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More on a New Concept of Entropy and Information
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An alternative notion of entropy called CRE is proposed in [Ral] Rao et al
(IEEE Trans. Inf. Theory 50, 2004). This preserves many of the properties
of Shannon Entropy and possesses mathematical properties, which we hope
will be of use in statistical estimates. In this article, we develop some more
mathematical properties of CRE, show its relation to the L log L class, and
characterize among others the Weibull distribution.
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1. INTRODUCTION AND PRELIMINARIES

In two path-breaking contributions in 1948 and 1949 Claude Shannon
introduced the world to his theory of Uncertainty/Information. This has
mushroomed into a large body of knowledge revolutionizing many areas
especially Communication Engineering. He called this measure Entropy.(19

There have been several other definitions of entropy. Most succesful
of these is the notion of relative entropy- or K.L. Divergence. The reader
may consult® for more information.

Shannon began with the following measure of uncertainty in a ran-
dom variable X assuming a finite number of values x;, ..., x, with prob-
abilities pyp, ..., p,. He defined the uncertainty/information H(X) in X as

—H(X)=pi log(p1) +- -+ pn log(pn).

Inspite of its enormous success, the following two examples show that
this measure may not be appropriate in every situation and that there is
room for another approach in some situations.
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The import of the two examples below is that a measure of uncer-
tainty/information, which considers only probabilities and ignores the val-
ues the random variable takes, may in some situations, not do justice to
our intuitive and practical notions of randomness or information.

For any discrete random variable X, the Entropy H(X) of X is
computed solely using the probabilities P(X =t¢) and one interprets the
Entropy as a measure of the “randomness” in X. If, X denotes the
life time of a machine, the price of a stock, the number of properly
functioning components required in a complex system, etc, the appro-
priate probabilities to consider are P(X >1t) and not P(X =t). Insisting
on the probabilities P(X =t¢) leads to some difficulties in the interpreta-
tion of H(X) as measuring randomness in X.

Example 1. Suppose X; are random variables such that P(X; =1) =
1/2 and P(X; =1+4(1/i))=(1/2) then for large enough i, practically speak-
ing and in many theoretical situations X; are regarded as being essentially 1,
in particular non-random. However the entropy of X; is independent of
i:H(X;)=log 2 for every i. The example becomes even more dramatic if X
is chosen to assume n values all very close and with probabilities (1/n). In
this case H(X) is always equal to log n regardless of its variance.

For a random variable X another interpretation of H(X) is as a mea-
sure of the information provided by an observation of X. Note that H(X)
ignores the values taken by X which may not always be appropriate.

Example 2. Consider two fair coins X and Y. Instead of the usual
heads and tails coin X has $0 and $I while Y has $0 and $1000000. Obser-
vations of X and Y convey vastly different information.

Such considerations led us to define an alternative measure of uncer-
tainty (termed CRE in Ref. 9). This measure enjoys many of the properties
of Shannon entropy H(X) of a discrete random variable X. The definition
is the same whether or not the random variable has a discrete or continu-
ous distribution. Since it depends on CDF instead of PDF it has continu-
ity properties not possessed by Shannon, entropy. To our knowledge CDF
was introduced for the first time to measure uncertainty in Ref. 9.

In this article we investigate some more interesting mathematical prop-
erties of CRE. In Section 3 we show that CRE dominates E(|X — E(X)|).
In Sections 4 and 5 CRE is related to the L log L class.®!D Section 7
shows how to characterize, using CRE, Failure Time Distributions. As the
name suggests these distributions play a fundamental role in the analysis of
failure time data.® Specifically we consider the Weibull distribution. The
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derivation clearly shows the relationship of CRE and the hazard function
thus giving a definitive meaning to max CRE interpretation. Finally we
prove a ‘meta’ theorem- a characterization of very general distributions.

2. PRELIMINARIES

Generally by X we will denote non-negative random variables. Given
a random variable X its decreasing distribution function F(¢) is defined by

Ft)=P(X>1)
and we define CRE(X) by

Definition 1.

CRE(X):/ F(t)|log F(1)|dt =/ P(X >1)|log P(X >1)|dt.
0 0

The following inequality is a simple consequence of Jensen’s inequal-
ity and indeed equivalent to it. Because it can be used in more varied sit-
uations it is also more useful. As in Ref. 1 we will call this the log-sum
inequality and will be used repeatedly.

Log-Sum Inequality: Let m be a sigma finite measure. If f and g are
positive and m integrable then

f J fdm
ffloggdmz[/fdm}logfgdm.

3. AN INEQUALITY

We will find the following inequality useful.

Proposition 1. Let X and Y be non-negative, have the same distribu-
tion and be independent, Then

E(IX —Y|) <2CRE(X). (1)
In particular, for any non-negative variable X,

E[|X — E(X)[]<2CRE(X). 2
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Proof. Write F(t)=P(X >1t). Then

P[(X>nDU¥>0]=PX>0)+PY>1)—P[X>1,Y >1]
=2F(t)— F(1)%

so that
2F(t) —2F (1)*> = P[max(X, Y) > 1] — P[min(X, Y) > t]. (3)

Integrating both sides of (3) from zero to infinity

2/00 F(@)(1 = F(t))dt = E[max(X,Y) —min(X, Y)]
0

= E[|X-Y]|]. 4)
It can be verified that

x(1—x)<x|log(x)], O0<x<l.

Using this we have finally

oo oo

2CRE(X) = 2/ F(t)|log(F(t))|dt>2f F(r)(1— F(t))dt
0 0
= E[|X-Y]] (5)

The last inequality follows from (4). This proves (1). Equation (2) follows
easily from (1). Indeed,

E[X Y| = f E[IX —alldFx(a) > / la— E(X)dFx (@)
_ E[X - EQOI]

This completes the proof. OJ

Remark 1. Equation (2) has a more general version, whose proof is
similar: For any o field G

2CRE(X/G) > E[|X — E(X/G)|/G].
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4. CRE AND L LOG L

The Orlicz Space L log" L plays an important role in Analysis (see
Refs. 7, 8, 11).

In this section we show that for a non-negative random variable X,
CRE(X) is finite iff X is in L log" L, i.e., E(X logt X) < oo.

Theorem 1. Let X be a non-negative random variable. Then

E(X logt X)<E(X:X>1)log(eE(X:X > 1)+ CRE(X). (6)
Proof.
E(X log" X) = /100(1 +log t)P(X > t)dt
= E[(X-DT]+ /100(log HP(X >1t)dt. (7)

Now for r>1
tPX>D<EX:X>)<EX:X>1)

so that
EX;X>1)
S OP(X>1)
implying
logt<log E(X:X>1)—log P(X >1).
Using this in (2.2) we get
EXlogt X\)XEX:X>D+E(X:X>1)log E(X:X>1)+CRE(X)

as claimed.
On the other hand, by the log-sum inequality, for any p > 1
o0 E[(X-DT
/ P(X >1)log[t? P(X > 1)]dt > E[(X — 1)"]log M
1 JitPdt
Rewriting both sides of the above inequality we get
o

/OO P(X >1)log P(X>t)dt+p/ P(X >rt)log(t)dt
1 1
> E[(X — D)™ log[(p — DE[(X — D],
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That is to say

/oo P(X >t)log P(X >1)dt>—pE(X logt X)+ pE[(X —1)"]
1 +E[(X — 1) *]log(p — DE[(X — )]
=—pE(X log" X)+E[(X — )T ]logle” (p— DE[X-D*]l. (8
Since x|log(x)| <e~! for 0<x <1 we finally have
CRE(X)<e™ '+ pE(X log™ X)— E[(X — ) ]logle” (p — DE[(X — 1)*].

Thus we can say
CRE(X) is finite iff XeL log" L
That concludes the proof. UJ

5. A FORMULA FOR CRE

We derive an alternative expression for CRE, which will have applica-
tions.

Definition 2. A locally integrable function B is said to be of bounded
variation if

sup/¢’(x)B(x)dx < 00. 9)

where the supremum is taken over all C! functions ¢ of compact support
and not exceeding one in absolute value. This definition is equivalent to
the standard definition, except that the function is only almost everywhere
defined and an appropriate “version” leads to the standard one. For our
purposes this will be most convenient.

If B is a function of bounded variation as defined above there is a
unique (signed measure) denoted dB such that

f¢/(X)B(X)dX=—/¢(X)dB(X) (10)

for all C! functions ¢ of compact support. Further it is known that,® if
B is of bounded variation and p is Lipschitz then so is p(B) and

dp(B)=p'(B)dB. (11)

This formula shows the importance of the above definition of func-
tions of bounded variation for integration purposes.
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Proposition 2. Let X be non-negative and F(¢) its decreasing
distribution: P(X >t)=F(¢). Then

CRE(X)=—E[X (1 +log F(X))]. (12)

Proof.  Using (11) with p(¢) =¢ log(t) we have
F(t)log F(t):—/oo(1+log F(s)dF(s). (13)
t

In the above equation we interpret dF(s) as F(s+ds)— F(s). Inte-
grating (13) with respect to ¢+ and changing the order we get

—CRE(X) = — foo t[1+log(F(t)|dF(t)
0
= E[X(1+log F(X))]. (14)

The Proposition is proved. 0

6. AN APPLICATION

Before we come to the application note that the “conjugate” or the
Fenchel Transform of the convex function x log x is exp(y — 1) i.e.,

exp(y — 1) =sup[xy —x log x: 0 < x < <]
so that for all x>0 and y>0
xy <xlog x+exp(y —1). (15)

Further if the random variable X has a continuous distribution and F is
its decreasing distribution: F(¢)= P (X >1) then the random variable F(X)
is uniformly distributed so that E[log F(X)]=—1. With these two facts at
hand we have

CRE(X) = —E[X(1+log F(X))]=E(X)E(log F(X))
—E[X log F(X)]=E[(X — E(X))(~log F(X))]
= 2E[(X — E(X))(~log F(X)?)]
< 2E[|(X — E(X)|(~log F(X)?)].
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Now using (15)

<2E[X — E(X)|log |X — E(X)[]+2E[exp[~ log F(X)? —1]]

1
—2E[|X — E(X)|log |X — E(X)[] + %/ 3di
0
—2E[|X — E(X)|log|X — E(X)] + g.

This gives an upper bound for CRE interms of |X — E(X)].
It is easily possible that E[|X — E(X)|log|X — E(X)|]=0 as the fol-
lowing simple example shows.

Example 3. Let X take values | —a and 2+ b where a and b are pos-
itive and 0 <a <1 with probabilities (1+b/1+a+b) and (a/l +a+b),
respectively. Then E(X)=1 and E[|X — E(X)|log|X — E(X)|]=0 if and
only if a=(1/1+b).

7. MAX CRE DISTRIBUTIONS

Some of the most important highlights of Shannon entropy is the der-
ivation of most of the important useful distributions. Let us describe this
briefly. The starting point here is Laplace’s principle of insufficient reason.
This states: If the only information we have about an experiment is that it
has n outcomes, then the only reasonable assumption is that all outcomes
are equally likely. A far reaching generalisation of this is the MaxEnt prin-
ciple or the principle of maximum entropy enunciated in 1957 by E.T.Jay-
nes. The MaxEnt principle states: Out of all distributions consistent with
a given set of constraints choose one that maximizes entropy. This princi-
ple has been applied to derive all the most useful probability distributions
in terms of some simple moments (for many examples see Ref. 6). For a
debate of this method and some answers see Ref. 3.

Examples 4. The uniform distribution on an interval [a,b] is the
MaxEnt distribution without constraints. However if the mean m is
prescribed then the MaxEnt distribution is the truncated exponential
¢ exp(—kx) where ¢ and k are chosen to satisfy

b b
c/ exp(—kx)dx=1 and c/ x exp(—kx)dx =m.
a a

In this section, we show how certain distributions have max CRE
characteristics. These will be special cases of a “meta theorem”.
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Definition 3. Let X be a non-negative random variable. We define
the normalized CRE- NCRE- of X:

o
NCRE(X) = E(X)_lf |F (1) log F(r)|dt
0
= E(X)"'CRE(X), (16)
where F(¢) is the decreasing distribution of X as defined before.

A non-negative random variable W, ; is Weibull distributed if its
decreasing distribution F(¢) is given by

F(t) =exp(—11t7), (17)

where A and ¢ are positive parameters. We find, if W, ; is Weibull distrib-
uted, then for any p>0

- p
E[WP.1=1""T <1+—),
q.x q
1
CRE(W,,) =271¢7T (1 + —) ,
q
1
NCRE(W, ;) = —. (18)
q
Now we have the following characterization of the Weibull distribution.

Theorem 2. Among all positive random variables X with given
(p+1) st moment the Weibull distribution W, ; has the maximal NCRE.
Here the parameters ¢ and A are given by

1 ch  Exrth

g (p+1) E(X)r+!

and

APl = E(xrth

- -2 7 (19)
1
r(1+%)

where

cpzr(l+%). (20)
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Proof. For any randomvariable X >0, by the log-sum inequality:

o F(1) E(X)
[ roes| i [ e [50 ]

where F(t) is the decreasing distribution of X and ¢, is defined in (20).
Rewriting (21) we get

Hp
CRE(X) <
(p

E(X)
p+ly _
_H)E(X ) E(X)logu_lcp.

Or recalling the definition of NCRE

P E(XPH! E(X
NCRE(x)< 4 EX") [ ( )] (22)
(p+1) EX) wic,
Choosing p so that u_lcsz(X), we get
ch Exrth
NCRE(X) < —2—————. 23
X (p+1) E(X)r+! @)
Finally let ¢ >0 be defined by
1__ep EXMH
g (p+1) E(X)r+!
and then A be defined by
1
Pt (1 n i) — E(XPH,
q
For A and ¢ thus defined
E[W/T=Exr)
and from (23)
1
NCRE(X) < 6—1 =NCRE(W,,).
Because of (18) the proof is finished. 0

A slightly different and more general approach is the following: let X
be a non-negative random variable and rq,...,r, be functions on (0, c0)
into itself. Put

F(t) = P(X>1),
t

Ri(t) = / ri(s)ds. (24)
0
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Suppose «; = E(R; (X)) are given. Interms of F we can write
o
/ F(s)ri(s)ds =q;. (25)
0
Write
h(t) =exp(—Z{Airi (1)), (26)

where A; >0 will be chosen momentarily.
By the log-sum inequality

% F(1) E(X)
which is the same as (use (25))
N E(X)
CRE(X) < Z{ria; — E(X) log |:—f()oo h(s)ds:| . (28)

If r; are increasing as functions of ¢ and if

lim(max; r; (1)) = 00,
h(t) is decreasing and defines an “improper” decreasing distribution, i.e.,
a sub-probability on [0, c0), a proper distribution, i.e., a probability dis-

tribution if r;(0)=0 for 1<i <n.
In all cases let us write

o0 o
CRE(h):—/ h(t)log h(z)a’t:E?Ai/ ri(h(t)dt. (29)
0 0
Suppose we can find A; >0 such that

o

f riOhtdt=a;, 1<i<n,
OOO

/ h(t)dt < E(X), (30)
0

then from (28) and (29)
CRE(X) < CRE(h).

Thus we have proved
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Theorem 3. Let X >0 and r; 1<i<n be non-negative functions. Put
Ri (1) :f(; ri (s)ds Suppose

ai=E(R;(X)), 1<i<n.

Let h(t) be defined by (26), where we assume A; have been chosen to sat-
isfy

o0
/ ROhOdi=a;,  1<i<n,
OOO
/ h(t)dt < E(X).
0

Then

CRE(X) < CRE(h).
Example 5. Let ri(#)=1 and r(t)=t”, p>0. Then
o0 o0
/ r1(t)F(t)dt :/ r(®)P(X >t)dt=E(X)
0 0
and
foot”F(t)dt— ! E(XPth
0 p+l '

Thus if E(X) and E(XP*t!) are given then
CRE(X) < CRE(h),

where h(t) =exp(—Xi; — AotP).
Here A1 and A, are chosen so that

E(X) = /Ooh(t)dt=exp(—k1)/ooexp(—kztp)dt
0 0
_1 1
=1, "exp(=ApT(1+ ;)

and

1 [o/0] o0
——E(XP) / th(t)dtzexp(—Al)/ t? exp(—Axt?P)dt
p+1 0 0

_exp(—Ap) 1
= =TT,

1
Py

P
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The last two equalities give

! E(XP)= : E(X)
p+1 " pha '

This gives the value of A,:

_(p+D EX)

A .
p  EXP)

Then A; is given by:

1
exp(—=AI 1+ %) =1y E(X).

Now we prove a general result giving MAX-CRE characterizations of
very general distributions. Let us start with some preparations.

Definition 4. A decreasing function f with f(c0)=0 and [~ f(t)dt <
oo will be called a distribution. Given a distribution f we define

CRE() == [ swtoglrwlar (1)
Write f(1)=— [ df(s). We can then write (31) as
- [ roodtsnar = [ stz [ are)
= ["are) [ et ranar.

Thus

CRE ()= /0 F($)df (), (32)

where

F(s)= / ' log f(t)dt. (33)
0

In other words CRE(f) is nothing but the integral of F relative to the
measure df. We can now state the following general theorem:
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Theorem 4. (MAX-CRE theorem). Let f be a distribution and F be
defined by (33). Then for all distributions g satisfying

/ " go)ds > f " s,
0 0
/ F(s)dg(s)ds =/ F(s)df (s)ds,
0 0
we have
CRE (g) <CRE (f).

Proof. Applying the log-sum inequality we have

= 86) > Jo~ g(s)ds
/0 g(s)log |:f(s)i| ds > (A g(s)ds) log |:f000 f(s)ds:| >0.

In particular

/0 g(s)logg(s)ds}/o g(s)log f(s)ds
—- /0 F(s)dg(s) = fo F(s)df(s)=—CRE (f).
This concludes the proof. 0

Example 6. Let 0<a <b and define

f@ =1 0<t<a,
—1

N

b—a
=0, b<i,

f corresponds to the uniform distribution on [a, b], i.c., X is uniformly
distributed on [a, b] then

fO=P(X>1)0<t <oo0.

Applying the above theorem, and a little algebra we get
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The uniform distribution on [a, b] has max-CRE among all distribu-

tions g satisfying

glay=1, gb)=0,

/wtdga) _ /wtdf(t),
0 0

b b
/(b—t)log(b—t)dg(t):/ (b—1)log(b—1)df (1).

Example 7. Let

f@)=exp(—=t?), >0, p>0.

This corresponds to the Weibull distribution with parameter p. Applying
the theorem we find

Among all distributions whose first and (p + 1)st moments coincide

with those of the Weibull, the latter has the max CRE.
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