proven in the paragraph above. It follows from Theorem 3.6 that
when z1 and z2 are two distinct points on ∂D, the functions MD

Y (·, z1)

and MD
Y (·, z2) are not identical. Therefore the Martin boundary of YD

coincides with the Euclidean boundary ∂D. Since MD(·, z) ∈ H+(XD)
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is minimal, by the order preserving property of (YD)−1 we know that
MD
Y (·, z)∈H+(YD) is also minimal. Therefore the minimal Martin bound-

ary of YD also coincides with the Euclidean boundary ∂D.

It follows from Theorem 4.3 and the general theory of Martin bound-
ary that for any g ∈ H+(YD) there exists a finite measure n on ∂D such
that

g(x)=
∫
∂D

MD
Y (x, z)n(dz), x ∈D.

The measure n is sometimes called the Martin measure of g. The follow-
ing result gives the relation between the Martin measure of h∈ H+(XD)
and the Martin measure of (V D)−1h∈H+(YD).

Proposition 4.4. If h∈H+(XD) has the representation

h(x)=
∫
∂D

MD(x, z)m(dz), x ∈D,

then

(V D)−1h(x)=
∫
∂D

MD
Y (x, z)n(dz), x ∈D

with n(dz)=KD
Y (x0, z)m(dz).

Proof. By assumption we know that

h(x)=
∫
∂D

MD(x, z)m(dz), x ∈D.

Using (3.4) and Fubini’s theorem we get

(V D)−1h(x) =
∫
∂D

(V D)−1(MD(·, z))(x)m(dz)

=
∫
∂D

MD
Y (x, z)K

D
Y (x0, z)m(dz)

=
∫
∂D

MD
Y (x, z)n(dz) ,

with n(dz)=KD
Y (x0, z)m(dz). The proof is now complete.

From Theorem 4.2 we know that (V D)−1 :H+(XD)→H+(YD) is con-
tinuous with respect to topologies of locally uniform convergence. In the
next result we show that VD :H+(YD)→H+(XD) is also continuous.
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Proposition 4.5. Let (gj , j≥0) be a sequence of functions in H+(YD)
converging pointwise to the function g∈H+(YD). Then limj→∞ VDgj (x)=
VDg(x) for every x ∈D.

Proof. Without loss of generality we may assume that gj (x0)=1 for
all j ∈ N. Then there exist probability measures nj , j ∈ N, and n on ∂D

such that gj (x)=
∫
∂D
MD
Y (x, z)nj (dz), j ∈N, and g(x)=∫

∂D
MD
Y (x, z)n(dz).

It is easy to show that the convergence of the harmonic functions
hj implies that nj → n weakly. Let VDgj (x) = ∫

∂D
MD(x, z)mj (dz) and

VDg(x)=∫
∂D
MD(x, z)m(dz). Then nj (dz)=KD

Y (x0, z)mj (dz) and n(dz)=
KD
Y (x0, z)m(dz). Since the density KD

Y (x0, ·) is bounded away from zero
and bounded from above, it follows that mj →m weakly. From this the
claim of proposition follows immediately.

NOTE ADDED IN PROOF

After this paper was accepted we learned about the paper J. Bertoin
(1997), Regenerative embeddings of Markov sets, Probability Theory and
Related Fields 108, 559–571. Our Theorem 2.1 is essentially contained in
Corollary 1 and Corollary 2 of Bertoin’s paper.
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