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On the Heyde Theorem for Finite Abelian Groups∗
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It is well-known Heyde’s characterization theorem for the Gaussian distribu-
tion on the real line: if ξj are independent random variables, αj , βj are non-
zero constants such that βiα

−1
i ±βjα

−1
j �= 0 for all i �= j and the conditional

distribution of L2 = β1ξ1 + · · · + βnξn given L1 = α1ξ1 + · · · + αnξn is symmet-
ric, then all random variables ξj are Gaussian. We prove some analogs of
this theorem, assuming that independent random variables take on values in
a finite Abelian group X and the coefficients αj , βj are automorphisms of X.

KEY WORDS: Characterization of probability distributions; idempotent dis-
tributions; finite Abelian groups .

1. INTRODUCTION

The following characterization theorem for the Gaussian distribution on
the real line was proved in Heyde(8) (see also section 13.4.1 of Kagan
et al.(10)).

Theorem A. Let ξ1, . . . , ξn, n � 2 be independent random variables,
αj , βj be nonzero constants such that βiα

−1
i ± βjα

−1
j �= 0 for all i �= j . If

the conditional distribution of L2 = β1ξ1 + · · · + βnξn given L1 = α1ξ1 +
· · ·+αnξn is symmetric, then all random variables ξj are Gaussian (can be
degenerate ones).
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Discuss the following general statement of the problem. Let X be
a locally compact Abelian separable metric group, Aut(X) be the set of
topological automorphisms of X. Assume that αj , βj ∈ Aut(X),1 � j � n,

n � 2 and βiα
−1
i ± βjα

−1
j ∈ Aut(X) for all i �= j (this condition one can

regarded as a natural analog of the relevant condition for the real line).
Let ξj be independent random variables taking on values in X and with
distributions µj . Consider the linear statistics L1 = α1ξ1 + · · · + αnξn and
L2 = β1ξ1 + · · · + βnξn. The problem consists in the description of groups
X for which the symmetry of the conditional distribution of L2 given L1
implies that either all distributions µj are Gaussian or µj belong to a
class of distributions which can be regarded as an analog of the Gauss-
ian distributions (see e.g. Rukhin(11); Heyer and Rall(9); Feldman(1–6);
Feldman and Graczyk,(7) where group analogs of the well-known char-
acterization theorems of Bernstein, Skitovich-Darmois and Polya for the
Gaussian distribution are studied).

The present article is the first step in solving this problem. Namely,
we shall consider the case of finite Abelian groups. At first we agree about
notation. For a locally compact Abelian group X let Y =X∗ be its charac-
ter group, (x, y) be the value of a character y ∈Y on an element x ∈X. If
G is a subgroup of X, then denote by A(Y,G)={x ∈Y : (x, y)=1 for all x ∈
G} its annihilator. For α ∈Aut(X) define the conjugate automorphism α̃ ∈
Aut(X) by the formula (x, α̃y)= (αx, y) for all x ∈X,y ∈Y . We recall that
a subgroup G of a group X is said to be characteristic if G is invariant
with respect to any α ∈ Aut(X). For any natural n denote by fn : X → X

the homomorphism fn(x)=nx and put X(n) =Kerfn,X
(n) = Im fn. Denote

by Z(n)={0,1, . . . , n− 1} the finite cyclic group of order n with addition
module n as a group operation.

Let M1(X) be the convolution semigroup of probability distributions
on X, µ̂(y)=∫

X
(x, y)dµ(x) be the characteristic function of a distribution

µ∈M1(X), σ (µ) be the support of µ. It is useful to remark that if H is a
close subgroup of Y and µ̂(y)≡1, y ∈H , then µ̂(y +h)= µ̂(y) for all y ∈Y ,
h∈H and σ(µ)⊂A(X,H). Denote by I (X) the set of the idempotent dis-
tributions on X, i.e. the set of shifts of the Haar distributions mK of com-
pact subgroups K of X. It should be observed that for a finite Abelian
group X the class I (X) can be regarded as an analog of the class of the
Gaussian distributions. Note that the characteristic function of the Haar
distribution mK is of the following form

m̂K(y)=
{

1, y ∈A(Y,K),

0, y /∈A(Y,K).

For µ ∈ M1(X) we define the distribution µ̄ ∈ M1(X) by the formula
µ̄(E) = µ(−E) for all Borel sets E ⊂ X. Note that ˆ̄µ(y) = µ̂(y). If ξ is a
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random variable taking on values in X and with a distribution µ, then
µ̂(y)=E[(ξ, y)].

2. THE CASE OF TWO INDEPENDENT RANDOM VARIABLES

Study at first the case when a number of independent random vari-
ables n=2. The following theorem is valid.

Theorem 1. Let X be a finite Abelian group satisfying the condition:
(i) X(2) ={0}, i.e. the group X contains no elements of order two. Let ξ1, ξ2
be independent random variables with values in X and with distributions
µ1, µ2. Assume that α1, α2, β1, β2 ∈ Aut(X) and β1α

−1
1 ±β2α

−1
2 ∈ Aut(X).

If the conditional distribution of L2 =β1ξ1 +β2ξ2 given L1 =α1ξ1 +α2ξ2 is
symmetric, then µ1,µ2 ∈ I (X).

Proof. Passing to the random variables ξ ′
j = αj ξj , j = 1,2 we can

suppose, without loss of generality, that L1 = ξ1 + ξ2 and L2 = δ1ξ1 + δ2ξ2,
where δj ∈Aut(X) and δ1 ± δ2 ∈Aut(X). It is obvious that the conditional
distribution of L2 given L1 is symmetric if and only if the conditional
characteristic function E[(L2, y)|L1] is real-valued, i.e.

E[(L2, v)|L1]=E[(L2,−v)|L1], v ∈Y.

It is easily verified that this equality is equivalent to the fact that for all
u, v ∈Y the following equality

E[{(L2, v)− (L2,−v)}(L1, u)]=0 (1)

is fulfilled. Taking into account that ξ1 and ξ2 are independent (1) holds
true if and only if the characteristic functions µ̂j (y)=E[(ξj , y)] satisfy the
equation

µ̂1(u+ δ̃1v)µ̂2(u+ δ̃2v)= µ̂1(u− δ̃1v)µ̂2(u− δ̃2v), u, v ∈Y. (2)

Note that the characteristic functions of the distributions νj = µj ∗ µ̄j

satisfy equation (2) too, besides ν̂j (y)=|µ̂j (y)|2 � 0, and ν̂j (−y)= ν̂j (y).
It is obvious that we may assume, without loss of generality, that δ̃1 = I ,
where I is the identity automorphism. Put f (y)= ν̂1(y), g(y)= ν̂2(y), ε =
δ̃2 and rewrite Eq. (2) using these notation. We obtain

f (u+v)g(u+ εv)=f (u−v)g(u− εv), u, v ∈Y. (3)

We shall prove that if X(2) ={0}, then f (y)=g(y)= m̂K(y), where K is a
subgroup of X. Hence, Theorem 1 will be proved.
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Set a = I − ε, b = I + ε, c = ab−1. It follows from the conditions of
Theorem 1 that a, b∈Aut(Y ). Putting v =−u in (3) we obtain

g(au)=f (2u)g(bu), u∈Y,

and hence

g(cu)=f (2b−1u)g(u), u∈Y. (4)

Since 0 � f (y) � 1, we infer

g(cu) � g(u), u∈Y.

Inasmuch as Y is a finite group, Aut(Y ) is a finite group too and hence
cn =I for some natural n. We shall assume that n is the smallest one here.
We have

g(y)=g(cny) � · · · � g(cy) � g(y), y ∈Y.

It follows from this that

g(y)=g(cy)=· · ·=g(cn−1y), y ∈Y. (5)

Putting u=−εv in (3) and taking into account that f (−y)=f (y), g(−y)=
g(y), we obtain f (av)=f (bv)g(2εv), v ∈Y and hence

f (cv)=f (v)g(2εb−1v), v ∈Y. (6)

Reasoning as above, we infer

f (y)=f (cy)=· · ·=f (cn−1y), y ∈Y. (7)

Thus for each orbit Oy = {y, cy, . . . , cn−1y} the functions f (y) and g(y)

take on a constant value, generally, depending on y.
Put Ef = {y ∈ Y : f (y) �= 0}, Bf = {y ∈ Y : f (y) = 1}. Analogously we

shall introduce notation Eg and Bg. Since X ≈ Y and X(2) = {0}, then
Y(2) ={0}, so that f2 ∈Aut(Y ). For arbitrary finite set F denote by |F | the
number of elements of F . It follows from (4) and (5) that if y ∈Eg, then

f (2b−1y)=1. (8)

It follows from (8) that |Eg| � |Bf |. Similarly, it follows from (6) and
(7) that if y ∈ Ef , then g(2εb−1y) = 1. This implies that |Ef | � |Bg|. We
finally obtain |Eg| � |Bf | � |Ef |, |Ef | � |Bg| � |Eg|. From this it fol-
lows that |Ef |= |Bf |, |Eg|= |Bg|. Thus, Ef =Bf , Eg =Bg. It follows from
f2 ∈ Aut(Y ) and c(Bg) = Bg that ε(Bg) = Bg. Hence b(Bg) = Bg and (8)
implies that Eg = Bg ⊂ Bf , so that Bf = Bg. Thus, f (y) = g(y) = m̂K(y),
where K =A(X,Bf ). Theorem 1 is proved.
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Corollary 1. Suppose that X(2) ={0} and f (y) and g(y) are arbitrary
characteristic functions on the group Y satisfying Eq. (3). Then f (y) and
g(y) have the form f (y) = (x1, y)m̂K(y), g(y) = (x2, y)m̂K(y), where x1,
x2 ∈X and K is a subgroup of X.

Corollary 2. Let X be a finite Abelian group, α1, α2, β1, β2 ∈Aut(X)

and β1α
−1
1 +β2α

−1
1 ∈Aut(X). Let ξ1, ξ2 independent random variables with

values in X and with distributions µ1,µ2 such that their characteristic
functions do not vanish. If the conditional distribution of L2 =β1ξ1 +β2ξ2
given L1 =α1ξ1 +α2ξ2 is symmetric, then σ(µ′

j )⊂ (X(2)), j =1,2 for some
shifts µ′

j of distribution µj .

Proof. We use the fact that if µ∈M1(X) and µ̂(y)≡1 for y ∈H , where
H is a subgroup of X, then σ(µ) ⊂ A(X,H). Note that A(X,Y (2)) = X(2).
With the notation of Theorem 1 µj is a divisor of νj . It means that the
required assertion will be proved if we check that σ(νj )⊂X(2). Thus, it suf-
fices to show that f (y) ≡ g(y) ≡ 1 for y ∈ Y (2). The equality f (y) ≡ 1 for
y ∈Y (2) follows directly from (4), (5) and the fact that b∈Aut(Y ). Similarly,
it follows from (6), (7) and ε, b∈Aut(Y ) that g(y)≡1 for y ∈Y (2).

Remark 1. If condition (i) Theorem 1 is not fulfilled, then Theorem
1 is false. To prove this note that if µ is an arbitrary distribution on X

and σ(µ) ⊂ G, where G is a subgroup of X, then µ̂(y + l) = µ̂(y) for all
y ∈Y, l ∈A(Y,G). Taking into account that A(Y,X(2))=Y (2) we see that if
σ(µ) ⊂ X(2), then µ̂(y + 2h) = µ̂(y) and hence, µ̂(y + h) = µ̂(y − h) for all
y,h∈Y . Therefore, if ξ1 and ξ2 are arbitrary independent random variables
with values in the subgroup X(2) ⊂ X and with distributions µ1,µ2 then
equation (2) holds true. Thus, the conditional distribution of L2 =β1ξ1 +
β2ξ2 given L1 =α1ξ1 +α2ξ2 is symmetric.

Remark 2. The condition β1α
−1
1 −β2α

−2
2 ∈Aut(X) in Theorem 1 can

be omitted. Realy, note that this condition is equivalent to the condition
a ∈ Aut(Y ). Assume that a /∈ Aut(Y ), i.e. B = Ker a �= {0} and take u ∈ B.
We have εu=u and bu=2u. Putting u=v ∈B in (3) we obtain

f (2u)g(2u)=1, u∈B,

and hence, f (y) = g(y) = 1 for all y ∈ B. For this reason the functions
f (y) and g(y) are B-invariant, and they induce functions f̃ and g̃ on the
factor-group Y/B, namely f̃ ([y]) = f (y), g̃([y]) = g(y), y ∈ [y]. The auto-
morphism ε also induces an automorphism ε̂ on the factor-group Y/B

by the rule ε̂[y] = [εy], y ∈ [y] and we can consider now equation (3) on
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the factor-group Y/B. If the induced automorphism ε̂ does not satisfy the
condition â /∈Aut(Y ), we repeat this procedure. In a finite number of steps
we arrive at an induced automorphism satisfying already this condition.

We shall supplement Theorem 1 with the following statement.

Proposition 1. Let X be a finite Abelian group. Assume that δ, I ±
δ ∈Aut(X) and ξ2, ξ2 are independent identically distributed with a distri-
bution mK random variables taking on values in X. The conditional dis-
tribution of L2 = ξ1 + δξ2 given L1 = ξ1 + ξ2 is symmetric if and only if

γ (K)=K, (9)

where γ = (I + δ)−1(I − δ).

Proof. We shall retain the designations used in the proof of Theorem 1.
Put L=A(Y,K) It is obvious that (9) is fulfilled if and only if

c(L)=L. (10)

If the conditional distribution of L2 given L1 is symmetric, then the char-
acteristic functions f (y)=g(y)= m̂K(y) satisfy Eq. (3). Hence (4) implies
that if cy ∈L, then y ∈L. Since cn = I , (10) holds true.

Suppose that (10) is fulfilled. We shall verify that the characteris-
tic functions f (y) and g(y) satisfy equation (3). Assume that for some
u, v ∈Y the left-hand side of (3) is equal to 1. This implies that

u+v ∈L, u+ εv ∈L, (11)

and therefore av = (I − ε)v ∈L. Since av = cbv, (10) implies that

bv = (I + ε)v ∈L. (12)

It follows from (11) and (12) that u − v ∈ L,u − εv ∈ L. Thus, the
right-hand side of (3) is equal to 1 too. Similarly one can check that if the
right-hand side of (3) is equal to 1 for some u, v ∈ Y , then the left-hand
side is equal to 1 too. We proved that the characteristic functions f (y)=
g(y)= m̂K(y) satisfy equation (3). It means that the conditional distribu-
tion of L2 given L1 is symmetric.

Remark 3. It is obvious that if δ(K)=K, then γ (K)=K. Note that
I + γ = f2(I + δ)−1 and suppose that X(2) = {0}. This implies that f2 ∈
Aut(X), so that I +γ ∈Aut(X). Hence, δ = (I +γ )−1(I −γ ) and it follows
from (9) that δ(K)=K. Thus, if X(2) ={0}, then condition (9) is equivalent
to the condition δ(K)=K.
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Note that in the proof of Theorem 1 we assumed that there exist
automorphisms α1, α2, β1, β2 ∈ Aut(X) such that β1α

−1
1 ± β2α

−1
2 ∈ Aut(X).

Describe now the finite Abelian groups X which possess this property.
Afterwards we shall use the obtained result to prove a group analog of
the Heyde theorem for an arbitrary number of independent random vari-
ables. Clearly, it suffices to find out when there exists δ ∈Aut(X) such that
I ± δ ∈Aut(X).

Proposition 2. Let X be a finite Abelian group, X = ∑
Xp be the

decomposition of X in a direct sum of its p-components. Then the follow-
ing statements are equivalent:

(α) for both p=2 and p=3 either Xp ={0} or the decomposition of
Xp in a direct sum of its cyclic subgroups contains each cyclic
summand with multiplicity not less than two;

(β) there exists δ ∈Aut(X) such that I ± δ ∈Aut(X).

Proof. Note that each p-component is a characteristic subgroup of
X. It follows from this that there exists the required automorphism δ ∈
Aut(X) if and only if there exists δ ∈Aut(Xp) for each prime p such that
Xp �= {0}. If p > 3 we can set δ =f2. Then δ, I ± δ ∈ Aut(Xp). In what fol-
lows we restrict ourself considering the group X3. The reasoning for the
group X2 is similarly. Denote by K =X3 and represent K as a direct sum
of its cyclic subgroups

K =
∑

i

(Z(3ki ))ni , ki <ki+1. (13)

It is known that the numbers ki and ni are uniquely determined by the
group K. We shall prove that there exists δ ∈ Aut(X) such that I ± δ ∈
Aut(X) if and only if all ni � 2 in (13). Really, assume that ni0 = 1 for
some i0. We observe that for any natural n the subgroups X(n) and X(n)

are characteristic. For this reason the subgroups Hi = K(3ki −1) ∩ K(3) are
characteristic too. Hence, δ(Hi0 \Hi0+1)=Hi0 \Hi0+1 for any δ∈Aut(K). If
I ± δ ∈Aut(K), then

(I ± δ)(Hi0 \Hi0+1)=Hi0 \Hi0+1. (14)

Let π be the natural projection of K on Z(3ki0 ). If x ∈ Hi0 \ Hi0+1, then
π(x)∈{λ,2λ}, where λ is an element of order 3 in Z(3kio ). Assume for defi-
niteness that π(x) = λ. If π(δx) = λ, then π((I − δ)x) = 0, and if π(δx) =
2λ, then π((I + δ)x) = 0, contrary to (14). The case π(x) = 2λ can be
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considered similarly. Thus we proved that the condition ni � 2 in (13) is
necessary for the existence of δ.

It remains to prove the sufficiency. Consider G1 = (Z(3r ))2 and set
δ1(k, l) = (k + l, k), (k, l) ∈ G1. It is evident that δ1, I ± δ1 ∈ Aut(G1). For
G2 = (Z(3r ))3 we put δ1(k, l,m) = (k + l + m,k + l, k), (k, l,m) ∈ G2. Then
δ2, I ± δ2 ∈Aut(G2). If all ni � 2 in (13) then K is a direct sum of groups
of the form either G1 or G2 and the required automorphism δ ∈ Aut(X)

can be constructed as a direct sum of the automorphisms δ1 and δ2.
We use now Theorem 1 for proving the following statement.

Theorem 2. Let X = R + G, where G is a finite Abelian group such
that G(2) = {0}. Suppose that α1, α2, β1, β2 ∈ Aut(X) and β1α

−1 ± β2α
−1
1 ∈

Aut(X), and ξ1, ξ2 are independent random variables with values in X and
with distributions µ1,µ2. If the conditional distribution of L2 = β1ξ1 +
β2ξ2 given L1 =α1ξ1 +α2ξ2 is symmetric, then µj = γj ∗πj , where γj are
Gaussian distributions on R, and πj ∈ I (X), j =1,2.

Proof. We have Y =X∗ ≈R+H , where H =G∗. Denote by (s, h), s ∈
R, h∈H elements of Y . If d ∈Aut(Y ), then d(R)=R because R is the con-
nected component of zero of Y . It is obvious that d(H) = H . We shall
retain the notation d for the restrictions of d on R and on H , and we
shall write d(s, h)= (ds, dh), (s, h)∈Y . Reasoning as in the proof of The-
orem 1 we reduce the proof of Theorem 2 to the case when L1 = ξ1 + ξ2
and L2 =ξ1 +δξ2, where δ, I ±δ∈Aut(X), and hence, to solving of Eq. (3),
which becomes

f (s + s′, h+h′)g(s + εs′, h+ εh′)
=f (s − s′, h−h′)g(s − εs′, h− εh′), (s, h), (s′, h′)∈Y, (15)

where f (y)= µ̂1(y), g(y)= µ̂2(y). Putting h=h′ = 0 in (15) we obtain by
Theorem A

f (s,0)= exp{−σ1s
2 + it1s}, g(s,0)= exp{−σ2s

2 + it2s}, (16)

where σj � 0,−∞<tj <∞, j =1,2. Putting s = s′ =0 in (15) we infer the
functional equation

f (0, h+h′)g(0, h+ εh′)=f (0, h−h′)g(0, h− εh′), h, h′ ∈H. (17)

Applying Corollary 1 we see that each solution of Eq. (17) is of the form

f (0, h)= m̂K(h)(g1, h), g(0, h)= m̂K(h)(g2, h), h∈H, (18)
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where K is a subgroup of G and g1, g2 ∈G. Substituting, if necessary, the
distributions µj on their shifts we can suppose that g1 =g2 =0 in (18). Set
B =A(H,K), then

f (0, h)=g(0, h)=
{

1, h∈B,

0, h �∈B.
(19)

It follows from (19) that the characteristic functions f (s, h) and g(s, h) are
B-invariant. On the other hand as appears from Proposition 1 and Remark
3 δ(K)=K and hence, B is invariant with respect to ε. So, we can consider
Eq. (19) on the factor-group Y/B letting f̃ ([(s, h)]) = f (s, h), g̃([(s, h)}) =
g(s, h), ε[(s, h)]= [ε(s, h)], where ε̂ is a homomorphism induced by ε. Since
ε(B)=B, we have ε̂ ∈ Aut(Y/B). Similarly, â, b̂ ∈ Aut(Y/B), where a = I −
ε, b= I +ε. The passage from Eq. (15) on Y to Eq. (15) on the factor-group
Y/B means that we pass from consideration of random variables taking on
values in X to consideration of random variables with values in R+K. As
appears from the above we can assume that

f (0, h)=g(0, h)=
{

1, h=0,

0, h �=0
(20)

holds true from the beginning. Put s′ = s, h′ =−h in (15). We obtain

f (2s,0)g(bs, ah)=f (0,2h)g(as, bh). (21)

Since 2h �= 0 for any h∈H,h �= 0, it follows from (20) that the right-hand
side of (21) vanishes for h∈H,h �= 0. Taking into account (16) it follows
from this that g(bs, ah)=0 for all s ∈R and h∈H,h �=0. Hence, g(s, h)=0
for all s ∈R and h �=0. Thus we obtain the representation

g(s, h)=
{

exp{−σ2s
2 + it2s}, h=0,

0, h �=0.

Reasoning similarly we infer the analogous representation for f (s, h) too.
The statement of Theorem 2 follows directly from the obtained represen-
tations.

3. THE CASE OF n INDEPENDENT RANDOM VARIABLES

Consider now the case of arbitrary number n of independent random
variables.
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Theorem 3. Let X be a finite Abelian group satisfying condition (α)

of Proposition 2, let X=∑
Xp be the decomposition of X in a direct sum

of its p-component.

(I) Let X satisfy the conditions: (i) X(2) ={0}; (ii) the decomposition
of the group X5 in a direct sum of its cyclic subgroups contains
at least one cyclic summand with multiplicity one. Let αj , βj ∈
Aut(X),1 � j �n,n � 2 and βiα

−1
i ±βjα

−1
j ∈ Aut(X) for all i �=

j . Let ξj be independent random variables taking on values in
X and with distributions µj . If the conditional distribution of
L2 =β1ξ1 + · · ·+βnξn given L1 =α1ξ1 + · · ·+αnξn is symmetric,
then all µj ∈ I (X).

(II) If X(2) �= {0}, then there exist δ∈Aut(X) such that I ±δ∈Aut(X)

and independent random variables ξ1, ξ2 taking on values in X

and with distributions µ1,µ2 such that the conditional distribu-
tion of L2 = ξ1 + δξ2 given L1 = ξ1 + ξ2 is symmetric, whereas
µ1,µ2 �∈I (X). If X(2) ={0} and condition (ii) is not fulfilled, then
there exist α,β ∈Aut(X) such that

I ±α, I ±β,α ±β ∈Aut(X), (22)

and independent random variables ξj , j = 1,2,3 taking on val-
ues in X and with distributions µj such that the conditional dis-
tribution of L2 =ξ1 +αξ2 +βξ3 given L1 =ξ1 +ξ2 +ξ3 is symmet-
ric, whereas all µj �∈ I (X).

Proof. Let
X5 =

∑
i

(Z(5ki ))ni , ki <ki+1

be the decomposition of X5 in a direct sum of its cyclic subgroups. At first
we shall prove (I). Assume that (ii) is fulfilled, i.e. ni0 =1 for some ni0 . We
shall verify that there exist no automorphisms α,β ∈Aut(X) such that (22)
is fylfilled. Since the subgroup X5 is characteristic, without loss of gener-
ality, we may assume that X = X5. Set Hi = X(5ki −1) ∩ X(5). Since Hi is a
characteristic subgroup, we have

δ(Hi0\Hi0+1)=Hi0\Hi0+1 (23)

for any δ ∈ Aut(X). Let π be the natural projection of X on Z(5ki0 ). If
x ∈ Hi0\Hi0+1 , then π(x) ∈ {λ,2λ,3λ,4λ}, where λ is an element of order
5 in Z(5ki0 ). Assume for definiteness that π(x) = λ. The rest cases can
be considered similarly. Set π(αx)= kλ,π(βx)= lλ, where k, l ∈{1,2,3,4}.
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It follows from (22) and (23) that π((I − α)x) �= 0, so that k �= 1. Since
π((I +α)x) �=0, we have k �= 4. Similarly, l �= 1, l �= 4. Furthermore π((α −
β)x) �=0 implies that k �= l. Hence, either k=2, l =3 or k=3, l =2. But then
π((α + β)x) = 0. The obtained contradiction shows that if (ii) is fulfilled,
then the number of independent random variables in Theorem 3 n = 2.
Statement (I) follows from (i) and Theorem 1. To prove (II) we need

Lemma 1. Let G be a group of the form (Z(3r ))2, (Z(3r ))3, (Z(5r ))2,

(Z(5r ))3,Z(pr), p is prime, p � 7. Then there exist α,β ∈Aut(G) such that
(22) is fulfilled, and independent random variables ξj , j =1,2,3 taking on
values in G and with distributions µj such that the conditional distribu-
tion of L2 = ξ1 +αξ2 +βξ3 given L1 = ξ1 + ξ2 + ξ3 is symmetric, whereas all
µj �∈ I (G).

Proof. Let G=Z(pr))2, p=3,5. Then H =G∗ ≈G. Put α(k, l)= (k +
2l,2k +2l), β(k, l)= (2k +2l,2k + l). Obviously that α,β ∈Aut(G) and (22)
is fulfilled. Let ξj , j =1,2,3 be independent identically distributed random
variables taking on values in G and with the distribution µ∈M1(G) of the
form µ({x})= 1

p2r

[
1 + Re(x, (1,0))

]
. Then the characteristic function µ̂(y)

is of the form

µ̂(y)=




1, y = (0,0)

1/2, y ∈{
(1,0), (pr −1,0)

}
,

0, y �∈{
(0,0), (1,0), (pr −1,0)

}
.

We shall check that the conditional distribution of L2 given L1 is symmet-
ric. To this end it suffices to verify that the characteristic function µ̂(y)
satisfies the equation

µ̂(u+v)µ̂(u+ α̃v)µ̂(u+ β̃v)= µ̂(u−v)µ̂(u− α̃v)µ̂(u− β̃v), u, v ∈H. (24)

Observe that α = α̃, β = β̃. Obviously that (24) is fulfilled if v =0. Assume
that u= (k, l), v = (k′, l′) �=0. We shall check that the left-hand side in (24)
vanishes. Really, in the opposite case we have

l + l′ =0 (mod pr),

l +2k′ +2l′ =0 (mod pr),

l +2k′ + l′ =0 (mod pr),

This implies that k′ = l′ = 0, i.e. v = 0 contrary to the assumption. We
verify similarly that for v �= 0 the right-hand side in (24) vanishes too. So
(24) is fulfilled for all u, v ∈H . Thus for the groups G= (Z(pr))2, p = 3,5
Lemma 1 is proved. For the rest groups G we restrict ourself to indicate
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α,β ∈ Aut(G), and µ ∈ M1(G). For G = (Z(pr))3, p = 3,5 put α(k, l,m) =
(k + l + m,k + l, k), β(k, l,m) = (2k + l + m,k + 2l, k + m),µ({x}) = 1

p3r [1 +
Re(x, (1,0,0))]. For G = Z(pr),p is prime, p � 7 put αx = 2x,βx =
4x,µ({x})= 1

pr [1+Re(x,1)].
We may complete now the proof of Theorem 3. If X(2) �= {0}, then we

have X =X2 +G. By Proposition 2 there exists δ ∈ Aut(X2) such that I ±
δ ∈ Aut(X2). Extend δ to an automorphism of X (we keep the notation δ

for the extended automorphism) in such a manner that I ± δ ∈Aut(X) for
the extended automorphism too. Consider arbitrary independent random
variables ξ1, ξ2 taking on values in X(2) and with distributions µ1,µ2 �∈
I (X(2)). Taking into account Remark 1 we see that the conditional distri-
bution of L2 = ξ1 + δξ2 given L1 = ξ1 + ξ2 is symmetric whereas µ1,µ2 �∈
I (X).

If X(2) ={0} and (ii) is not fulfilled, then by Proposition 2 X is decom-
posed in a direct sum of groups G enumerated in Lemma 1. Let G0 be
one of these groups. Apply Lemma 1 and consider independent identi-
cally distributed random variables ξJ , j = 1,2,3 taking on values in G0 ⊂
X with the distribution µ �∈ I (G0) and consider corresponding automor-
phisms α,β ∈Aut(G0). Extend α and β to automorphisms of X in such a
manner that for the extended automorphisms (22) remains true (we keep
the notation α and β for the extended automorphisms). The conditional
distribution of L2 = ξ1 +αξ2 +βξ3 given L1 = ξ1 + ξ2 + ξ3 is symmetric by
the construction, whereas all ξj have the distribution µ �∈ I (X). Theorem 3
is proved completely.
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