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1. Introduction

The concept of convexity plays an important role in mathematics.

Definition 1.1. ([1]) A set E ∈ Rn is called convex if, together with every two points x1 and x2, E
also contains the entire segment [x1, x2] that connects these points.

Definition 1.2. ([1]) A subset X of an n-dimensional Euclidean space Rn is called the affine subspace
of the space Rn if, together with any two points x1, x2 ∈ Rn, it also contains a straight line passing
through these points.

All affine subspaces are convex sets because together with any two of their points, they also contain
a line that passes through these points and therefore also contain a line segment connecting these
points. Affine subspaces are a narrower class of sets than convex sets. This follows from the fact that a
convex set together with any two of its points must contain not the entire straight line passing through
these points but only a part of this straight line.

Consider analogs of convex sets in the Euclidean space

Cn := C× C× ...× C︸ ︷︷ ︸
n

,

where C is the algebra of complex numbers, and n is an arbitrary natural number. If n = 1, this
space is the complex plane. In the space Cn, similarly as in the space Rn, a complex affine subspace is
defined; see [2,3]. A complex Euclidean space of complex dimension m is a real Euclidean space of real
dimension 2m. Complex lines, m-planes, and hyperplanes are affine subspaces of complex dimension
1, m, and n− 1, respectively.

No less important than convexity is the concept of linear convexity. The linear convexity of the set
as n = 2 was first introduced in 1935 by H. Behnke and E. Peschl (see [4]) and has begun to be widely
used since the 1960s thanks to the works by A. Martineau (see [5]) and L. Aizenberg (see [6, 7]).

Let us define the Martineau linearly convex set.
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Definition 1.3. ([5]) A set in the space Cn is called linearly convex if its complement to the entire
space Cn is a union of complex hyperplanes.

Let us formulate the definition of the linearly convex domain and the linearly convex compact set
(it is assumed that the compact set is connected) by Aizenberg.

Definition 1.4. ([6]) A domain D ⊂ Cn is called linearly convex if, for an arbitrary point z of the
boundary ∂D of the domain D, there exists a complex hyperplane that passes through z and does not
intersect D.

Definition 1.5. ([6]) A set E ⊂ Cn is approximated from the outside (inside) by a sequence of
domains Dk, k = 1, 2, . . . , if Dk+1 ⊂⊂ Dk (Dk ⊂⊂ Dk+1) and E =

⋂
k

Dk (E =
⋃
k

Dk). The notation

Dk+1 ⊂⊂ Dk means that the closure Dk+1 is bounded and, together with some of its neighborhood,
belongs to Dk.

Definition 1.6. ([6]) A compact K ⊂ Cn is said to be linearly convex if there exists a sequence of
linearly convex domains by which the compact K is approximated from the outside.

Theorem 1.1. ([7]) Each of the following two properties is equivalent to the linear convexity of the
set E ⊂ Cn by Martineau:

1) for an arbitrary point z /∈ E, there exists a hyperplane that passes through z and does not
intersect E;

2) if the point z is such that an arbitrary hyperplane passing through z intersects E, then z ∈ E.

From the Martineau linear convexity of a domain or a compact set, their Aizenberg linear convexity
follows. The following theorem asserts that the inverse statement is false.

Theorem 1.2. ( [7]) There are Aizenberg linearly convex domains and compact sets that are not
Martineau linearly convex.

Definition 1.7. ([2,3]) A set E ⊂ Cn is said to be strongly linearly convex if, for an arbitrary complex
line γ, the sets γ

⋂
E and γo \ γ⋂E are connected (γo = γ

⋃
(∞)).

This definition generalizes the concept of convexity in the real case onto the complex case by using
the internal properties of the set: a set E ⊂ Rn is convex if its intersection with an arbitrary real line is
connected. Note that the definition of the linearly convex set is a generalization of the concept of the
convexity of the set E ⊂ Rn, which uses the external properties of convex sets, namely, the existence
of a hyperplane that does not intersect the given set.

Note an important property of strongly linearly convex domains and compact sets.

Theorem 1.3. ([2, 3]) Strongly linearly convex domains (compact sets) are linearly convex.

2. Shadow problem

This section deals with issues related to the classic shadow problem and its generalizations.

Definition 2.1. ( [8, 9]) A set E ⊂ Rn is called m-convex with respect to the point x ∈ Rn \ E,
m = 0, 1, ..., n − 1, if there is an m-dimensional plane L that passes through this point, x ∈ L, and
does not intersect the given set, L

⋂
E = ∅.

Definition 2.2. ([8,9]) A set E ⊂ Rn is called m-convex if it is m-convex with respect to every point
x ∈ Rn \ E that belongs to the complement of this set.
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The concept of m-convex set in Rn allows us to look from a single point of view at some generaliza-
tions of convexity, including linear convexity. The definition of an m-convex set uses the generalization
of the concept of convex set due to the existence of an m-plane that does not intersect the given set
(the extrinsic property of convexity). On the other hand, for the generalization of convexity, as in the
definition of convexity and strong linear convexity, it is possible to use restrictions on the intersections
of this set by a straight line (the intrinsic property).

Proposition 2.1. ([8, 9]) Let {Ei}i∈I be an arbitrary family of m-convex sets (here I is some finite
or countable set of indices). Then the intersection of these sets E =

⋂
i∈I

Ei is an m-convex set.

It follows from Proposition 2.1 that for an arbitrary set E ⊂ Rn, we can consider the minimum
m-convex set that contains E and call it the m-hull of the set E.

Definition 2.3. ([8,9]) An m-convex (by Proposition 2.1) intersection of all m-convex sets that contain
a given set E ⊂ Rn is called the m-hull of the set E.

Having defined the m-hull of the set E as the intersection of the m-convex sets containing the set
E, we come to the following problem: find the criterion that the point x ∈ Rn\E belongs to the m-hull
of the set E. A partial case of a point belonging to the 1-hull of the union of a certain set of balls is
the shadow problem posed by H. Khudaiberganov in 1982; see [10].

Shadow problem. Find the minimum number of pairwise non-intersecting closed (open) balls in
the space Rn with centers on the sphere Sn−1 and radii smaller than the radius of the sphere, such that
an arbitrary straight line passing through the center of the sphere would intersect at least one of these
balls.

In other words, this problem can be reformulated as follows:

What is the minimum number of pairwise non-intersecting closed (open) balls in the space Rn with
centers on the sphere Sn−1 and radii smaller than the radius of the sphere that ensures that the sphere
center belongs to the 1-hull of the family of these balls?

Briefly, this problem is formulated as follows:

What is the minimum number of such balls that create a shadow for the center of the sphere?

For n = 2, this problem was solved by H. Khudaiberganov; see [10]. He showed that for a circle on
a plane, two disks are necessary and sufficient to create a shadow. It was also proved that for n > 2
the minimum number of balls is equal to n. However, this proof turned out to be wrong.

In work [9], using the continuity of the change of straight lines, another solution to the shadow
problem as n = 2 was given.

Theorem 2.1. ([10]) There are two non-intersecting closed (open) disks with centers on the unit circle
and radii less than one that ensure that the center of the circle belongs to the 1-hull of the family of
these circles.

Yu. Zelins’kyi together with his students I. Vygovs’ka and M. Stefanchuk completely solved the
shadow problem as n > 2.

Theorem 2.2. ([8, 9]) In order for the center of an (n − 1)-sphere in an n-dimensional Euclidean
space as n > 2 to belong to the 1-hull of the family of pairwise non-intersecting open (closed) balls
with radii not larger (smaller) than the radius of the sphere, and centers located on the sphere, n+ 1
balls are necessary and sufficient.
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Yu. Zelins’kyi and M. Stefanchuk generalized the shadow problem to the case of an arbitrary point
inside the sphere; see [11]:

What is the smallest number of pairwise non-intersecting open (closed) balls with centers on the
sphere Sn−1 and radii smaller (not larger) than the radius of the sphere that ensure that the sphere
interior belongs to the 1-hull of the family of balls?

The following theorem holds in the case n = 2.

Theorem 2.3. ([11]) In order for the interior of a circle to belong to the 1-hull of the family of pairwise
non-intersecting open (closed) disks with centers on the circle and radii smaller than the radius of the
circle, three disks are necessary and sufficient.

The shadow problem can be generalized if, instead of the sphere, another surface is considered.
M. Tkachuk and T. Osipchuk formulated the shadow problem for the center of the ellipsoid of

rotation in the space R3; see [12]:
Let a prolate ellipsoid of rotation be given. Find the minimum ratio between the lengths of its major

and minor semi-axes such that three closed (open) pairwise non-intersecting balls with centers located
on the ellipsoid and not intersecting the center of ellipsoid create a shadow for the center of ellipsoid.

In other words, this task can be formulated as follows; see [12]:
Find the minimum ratio between the lengths of the major and minor semi-axes of a prolate ellipsoid

of rotation such that three closed (open) pairwise non-intersecting balls that do not intersect the center
of ellipsoid and whose centers are located on the ellipsoid ensure that the center of ellipsoid belongs to
the 1-hull of the family of balls.

The following theorem holds.

Theorem 2.4. ([12]) Let a prolate ellipsoid of rotation be given with a ratio between its major and
minor semi-axes that is strictly less than 2

√
2. In order for the center of the given ellipsoid to belong

to the 1-hull of the family of pairwise non-intersecting closed (open) balls that do not intersect the
center of the ellipsoid and with centers located on it, three such balls are necessary and sufficient.

M. Tkachuk and T. Osipchuk generalized the shadow problem by taking an arbitrary domain in
the spaces R2 and R3 instead of the sphere; see [13], [14].

The following theorems hold.

Theorem 2.5. ([13, 14]) In order for an arbitrary fixed point x0 in the domain D ⊂ R2 to belong to
the 1-hull of closed (open) disks that pairwise do not intersect, do not contain the point x0, and with
centers on the boundary of the domain D, two such disks are necessary and sufficient.

Theorem 2.6. ([14]) In order for an arbitrary fixed point x0 in the domain D ⊂ R3 to belong to
the 1-hull of closed (open) balls that pairwise do not intersect, do not contain the point x0, and with
centers on the boundary of the domain D, four such balls are sufficient.

T. Osipchuk formulated a problem that is close to the classical shadow problem; see [15]:
Find the minimum number of open (closed) and pairwise non-intersecting balls in the space Rn with

centers on the sphere Sn−1 and radii smaller than the radius of the sphere, which do not contain a
fixed point inside the sphere and create a shadow at that point.

The following theorem gives a partial solution to the given problem.

Theorem 2.7. ([15]) Let S2(r) be a sphere with center at the coordinate origin and radius r in the
space R3. Let us denote by n(x) the smallest number of non-intersecting open balls with centers on
the sphere S2(r), and such that they do not contain a fixed point x ∈ R3 and create a shadow at this
point. Then n(x) = 3 for every point x ∈ R3 such that 7

9 r 6 |x| 6 r.
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Yu. Zelins’kyi together with his students I. Vygovs’ka and H. Dakhil studied the shadow problem
for balls of the equal radii; see [16]:

What is the minimum number of pairwise non-intersecting closed (open) balls with centers on the
sphere Sn−1 and equal radii smaller (not larger) than the radius of the sphere in an n-dimensional real
Euclidean space Rn that is sufficient for an arbitrary straight line passing through the center of the
sphere to intersect at least one of those balls?

The following theorems give a solution to this problem.

Theorem 2.8. ([16]) n+1 closed balls of equal radii centered on the sphere Sn−1 in the space Rn are
sufficient to create a shadow in the center of the sphere if the balls can touch one another.

Theorem 2.9. ([16]) There is no set of open pairwise non-intersecting balls of equal radii in a three-
dimensional real Euclidean space R3 with centers on the sphere S2 and radii no larger than the radius
of the sphere, such that an arbitrary straight line that passes through the center of the sphere intersects
at least one of those balls.

Theorem 2.10. ([16]) There is no set of m > 4 pairwise non-intersecting (or tangent) closed balls
of equal radii in a three-dimensional real Euclidean space R3 with centers on the sphere S2 and radii
smaller than the radius of the sphere, such that an arbitrary straight line that passes through the center
of the sphere intersects at least one of those balls.

Yu. Zelins’kyi considered the shadow problem for a family of balls whose centers are not connected
to any predetermined set.

Theorem 2.11. ([17]) In order for a selected point in an n-dimensional Euclidean space as n > 2 to
belong to the 1-hull of the family of pairwise non-intersecting open (closed) balls that do not contain
this point, n balls are necessary and sufficient.

Also, Y. Zelins’kyi together with his students I. Vygovs’ka, H. Dakhil investigated an analog of this
problem for balls of equal radii; see [18]:

What is the minimum number of pairwise non-intersecting closed (open) balls of equal radii in a
three-dimensional real Euclidean space R3 that is necessary and sufficient for an arbitrary straight line
that passes through a fixed point in space to intersect at least one of those balls?

An answer to this question is given by the following theorems:

Theorem 2.12. ([16]) Four pairwise non-intersecting closed (open) balls of equal radii are sufficient
in the space R3 to create a shadow at a fixed point.

Theorem 2.13. ([18]) Four pairwise non-intersecting closed (open) balls of equal radii are necessary
and sufficient in the space R3 to create a shadow at a fixed point.

T. Osipchuk solved this problem in an n-dimensional real Euclidean space Rn, n > 3:

Theorem 2.14. ([19]) n+1 pairwise non-intersecting closed (open) balls of equal radii are necessary
and sufficient in the Rn space, n > 3, to create a shadow at a fixed point.

By replacing balls in Theorem 2.11 by convex bodies with non-empty interior, we obtain another
generalization of the shadow problem.

Let a convex set with non-empty interior be given in an n-dimensional Euclidean space Rn, n > 2. A
family of pairwise non-intersecting closed sets is obtained from this set by means of a group of geometric
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transformations. The following question arises: How many (the least number) of the elements of this
family are sufficient for a selected point x ∈ Rn to belong to the 1-hull of this family (i.e., for an
arbitrary straight line that passes through the point x to intersect at least one of those sets)? Yu.
Zelins’kyi obtained a solution to this problem for a group of geometric transformations consisting of
motions and homotheties of a convex set with non-empty interior.

Theorem 2.15. ([17]) In order for a selected point in an n-dimensional Euclidean space as n > 2 to
belong to the 1-hull of the family of pairwise non-intersecting closed sets obtained from a given convex
set with non-empty interior and compact closure by means of the group of transformations consisting
of motions and homotheties, n elements of this family are necessary and sufficient.

Yu. Zelins’kyi and M. Stefanchuk solved a similar problem for a family of sets obtained from a
convex set with non-empty interior using parallel transfers and homotheties.

Theorem 2.16. ([11]) In order for a selected point in an n-dimensional Euclidean space as n > 2 to
belong to the 1-hull of a family of pairwise non-intersecting closed sets obtained from a given convex
set with non-empty interior by means of a group of transformations consisting of parallel translations
and homotheties, n elements of this family are necessary and sufficient.

Let us consider objects that are more general than those considered above.

Definition 2.4. ([8, 9]) A set E ⊂ Rn is called m-semiconvex with respect to a point x ∈ Rn \ E,
m = 0, 1, ..., n − 1, if there is an m-dimensional half-plane L that passes through this point, x ∈ L,
and does not intersect this set, L

⋂
E = ∅.

Definition 2.5. ([8, 9]) A set E ⊂ Rn is called m-semiconvex if it is m-semiconvex with respect to
every point x ∈ Rn \ E belonging to the complement of this set.

Similarly as for m-convex sets, the convexity axiom holds for m-semiconvex ones.

Proposition 2.2. ([8, 9]) Let {Ei}i∈I be an arbitrary family of m-semiconvex sets (here I is some
finite or countable set of indices). Then the intersection of these sets E =

⋂
i∈I

Ei is an m-semiconvex

set.

Therefore, for an arbitrary set E ⊂ Rn, there always exists a minimum m-semiconvex set that is
the intersection of all m-semiconvex sets containing E.

Definition 2.6. ([8, 9]) An m-semiconvex (by Proposition 2.2) intersection of all m-semiconvex sets
containing a given set E ⊂ Rn is called the m-semiconvex hull of the set E.

Let us consider an analog of the shadow problem for the semiconvexity formulated by Yu. Zelins’kyi
and his students I. Vygovs’ka and M. Stefanchuk, which is a partial case of the point belonging to the
1-semiconvex hull of some family of balls; see [8, 9].

What is the minimum number of pairwise non-intersecting closed (open) balls with centers on the
sphere Sn−1 and radii smaller (not larger) than the radius of the sphere that is sufficient for an arbitrary
ray emanating from the center of the sphere to intersect at least one of those balls?

The following theorem gives a solution to this problem in the case n = 2.

Theorem 2.17. ([8, 9]) In order for the center of a circle S1 ⊂ R2 to belong to the 1-semiconvex
hull of the family of pairwise non-intersecting open (closed) disks with radii not greater (less) than the
radius of the circle, and with centers located on this circle, three disks are necessary and sufficient.
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The following theorem gives sufficient conditions for the center of the sphere to belong to the
1-semiconvex hull of the family of balls with centers on this sphere.

Theorem 2.18. ([8, 9]) In order for the center of a two-dimensional sphere in a three-dimensional
Euclidean space to belong to the 1-semiconvex hull of a family of pairwise non-intersecting open (closed)
balls with radii not greater (less) than the radius of the sphere and with centers located on the sphere,
ten balls are sufficient.

Yu. Zelins’kyi considered the shadow problem for a semiconvexity for a certain fixed point in the
space Rn.

Theorem 2.19. ([17]) In order for a selected point in an n-dimensional Euclidean space as n > 2 to
belong to the 1-semiconvex hull of the family of pairwise non-intersecting open (closed) balls that do
not contain the given point, n+ 1 balls are necessary and sufficient.

If the balls have equal radii in the space R3, then the following theorem holds.

Theorem 2.20. ([18]) In order for a point in a three-dimensional real Euclidean space to belong to
the 1-semiconvex hull of a family of open (closed) balls of equal radii, eight balls are sufficient.

If the balls are replaced by convex bodies with non-empty interior, then the following question
arises: What is the minimum number of pairwise non-intersecting closed (open) sets obtained from a
given convex set with non-empty interior by means of some geometric transformations that is sufficient
for a selected point x ∈ Rn to belong to the 1-semiconvex hull of this family (i.e., for an arbitrary ray
emanating from this point to intersect at least one of those sets). In the work by Yu. Zelins’kyi [17], a
solution to this problem was obtained for a group of geometric transformations consisting of motions
and homotheties of a convex set with non-empty interior.

Theorem 2.21. ([17]) In order for a selected point in an n-dimensional Euclidean space as n > 2
to belong to the 1-semiconvex hull of the family of pairwise non-intersecting closed sets obtained from
a given convex set with non-empty interior and compact closure using a group of transformations
consisting of motions and homotheties, n+ 1 elements of this family are necessary and sufficient.

Yu. Zelins’kyi and M. Stefanchuk solved this problem for a family of sets obtained from a convex
set with non-empty interior by means of parallel transfers and homotheties.

Theorem 2.22. ([11]) In order for a selected point in an n-dimensional Euclidean space as n > 2 to
belong to the 1-semiconvex hull of the family of pairwise non-intersecting closed sets obtained from a
given convex set with non-empty interior by means of a group of transformations consisting of parallel
transfers and homotheties, 2n elements of this family are necessary and sufficient.

Consider the analogs of m-convex sets in the complex and hypercomplex spaces.

Let H be the algebra of quaternions h = h0 + e1h1 + e2h2 + e3h3, where h0, h1, h2, h3 ∈ R, and the
imaginary units ei, i = 1, 2, 3, satisfy the conditions

eiei = −1, eiej = −ejei (i 6= j, j = 1, 2, 3),

e1e2 = e3, e2e3 = e1, e3e1 = e2;

see [20].
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Consider an n-dimensional hypercomplex space

Hn := H×H× . . .×H︸ ︷︷ ︸
n≥2

,

whose elements are the points x := (x1, x2, . . . , xn) ∈ Hn, where xj := hj0 + e1h
j
1 + e2h

j
2 + e3h

j
3 ∈ H,

j = 1, n. Then each point h = (h0, h1, h2, h3) ∈ R4n, where hk = {hjk}nj=1, k = 0, 3, is identified with
the point x ∈ Hn.

m-dimensional complex (hypercomplex) planes in the space Cn (Hn) are 2m-dimensional (4m-
dimensional) planes in the space Rn.

Definition 2.7. ([17]) A set E ⊂ Cn (Hn) is called m-complex (m-hypercomplex) convex with respect
to a point x ∈ Cn \ E (x ∈ Hn \ E), m = 0, 1, ..., n − 1, if there exists an m-dimensional complex
(hypercomplex) plane L that passes through this point, x ∈ L, and does not intersect the given set,
L
⋂
E = ∅.

Definition 2.8. ([17]) A set E ⊂ Cn (Hn) is called m-complex (m-hypercomplex) convex if it is m-
complex (m-hypercomplex) convex with respect to every point x ∈ Cn \ E (x ∈ Hn \ E) belonging to
the complement of this set.

Similarly to the real case, for an arbitrary set E ⊂ Cn (Hn) we can consider a minimum m-complex
(m-hypercomplex) convex set that contains E and call it the m-complex (m-hypercomplex) hull of the
set E.

Definition 2.9. ([17]) The intersection of all m-complex (m-hypercomplex) convex sets containing a
given set E ⊂ Cn (Hn) is called the m-complex (m-hypercomplex) hull of the set E.

Yu. Zelins’kyi formulated the shadow problem in complex and hypercomplex spaces; see [17].

What is the minimum number of pairwise non-intersecting closed balls with centers on the sphere
S2n−1 ⊂ Cn (S4n−1 ⊂ Hn) and radii smaller than the radius of the sphere that is sufficient for an
arbitrary complex (hypercomplex) line passing through the center of the sphere to intersect at least one
of those balls (that is, for the center of the sphere to belong to the 1-complex or 1-hypercomplex hull of
those balls)?

Yu. Zelins’kyi found that two balls are necessary and sufficient to create a shadow in a complex
(hypercomplex) space as n = 2.

Theorem 2.23. ([17]) In order for a selected point in a 2-dimensional complex (hypercomplex) Eu-
clidean space C2 (H2) to belong to the 1-complex (1-hypercomplex) hull of the family of pairwise non-
intersecting open (closed) balls that do not contain this point, two balls are necessary and sufficient.

In the work by Yu. Zelins’kyi and M. Stefanchuk [11], a sufficient number of such balls to create a
shadow in complex and hypercomplex spaces as n > 3 was found.

Theorem 2.24. ([11]) In order for the center of a sphere in an n-dimensional complex (hypercomplex)
Euclidean space Cn (Hn), n > 3, to belong to the 1-complex (1-hypercomplex) hull of the family of
pairwise non-intersecting open (closed) balls with centers located on the sphere S2n−1 ⊂ Cn (S4n−1 ⊂
Hn) and radii smaller than the radius of the sphere, 2n (4n− 2) balls are sufficient.
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3. A null-measured set containing spheres of arbitrary radii

Many scientists dealt with the following problem: Find such families of sets which, after applying
certain geometric transformations to them, belong to a set of rather small measure.

In this section, the generalization of the problem solved by A. Besicovitch and R. Rado [21] (they
constructed a planar set of Lebesgue measure zero, which contains circles of arbitrary radii, for the
2-dimensional Euclidean space) to the case of n-dimensional Euclidean space as n > 2.

Let M = (Mi, i ∈ N) be a family of sets in an n-dimensional Euclidean space Rn. We are interested
in the families of sets that, after applying to them the family T of geometric transformations Ti, (i ∈ N),
firstly, belong to a set of sufficiently small measures and, secondly, their union has the zero measure.

In works [22–24], this issue was studied for sets of an n-dimensional Euclidean space Rn. A. Besico-
vitch considered the cases when M is the family of all segments of finite length and arbitrary directions,
as well as the family of straight lines of arbitrary directions.

Theorem 3.1. ([22,23]) For n > 2, there exists a set F ⊂ Rn whose n-dimensional Lebesgue measure
is zero and which contains a linear unit segment of arbitrary direction.

Theorem 3.2. ([24]) For n > 2, there exists a set F ⊂ Rn whose n-dimensional Lebesgue measure is
zero and which contains a line of arbitrary direction.

A. Besicovitch and R. Rado investigated this problem for the family of circles of arbitrary radii in
the Euclidean plane. As a result of geometric transformations, the union of those families could be
placed in a planar closed null-measured set.

Theorem 3.3. ([21]) There is a planar closed set of measure zero that contains circles of arbitrary
radii.

M. Stefanchuk and M. Tkachuk solved this problem for the family of spheres of arbitrary radii in
an n-dimensional Euclidean space Rn. With the help of the family of geometric transformations, they
obtained a set that is a union of spheres of arbitrary radii and whose Lebesgue measure is zero.

Theorem 3.4. ([25]) In an n-dimensional Euclidean space Rn, there exists a null-measured set that
contains spheres of all radii.

4. Extreme elements and quasiconvex sets in hypercomplex space

The natural analog of complex analysis is the hyper-complex analysis. Therefore, there arises a
need to transfer some results of convex analysis known for the real and complex Euclidean spaces to
an n-dimensional hypercomplex space Hn, n ∈ N, which is a direct product of n copies of the bodies
of quaternions H. G. Mkrtchyan worked on those problems; see [26, 27]. He introduced the concepts
of hypercomplex convex and strongly hypercomplex convex sets and transferred some results of linear
convex analysis to the hypercomplex space Hn. Yu. Zelins’kyi (see [28]) and his students M. Tkachuk,
T. Osipchuk, and B. Klishchuk continued to develop this direction.

In this section, some properties of extremal elements and H-quasiconvex sets in the n-dimensional
hypercomplex space Hn are presented; see [29,30].

Let E ⊂ Hn be an arbitrary set that contains the coordinate origin O = {0, 0, ..., 0}. Put x =
(x1, x2, ..., xn), h = (h1, h2, ..., hn), 〈x, h〉 = x1h1+x2h2+ ...+xnhn. The set E∗ = {h|〈x, h〉 6= 1, ∀x ∈
E} is called conjugate with respect to the E set; see [26].

The hyperplane is a set L ⊂ Hn that satisfies one of the following conditions 〈x, a〉 = w or 〈x −
x0, a〉 = 0, where x is an arbitrary point of the set L, x0 is a fixed vector, w is a fixed scalar from H,
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and a is a fixed covector. We will refer to the covector a as the normal. Accordingly, we will call as
affine only the functions of the form: l(x) = 〈x, a〉+ b, b ∈ H.

If every point x is associated with a hyperplane {y|〈x, y〉 = 1}, then the conjugate set E∗ can be
interpreted as a set of hyperplanes that do not intersect the set E.

Definition 4.1. ([26]) A set E ⊂ Hn is called hypercomplex convex if, for an arbitrary point x0 ∈
Hn \ E, there exists a hyperplane that passes through the point x0 and does not intersect the set E.

In the equation of hyperplane, the order of multiplication is essential because this operation is
non-commutative in the algebra of quaternions. Therefore, for certainty, G. Mkrtchyan considers right
hyperplanes, i.e., such hyperplanes that the point x = (x1, x2, . . . , xn) ∈ Hn with variable coordinates
is multiplied by the fixed point a = (a1, a2, . . . , an) ∈ Hn on the right. Note that the hypercomplex
dimension of the hyperplane equals n− 1 in this case, whereas its real dimension equals 4n− 4.

Definition 4.2. ([26]) A set E ⊂ Hn is called strongly hypercomplex convex if its arbitrary intersection
with the hypercomplex line γ is acyclic, i.e., H̃ i(γ

⋂
E) = 0, ∀i > 0, where H̃ i(γ

⋂
E) is a reduced

Alexandrov-Čech cohomology group of the set γ
⋂

E with coefficients in the group of integer numbers.

In work [27], it was proved that strongly hypercomplex convex compact sets are hypercomplex
convex.

Let E ⊂ H be an arbitrary set. The complement to the union of the unbounded components of
the set H \ E is called the h-combination of the points of the set E and is denoted as [E]. If E is an
arbitrary set in the space Hn, n > 1, then we say that the point x belongs to the h-combination of
points from E if there is an intersection of the set E with a hypercomplex line γ such that x ∈ [E

⋂
γ].

The set of such points from Hn is called the h-combination of points of E and is denoted as [E]. By
induction, the m-fold h-combination is determined as [E]m = [[E]m−1]; see [28].

Definition 4.3. ([26,28]) The h-hull of a set E ⊂ Hn is the set Ê =
⋂
π
π−1[π(E)], where π : Hn → λ

are all possible linear projections of the set onto hypercomplex lines, [π(E)] is the h-combination of
points of the set π(E), and π−1[π(E)] = {x ∈ Hn| π(x) ∈ π(E)} is its complete prototype.

The following theorem asserts that for an arbitrary set of the space Hn, the set of points of its
h-hull coincides with the h-combination of the points of this set.

Theorem 4.1. ([29]) If a set E ⊂ Hn is an h-hull, then E = [E].

The next theorem gives another way of constructing the h-hull of a set.

Theorem 4.2. ([29]) For an arbitrary set E ⊂ Hn, its h-hull can be represented in the form Ê =
(
⋃
λ

]λ
⋂
E∗[)∗.

Definition 4.4. ([26]) The h-interval of radius r and centered at the point x is the intersection of an
open ball of radius r centered at the point x with a hypercomplex line passing through the point x.

Definition 4.5. ([26]) A point x ∈ E ⊂ Hn is called an h-extreme point of the set E if E has no
h-interval that would contain x.

Definition 4.6. ([29]) The h-ray is a closed unbounded acyclic subset of a hypercomplex line with
non-empty boundary.
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Definition 4.7. ([29]) The extreme h-ray of a set E ⊂ Hn is the h-ray H that belongs to the set E if
the set E \H is hypercomplex convex and every boundary point of the ray H is the h-extreme point of
the set E. (This is equivalent to the statement that no point of the ray H is interior for an arbitrary
h-interval that belongs to the set E and has at least one point outside H.)

For a set E ⊂ Hn, we use the following notation: hext E for the set of its h-extremal points,
rhext E for the set of h-extremal rays, and hconv E for the h-hull of E.

The following theorem generalizes the Klee theorem of convex analysis (see [1]) to the hypercomplex
case.

Theorem 4.3. ([29]) Let E ⊂ Hn be a closed strongly hypercomplex convex body (i.e., intE 6= ∅) with
non-empty strongly hypercomplex convex boundary ∂E; then E has the form E = E1 × Hn−1, where
E1 is an acyclic subset of the line H with non-empty interior with respect to this line.

Theorem 4.4. ([29]) Every closed strongly hypercomplex convex set E ⊂ Hn that does not contain a hy-
percomplex line is an h-hull of its h-extreme points and h-extreme rays, E = hconv(hextE

⋃
rhextE).

The class of strongly hypercomplex convex sets is not closed with respect to intersections. Therefore,
the basic axiom of convexity – the intersection of any number of convex sets must be convex – does
not hold for it. M. Stefanchuk defined a class of sets that includes strongly hypercomplex convex sets
and is closed with respect to intersections; see [29].

Definition 4.8. ( [29]) A hypercomplex convex set E ⊂ Hn is called the H-quasiconvex set if its
intersection with an arbitrary hypercomplex line γ does not contain a three-dimensional cocycle, i.e.,
H3(γ

⋂
E) = 0.

It is obvious that the class of H-quasiconvex sets includes strongly hypercomplex convex domains
and compact sets.

The following theorem demonstrates the closedness of the class of H-quasiconvex sets in the sense
that the intersection of an arbitrary family of compact H-quasiconvex sets is an H-quasiconvex set.

Theorem 4.5. ( [29]) The intersection of an arbitrary family of H-quasiconvex compacts is an H-
quasiconvex compact set.

Definition 4.9. ( [28]) The linear polyhedron is a set of the form E = {x| fj(x) ∈ Ej , j ∈ J =
{1, 2, ..., N}}, where Ej ⊂ H1, fj(x) =

∑n
k=1 ajkxk, two arbitrary functions fk(x) and fj(x), k 6= j,

are linearly independent, and each function fj maps E to a subset of the hypercomplex line Ej.

Let us present some examples of H-quasiconvex sets.

Theorem 4.6. ([29]) A compact linear polyhedron whose all faces do not contain three-dimensional
cycles is the H-quasiconvex set.

Corollary 4.1. ( [29]) The intersection of strongly hypercomplex convex compact sets is an H-
quasiconvex set.

Theorem 4.7. ( [29]) Every 3-dimensional acyclic hypercomplex convex compact set E is H-
quasiconvex.
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5. Hypercomplex convex and conjugate functions in hypercomplex space

Multi-valued linearly convex functions, whose graphs are given by linearly convex sets, were studied
by Yu. Zelins’kyi in the n-dimensional complex space Cn; see [2, 3].

In this section, some results on multi-valued functions in complex space are generalized to the
hypercomplex space Hn, n = 1, 2, . . . , which is a direct product of n-copies of the bodies of quaternions
H (H1 := H). In particular, some properties of hypercomplex convex and conjugate functions in Hn

are given; see [30–32].

Note that the multiplication operation of hypercomplex numbers may not satisfy the commutative
law. For an arbitrary scalar λ ∈ H and a vector x ∈ Hn, the multiplication of the vector by the scalar
is given in the form: λx := (λx1, . . . , λxn), whereas the multiplication of the vector by a number on
the right is not the product at all. Vectors x, y are called collinear if x = λy with a certain λ ∈ H.

The functional l : Hn −→ H with the characteristic property l(ax+ by) = al(x)+ bl(y) for all x and
y from Hn and arbitrary a and b from H is called the linear functional. We confine the consideration
to linear functionals that can be written in the form l(x) = x1a1 + · · ·+ xnan, where a = (a1, . . . , an)
is a fixed element from Hn. Since an arbitrary a ∈ Hn generates a functional of this type, then
a = (a1, . . . , an) is called the covector or the element of the conjugate space Hn∗.

Let the hyperplane l ⊂ Hn divide the space Hn into two half-spaces, H1 and H2.

Definition 5.1. ([1]) A hyperplane l ⊂ Hn is called the support of the set E ⊂ Hn if the set E is
contained in the closed half-space H1 = H1

⋃
l but not in any other closed half-space belonging to the

half-space H1.

Definition 5.2. ([31]) A hypercomplex convex set E ⊂ Hn is called strictly hypercomplex convex if,
for an arbitrary support hyperplane l, the intersection l

⋂
E does not contain points interior to l.

In works [31, 32], the concept of multi-valued function was introduced. A function f : Hn −→ H

is called multi-valued if the set f(x) ∈ H is the image of the point x ∈ Hn. The domain of such a
function is denoted as Ef := {x ∈ Hn : ∃y ∈ H, y = f(x)}. The graph of the function f : Hn −→ H

is a set of points of the form Γ(f) = {(x, y) ∈ Hn × H}, which satisfies the condition y ∈ f(x). A
function l : Hn −→ H is called affine if its graph is a hyperplane.

Definition 5.3. ([31, 32]) A multi-valued function f : Ef −→ H is called hypercomplex convex if, for
an arbitrary pair of points (x0, y0) ∈ Hn+1 \Γ(f), there exists an affine function l such that y0 = l(x0)
and l(x)

⋂
f(x) = ∅ for all x ∈ Hn.

Definition 5.4. ([31]) A hypercomplex convex function f : Ef −→ H is called strongly hypercomplex
convex (respectively, strictly hypercomplex convex) if its graph Γ(f) is a strongly hypercomplex convex
(respectively, strictly hypercomplex convex) set in Hn+1 (in the strict case, we also require the openness
of the function domain in order to avoid vertical tangents x = x0 to the graph Γ(f), which will be
the support hyperplanes of the graph of the function f , and their intersection with the graph of the
function f may have points internal to these hyperplanes).

The definition of the hypercomplex convex function can be extended to multi-valued functions that

take values in the extended hypercomplex plane
o
H = H

⋃
(∞) compactified by a single point, while

considering that at the points x ∈ Hn where f(x) is not defined, f(x) = ∞ (in so doing, we consider
that in an arbitrary neighborhood of the point x, there are points where the function is defined).

The effective set of a hypercomplex convex function f is the projection onto Hn of the graph of
the function f . The hypercomplex concave function is a multi-valued function f for which the function
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ϕ = H\f is hypercomplex convex. The multi-valued affine function is a function that is simultaneously
hypercomplex convex and hypercomplex concave, and for which there exists at least one point x ∈ Hn

where each of the sets (f(x)
⋂

H), (H \ f(x)) is non-empty (i.e., at this point, the value of the function
f differs from ∅ and H). For a multi-valued affine function f , the equality f(x) = f(Θ) + l(x) holds,
where l is a single-valued affine function, and Θ = (0, 0, ..., 0). A hypercomplex convex function is
called the eigenfunction if the relationship f(x)

⋂
H 6= ∅ holds for at least one x, and the inequality

H \ f(x) 6= ∅ holds for all x; see [31], [32].

Let us give some examples of hypercomplex convex functions.
For every normal vector y, consider all hyperplanes l : 〈x, y〉 = w that do not intersect some set E:

l
⋂
E = ∅. For every y, we denote the set of all w such that l

⋂
E = ∅ as WE(y).

Definition 5.5. ([31, 32]) The function

WE(y) =
o
H \

⋃

x∈E

〈x, y〉

is called the support function of the set E ⊂ Hn.

Note that the graph of the support function Γ(WE) = {(y,WE(y)) : y ∈ Hn∗} is a cone. If
z ∈ Γ(WE), then ∀α ∈ H has the inclusion αz ∈ Γ(WE).

Definition 5.6. ([31, 32]) If E ⊂ Hnis a hypercomplex convex set, then the function

δ(x|E) =

{
0, if x ∈ E,

∞, if x /∈ E,

is called its indicator function.

Note that the support and indicator functions are hypercomplex convex.

Let us present some properties of hypercomplex convex functions.

Theorem 5.1. ([31, 32]) If fα, α ∈ A, is a family of hypercomplex convex functions (here A is an
arbitrary set of indices), then the function f =

⋂
α∈A

fα given by the intersection of the family fα is

hypercomplex convex.

Definition 5.7. ([31]) We say that the function g = int f if its graph can be presented in the form
Γ(g) = int (Γ(f)), where int(·) denotes the interiority of the corresponding set.

Theorem 5.2. ( [31]) If f is a hypercomplex convex function and Ef = E int(f), then int f is a
hypercomplex convex function.

Let f : Ef −→
o
H = H

⋃
(∞) be a multi-valued function. Consider the support function for the

graph Γ(f),

WΓ(f)(z
∗) =

o
H \

⋃

z∈Γ(f)

〈z, z∗〉 =
o
H \

⋃

x∈Hn,y∈f(x)

(〈x, x∗〉+ yy∗),

where z = (x, y), z∗ = (x∗, y∗), x ∈ Hn, x∗ ∈ Hn∗; y, y∗ ∈ H. Since the graph of the support function
is a cone, it is completely determined by its cross-section, for example, the hyperplane l : z∗n+1 = −1,

WΓ(f)(x
∗)
⋂

l =
o
H \

⋃

x∈Hn

(〈x, x∗〉 − f(x)).
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The function conjugate to f is a function defined by the equality

f∗(y) =
o
H \

⋃

x

(〈x, y〉 − f(x)); (5.1)

see [31,32].
From this definition, a hypercomplex analog of the Young–Fenchel inequality follows (see [2]),

〈x, y〉 /∈ f(x) + f∗(y). (5.2)

Relationship (5.2) can be rewritten in the form

〈x, y〉 ∈ H \ (f(x) + f∗(y)),

or

f(x)
⋂

(〈x, y〉 − f∗(y)) = ∅

for all x ∈ Hn, y ∈ Hn∗.
The function conjugate to the function f∗(y) has the following form:

f∗∗(x) = (f∗)∗(x) =
o
H \

⋃

y

(〈x, y〉 − f∗(y)).

Consider examples of functions conjugate to the hypercomplex convex functions presented above.

Example 5.1. Conjugate to the multi-valued affine function f(x) = 〈x, y0〉+ f(Θ), where f(Θ) is a
set, is the function

f∗(y) =
o
H \

⋃

x

(〈x, y〉 − 〈x, y0〉 − f(Θ)) =
o
H \

⋃

x

(〈x, y − y0〉 − f(Θ)) =

=

{ o
H \ (−f(Θ)) if y = y0,

∞ if y 6= y0.

Example 5.2. Let E ⊂ Hn, Hn \ E 6= ∅, and f(x) = δ(x|E). Then,

f∗(y) =
o
H \

⋃

x

(〈x, y〉 − δ(x|E)) =
o
H \

⋃

x⊂E

〈x, y〉,

i.e., the conjugate function of the indicator function of the own subset of E is the support function of
this set.

We write f1 ⊇ f2 if f1(x) ⊇ f2(x) for all x, and do not exclude the case f2(x) = ∅ for some points
x. We also say that f1 is a continuation of the function f2, and f2 is a narrowing of the function f1.
From the inclusions f1 ⊇ f2 and equalities (5.1) and (5.2), it follows that f∗1 ⊆ f∗2.

Let us present some properties of conjugate functions.

Theorem 5.3. ([31, 32]) For every function f : Hn −→ H, the inclusion f ⊂ f∗∗ is valid.

Definition 5.8. ([31,32]) A multi-valued function f : Hn −→ H is called open (respectively, closed or
compact) if its graph is an open (respectively, closed or compact) set in Hn+1.
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Theorem 5.4. ( [31, 32]) The function conjugate to an open function is closed and hypercomplex
convex.

Corollary 5.1. ([31,32]) The function conjugate to the function f : Hn −→ H is hypercomplex convex.

Theorem 5.5. ([31,32]) Let f be the hypercomplex convex eigenfunction. Then f∗ is the eigenfunc-
tion.

Theorem 5.6. ([31]) Let we have a mapping Λ: Hn −→ Hn, which is a hypercomplex linear homeo-
morphism, and a function g : Hn −→ H. Let

f(x) = λg(Λx+ w0) + 〈x, y0〉+ γ0,

where w0 ∈ Hn, y0 ∈ Hn∗, γ0 ∈ H, λ ∈ H \ {0}. Then,

f∗(y) = λg∗(λ−1Λ−1∗(y − y0))− 〈Λ−1w0, y − y0〉 − γ0.

From this theorem, we obtain formulas for calculating some conjugate functions:

f(x) = g(x+ x0) ⇒ f∗(y) = g∗(y)− 〈y0, y〉
f(x) = g(x) + 〈x, y0〉 ⇒ f∗(y) = g∗(y − y0);

f(x) = λg(µx), λ 6= 0, µ 6= 0 ⇒ f∗(y) = λg∗(λ−1µ−1y).

The following theorem is a hypercomplex analog of the Fenchel-Moreau theorem.

Theorem 5.7. ([31, 32]) Let a multi-valued function f : Hn −→ H be such that H \ f(x) 6= ∅ for all
x ∈ Hn. Then f∗∗ = f if and only if f is hypercomplex convex.

Definition 5.9. ([31,32]) A function f is called homogeneous if f(λx) = λf(x) for all scalars λ ∈ H\0.
Theorem 5.8. ([31, 32]) Let f : Hn \ Θ −→ H be a hypercomplex convex homogeneous eigenfunction
and f(Θ) = H \ 0. Then f is a support function of some set.

Corollary 5.2. ([31, 32]) If the homogeneous hypercomplex convex function f : Hn \ Θ −→ H is not
affine, then f∗(y) = δ(y|Ef∗).
Theorem 5.9. ([31,32]) If f : Hn\Θ −→ H is the homogeneous hypercomplex convex function different
from the affine function, then

f(x) =
o
H \

⋃

y∈Ef∗

〈x, y〉.

Example 5.3. An example of homogeneous functions is the hypercomplex Minkowski function, which
is defined as follows. Let E be a set in Hn, and Θ ∈ E. Put RE(x) = {w ∈ H |w−1x ∈ E} as
x ∈ Hn \ Θ, RE(Θ) = H \ 0. Let us demonstrate the homogeneity of the function RE . We have
RE(λx) = {w ∈ H |w−1(λx) ∈ E} = {λw ∈ H | (λw)−1(λx) = w−1λ−1(λx) = w−1x ∈ E} = λRE(x).

Definition 5.10. ( [31, 32]) Let fα : H
n −→ H, α ∈ A, be multi-valued functions. The function

(
⋃
α
fα)(x) :=

⋃
α
fα(x) is called the union of functions fα, and (

⋂
α
fα)(x) :=

⋂
α
fα(x) is called their

intersection.

The duality theorem holds for conjugate functions.

Theorem 5.10. ([31, 32]) Let fα : H
n −→ H, α ∈ A, be multi-valued functions. Then, the following

equality holds: (⋃

α

fα

)∗

=
⋂

α

f∗
α.
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des sciences et des lettres de  Lódź, 68(2), 77–84 (2018).
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