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We study the fractional wave equation with changing direction of evolution. The exis-
tence and uniqueness of a generalized solution are proved. Bibliography: 5 titles.

1 Introduction

Assume that 7' > 0 and €2 C R™ is a bounded domain with smooth boundary I' = 0¢2. In the
cylinder @ = (0,7) x Q, S = (0,7) xI', 0 < v < 1, we consider the mixed problem for the
model equation with fractional Gerasimov—Caputo derivative

Of (k(t,x)u(t,x)) — Au(t,x) + yue(t,x) = f(t, x) (1.1)

where the coefficient k(t,z) € C1(Q) is of arbitrary sign.

The fractional diffusion equation was considered in [2], where the solvability of some bound-
ary value problems was established by the method of a priori estimates of the form

T
/ (o) D¥ (ko) dt > C(Jull ).
0

More general inequalities and there applications can be found in [1] (see the references in [2]).

In the present paper, we use a similar technique to study the fractional wave equation. The
statement of the problem is similar to that for mixed type equations with usual derivative.
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Namely, under some conditions, the problem
(k(t, @)us(t @) — Dult,x) +yuslt, @) = f(t,2),
u(t,z)|s =0,
u(0,z) =0,
ut(0,2) = uo(z), =z € Qf = {z|k(0,z) > 0},
w(T,x) =u(x), xe€Qp={z|k(T,z) <0}

is well-posed. A similar mixed problem is well-posed for Equation (1.1). We prove the existence
of a generalized solution to this mixed problem. The uniqueness of a solution is established
under additional conditions on the sign of k(0,z) and k(7 x).

2 Auxiliaries

We use the following definitions and properties of fractional derivatives (see [3]). Assume
that 0 < v < 1 and t > 0. The fractional integral of order v with the origin at a point a is
defined by

L sea(t—a) [ y(s)
T = B [ s

a

The fractional Riemann—Liouville derivative of order v with the origin at a is defined by

t
1 d [ y(s)
Dly(t) = ad ds.
ay(®) F(l—y)dt/|t—s|” §

The fractional Gerasimov—-Caputo derivative is defined by

s 1 [y
%uvll) = v / = o &

In the case a = 0, we write J"y(t), D"y(t), 0"y(t). As known, for v # 1/2

T
Co) Iy 1) < / () + (D¥y(0)?) dt < CL()ly Oy 0.1
0

We use some assertions proved in [2]. Let y(t) € C1(0,T). Then for some constant C' > 0
we have (see [1, Lemma 4.1] and [2, formula (2.1)])

/y C/ 1w>ﬁ+0M“‘W%n§ (2.1)
0

moreover, if y(0) = 0, then (see [1, Lemma 5.4])

T

T
[y = [ DD o)D"y de > CID YO s
2 )
0 0
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and
T
[y @Dy at > o) oo 2.2
0

Further, for any smooth functions f(t) and g(t) we set

T
_ / F(B)g(t) dt
0

Then for any 0 < p < 1/2 (see [2, formula (2.2)])

[ J(f, )] < Cs(p, TIWT*F ()| o 0,0) 1D 9 ()| 2 0,1 - (2.3)

Assume that 0 < p <1 and 0 < 6 < 1. We put

t

J —d
noy(t T / t—s+9 %
0

¢
1 d
K t —
nay(t) = dt/ t—s+9
0
It is easy to see that
d
K t,x) = —J1_,9-

For some constant Cx = Ck (1, T) > 0 independent of § we have (see [2, formula (2.3)])

T
/ YO K oyt dt > Crclly(®) | aom- (2.4)
0
We set
T
Dal(®): () = [ (D 5(0) ~ Koo (®)(0) .
0

Lemma 2.1 ([2, Lemma 2.1]). There exists a constant C(u,T) > 0 independent of 6 such
that for any smooth functions y(t) amd z(t) the following inequality holds:

[Dyo(y(t), ()] < Clous IO 2|1y () lwa 0.y 128wy 0.7 (2.5)

Corollary 2.1 ([2, Corollary 2.1]). For any smooth function y(t) the following estimate
holds:

— Crat 2y O s 1) (26)

T
[ oK an@ e > oy .,
0

with some constants Cr1(p, T) > 0 and Cga(p, T) > 0.
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Corollary 2.2. For any smooth function y(t) such that y(0) = 0

T

[ VO au®dt > Culu®I, s g, ~ Crst Iy ry (27
0

with some constants Crs(u, T) > 0 and Cg4(p, T) > 0.

Proof. First of all, we note that

T T
/ Y (K gy(t) di = / oy ()DPy(t) dt — D,up(y(t). ' (1),
0 0

Then we apply the inequality (2.2) and Lemma 2.1. O

3 Statement of the Problem and Existence Theorem

By technical reasons, we consider a bit more general problem

0" (k(t,x)u(t, ) — Au(t,x) + y1u(t, x) + 120"u(t,x) = f(t, ), (3.1)
u(t,x)|s =0, (3.2)
u(0,z) =0, (3.3)
u(0,2) =0, =z € Qf ={z|k(0,2) > 0}, (3.4)
w(T,x) =0, x€Qp={z|k(T,z) <0} (3.5)
A generalized solution to this problem is determined similarly to [2]. We denote
XO(x) = k(oax)ut(ovx)v XT(x) = k’(T,(L‘)ut(T,J})
Note that (3.4) and (3.5) imply
supp xo(z) € Qp, supp xr(z) € Qf,, (3.6)

where Q; and QF are defined as in (3.4) and (3.5). Formally applying the operator J” to
Equation (3.1), we obtain the equality for ¢ € [0, 7]

E(t, x)ue(t, x) — J"Au(t, ) + . J w(t, ) + yoult,z) = JV f(t,x) + xo(z) (3.7)

and
xr(z) — xo(x) = JYAu(T, x) + 1 J"w (T, z) + you(T,x) = J" f(T, x). (3.8)

A function u(t,z) € Lo(Q) is called a generalized solution to the problem (3.1)—(3.5) if
Ut(t,l') € L2(Q)a U(O,LE) =0,
O u(t,x) € C([0,T); Wy (Q),  k(t, z)us(t,z) € C([0,T], Wy 1(Q)),

u(t,z) € Ly(0,T; W3 (),  JYu(t,z) € C([0,T]); Wi (Q));
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moreover, (3.7), (3.8), and (3.6) hold for some functions xo(z), x7(z) € L2(Q).
Everywhere below, we set =1 — v.
Theorem 3.1. Assume that v, >0, f(t,x) € WQHN(O,T; Ly(Q)), and for some v9 > 0

2CK (p, T)y1 + 2v2 + ke (t, ) = 70, (t,2) € Q, (3.9)

where the constant C(pu,T) is taken from the inequality (2.4). Then the problem (3.1)—(3.5)
has a generalized solution such that

1+p

u(t,z) € Wy (0,T; W), wlt,z) € WE(0,T; Ly(R)) (3.10)
and
2 2 2 2 2
ol oy + Il 10 gy + I 25 < Oy
Moreover, if D*f(t,x) € L2(Q), then
/(CK(M,T)% + 2+ ke(t, 2)/2)uf (t,2) dQ < /D”f(t,ﬂﬁ)ut(t,iv) dQ. (3.11)
Q Q

Proof. As in [2], we use the regularization method proposed in [4]. Let 0 < ¢ < 1. We
introduce a family of smooth functions f.(¢,z) such that

fe(0,2) =0, (3.12)
il_l’)I[l) Hf€(t7x) - f(t’x)HWZH/Z(O,T;LQ(Q)) = 07 (313)
. 2

;1_I)I(1)€Hf5(t, w)ng(o,T;Lg(Q)) =0. (3.14)

Note that the condition (3.12) is compatible with the condition (3.13) since p < 1. Then we
consider the problem (see [4])

—eugy + (k(t, x)ue(t, ) — DFAu(t, x) + v1 DPue(t, x) + youe(t, x) = D fo(t, x),
u(t,z)|s =0, u(0,z) =0,

— eug (0, 2) + k1(0,2)u (0, 2) = 0,

—euu(T,x) + k~ (T, z)u (T, z) = 0.

+ Jn o onm>0,  _ Jn, n<Q,
nt = n- =

As usual,

0, n<0, 0, n=0.

To establish the solvability of the regularized problem, we use the special Galerkin method. Let
{wg () }ken be the system of eigenfunctions of the problem

— Awg = Mwg,  wi(z)|r =0,

that are orthonormal in Ly(€2). For any n > 0 we denote by E,, C L2(Q2) the subspace of
functions spanned by the vectors wy, k = 1,n. We note that the space F,, is finite-dimensional
and, consequently, for some constant C'(n) we have the inequality

1l iy < COAIE, @) Vi € B (3.15)
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We denote by P, the orthogonal projection in Ly(2) onto the space F,. Assuming that 6 =
O(g,mn) (the exact value will be indicated later), we consider the problem

— eVnptt(t, ) + Po(k(t, )vne(t, x))e — K, gAvp(t, x)

+ 1K oUni (t, @) + Yovps = Ky g P f2(t, ), (3.16)
un(t,z)|s =0, wv,(0,2) =0, (3.17)
— eUnet(2,0) 4+ Pp(k1(0, 2)vne (0, 7)) = 0, (3.18)
— evput(T, z) + P (k™ (T, x)vpt (T, z)) = 0, (3.19)

where vy, (¢, ) = Z Vi (t)wg(x). If no comfusion arises, we omit the superscript n. It is easy to

see that the solvabﬂlty of this system follows from the uniqueness of a solution. Therefore, it
suffices to derive a suitable a priori estimate for the solution.

We multiply Equation (3.16) by 2v.(t, ) and integrate over the cylinder @

/ (10, 2) [0 (0, ) + |k (T, ) [o2(T, z)) + 2 / oBdQ + / (290 + ko)o? dQ

Q Q Q
+ 2 /((KMQVU, Vvt) + ’YlvtK,u,GUt) d@ =2 / /UtK‘u"efg dQ. (320)
Q Q

Let 6 > 0. Using (2.4), (2.6), (2.7), (3.15), and (2.3), we get

/(|k(0,x)vf(0,x) + ]k(T,:c)|vt2(T,x)) + 2€/vtt d@ + 25CK1HUtH
Q Q

WE/2(0,T;L2())

+ /(QCK(’YI - 5) + 2'}’2 + kt)UtQ dQ + CK3Hvv”Wél+”)/2(0,T;L2(Q))
Q

< 20 /2”Utt||L2(Q (6CK2 + C( )CK4) + CHfHWM/Q OTLQ(Q H t”Wi‘/Q(OTLz(Q))

Choosing § and 6 sufficiently small, we get the required estimate
Jk.2)167(0.0) + KT 0) o (2.2)) + = [ o0
Q Q

+ ot )2 + Vol sz (3.21)

W4/2(0,T;L2(2) 0,T;L2(2)) C”fHW“/2 0,T5L(Q))"

This estimate guarantees that the system (3.16)—(3.19) is uniquely solvable. Note that for all
(t,z) € @ we have the equality

(*gUntt + Pn(kvnt))‘g = V,Q(Pnfs + Avn - 71vnt) — 72Un
and, due to the conditions (3.17), (3.18), and (3.19),

Pn(k+(T7 x)vnt(Ta .T)) - Pn(k_ (O> :U)Umf(ov '75)) = JV,G(PnfE + Avy, — '71'Unt)(T7 .T) - PVQUH(Tv x)
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Now, we can pass to the limit as n — oco. Passing, if necessary, to a subsequence, we assume
that for some functions z.o(x), zer(x), us(t, x) the following convergences take place:

VIEQ, 2) 0,6 (0, 2) — zeo(z), weakly in Ly(€2),
(T, ) ot (T, ) = zr (), weakly in Ls(2),
v (t, ) = u(t, x), weakly in W2(1+“)/2(0,T; W3 (Q)),
Unt(t, ) — ug(t, ), weakly in WQ“/Q(O,T; Ly(Q))
as n — oo. In this case, due to the estimate (3.21),
el + Wl e < C (322)

In particular, JYug(t,z) € C([0, T]; W3(2)) and J”uet(O,m) = 0. Next, we denote

XOE(x) =TV ’k_(0,$)’280($), XTE(x) =V ‘k+(T7x)‘ZET(x)'

It is clear that these functions satisfy the conditions (3.6) and, by virtue of (3.18) and (3.19),
the following equalities hold:

— EUgtt + kg — X0e = Ju(fs + Au, — 'Yluat) — Y2Ugt,
XTE(QS) - XOE(-T) = Jl/(f&‘ + Aue — Vluat)(Tv -73) - 'YQUat(T7 33)

Now, we can pass to the limit as € — 0. All actions are standard, and we omit them.

Now, assume that D* f(t,x) € La((Q). Passing to the limit as n — oo and then as ¢ — 0 in
(3.20), we get (3.11). O

4 Uniqueness Theorems

In a more general case, the study of the uniqueness of such a generalized solution is difficult
even in the case of ordinary derivatives (see [4]). We consider a simpler case where the functions
k(0,z) and k(T,x) do not change the sign.

Theorem 4.1. Assume that k(0,z) > 0
Then a generalized solution to the problem (3.1)—(3.5) is unique.

, k(T,x) >0, v1 > 0, and 2 > 0 is large enough.
Proof. Consider a solution u(t,x) to the problem (3.1)-(3.5) with f(¢,2) = 0. Then

E(t, x)ug(t, z) — J"Au(t,z) + 110" u(t, z) + yoult, z) = xo(z). (4.1)

By (3.6) and the inequality k(0,z) > 0, we have xo(z) = 0. Multiplying (4.1) by 2u(¢,z) and

integrating over (), we have

/k:(T, z)u* (T, z) dz + 2/(J”Vu(t,x),Vu(t,$))dQ
Q Q

+ 27 /u(t,x)@l_”u(t,m) aQ + /(272 — k(¢ 2))u’(t, z) dQ = 0.
Q Q

Thus, /(272 — ky(t, 2))u?(t,2) dQ < 0 and u(t,z) = 0 provided that 2vo — k(t,z) > 7 > 0. O
Q
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We note that the above proof is similar to that of the uniqueness theorem for the wave
equation [5, Theorem 3.1].

Corollary 4.1. Let the assumptions of Theorem 3.1 hold. Assume that k(0,z) > 0 and
k(T,z) > 0. Then a generalized solution to the problem (3.1)—(3.5) is unique.

Proof. Consider a solution u(¢,x) to the problem (3.1)-(3.5) with f(t,z) = 0. It is clear
that for any A

0" (k(t,z)ur(t, x)) — Au(t,x) + nue(t, x) + (y2 + A) 0" u(t, z) = N u(t, ). (4.2)

We note that DH0Vu(t,x) = w(t,z) € La(Q). By Theorem 4.1, the solution to problem (4.2),
(3.2)—(3.5) is unique, and, by Theorem 3.1 (see (3.11))

/(CK(:U'vT)71 +y A+ kt(tv x)/Q)U?(t,x) dQ < /)\U?(t,.ib) dQ.
Q Q

Thus, ”yo/u?(t,x) dQ < 0 ant u(t,x) = 0. O
Q

A simple idea proposed in Theorem 4.1 does not work if k(0,2) < 0 or k(T ,z) < 0. In
such cases, we use convolution mollifiers. The arguments are not difficult, but a rigorous proof
requires a lot of tedious technical work.

For any a and b we set
Qa,b = (a, b) x €.

First of all, we need to extend the functions k(t,z) and u(t, x) inside Q_r 7. We set

(t,2) 0, t <0,
u(t,z) =
u(2T —t,z), t>T.

The function k(t,z) is extended in such a way k(t,z) € C'(Q_ro7), and the condition (3.9) is
satisfied in Q_pop. Let p(t) > 0 be a smooth even function such that supp p(t) C (—1,1), and
let

1
sen(t)p'(t) <0, /p(t) dt =1. (4.3)
~1
We note that
1
/tp’(t) dt = —1. (4.4)
-1

For any § > 0 we denote
1
ps(t) = 5p(t/0),  us(t,z) = ps(t) * ult, z).
Lemma 4.1. Assume that a < b, w(t,x) € L2(Qqap), 0 < 26 < b—a. Denote é(s = Qa+5b—5

and F(6,t,x) = k(t,z)ps(t) * w(t,z) — ps(t) * (k(t,z)w(t,z)). Then Fi(d,t,x) € La(Qs) and
HFt(5at7x)”L2(@§) —0asd— 0.
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Proof. Let (t,2) € Qs. It is casy to see that

b
Fi(o,t,x) = / ps(t — s)K'(t,x) — ps(t — s)(k(s,z) — k(t,x)))w(s, x) ds.

By the Taylor formula k(s,x) = k(t,z) + k'(t,x)(s — t) + o(|s — t]), it follows that

b
Fy(6,t,2)(t,2) = K (t,2) (ps(t) + t05(1)) * w(t, z) + o(5) / IPh(t = 9)llw(s, )] ds.

Taking into account (4.3) and (4.4), we obtain the required statement. O

Lemma 4.2. Assume that a < b, 0 < a < 1/2, w(t,x) € W' (a,b; L2(2)), 0 < 2§ < b —a.
Then for some = (a,a,b) >0 and any ty € [a + J§,b — 0]
[ws(to, 21170 < C&" M lwt, ) s apra0)):

Proof. Let 1/g=1/2—« and 1/p =1 — 1/q. By the embedding theorem,

[ws(to, )| < Clips() L, (~a.) 1wt @) lwg (@) < CEN PP lw(t, ) lwg ap):

Note that 1 < p < 2. So, we put 5 = (2 — p)/p and get

lws (to, 2) 17, () < OO Hlw(t, ) fyg (0 510 ()
The lemma is proved. O
Lemma 4.3. Assume that a < b, w(t,z) € La(Qap), k(t,z) € Cl(Qab) (a x) = 0.
0 <20 <b—a. Extend by zero k(t,z), w(t,z) for t < a and consider (kw)s(t,z). Then
H (kw)&f(t? x)HLQ(Qa_g’a) < CH’U)(t, 'I)HLQ(Qa’(H_(;)’
Proof. It is easy to see that for t < a

a+d
(kw)gr(t, x) = k(t, 2)ps = w(t, z) + / p5(t — s)(k(s,x) — k(t,x)))w(s, z) ds.

a
19
It remains to note that k(s,z) — k(t,z) = O(]s — t|) and / |p5(t)| dt < C/5. O
-4
Lemma 4.4. Assume that a <b, 0 < o < 1, w(t) € Wi'(a,b), and (an even continuation)
w(t) = w(2b—t) fort >b. Then w(t) € Ws*(a,2b — a).
Proof. Without loss of generality we can assume that a = 0 and b = 1. According to the
definition, we consider the integral
2

2
w — w\T 2
e,
0

0
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After trivial transformations we get
1

1 1
(w(T
J_Z/dt/ |1+2a Car +2/dt/|2T t|1+2a
0

0
It remains to note that 2 —7 —t > |t — 7| for any 0 < ¢,7 < 1. O

Lemma 4.5. Assume that a < b, 1/2 < a <1, w(t) € W$(a,b), w(a) =0, and
0, t <a,
(1) = )
w(t) —w(a), te€ (a,b).
Then z(t) € W5'(2a — b,b).

Proof. Without loss of generality we can assume, a =0, b = 1. Then
1 1

w(a))2
/dt/ UEECI Yy JCOETl: dw/ @),

“100
Note, that w(t) — w(a) = J&OSw(t). Thus the required statement follows from the inequality
(3.17) in [3])

1
w —wla 2
/((t)tT()) dt < Cllw(®)[fye ap):
0

The lemma is proved. O

Theorem 4.2. Let the condition (3.9) holds. The problem (3.1)-(3.5) has at most one
solution satisfying (3.10) provided that the functions k(0,x) and k(T,x) do not change sign.

Proof. Let f(t,z) = 0, and u(t, z) a solution to problem (3.1)-(3.5), satisfying (3.10). We
have four slightly different cases to consider.

Case 1. Assume that k(0,z) > 0 and k(T,z) > 0. The required statement follows from
Corollary 4.1.

Case 2. Assume that k(0,2) < 0 and k(T,x) > 0. Assume also that 0 < § < T/2, v(t,z) =
us(t,x), and F(0,t,x) = k(t, z)ve(t, x) — ps(t) * (k(t, x)us(t, z)). Then for (t,z) € Q515

k(t7 :U)’Ut(ta .’L') - JVAU(t> .7)) + ’71JV’Ut(ta l’) + ’72v(t7 .1‘) = X0+ F(57 t, .CU),
(k(t,z)v(t,x)) — DFAv(t, z) + y1 D ui(t, ) + youve(t, x) = Fy(0,t, x).
As above, multiplying by 2uv(¢,z) and integrating over Qs r—_s, we get

/(k‘(T, 2)i(T — 6,2) — k(0,2)v2(5,2)) dQ + 7o / v? dQ

Q Qo,7—s

< /(k(T, z) — k(T — 6,2))v2(T — 6,x) dQY — /(k(O,x) — k(6,2))vE (6, x) dQ
Q Q

o / oi(—DAAV(E, 7) + 31 Dy (1, 7) + yaun(t, 2)) dQ
Qo,s
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+ / (6., 2)un(t, 2)] dQ = Ty + o+ Js.

Qs,17—5
By Lemmas 4.1 and 4.2, we have |.J;| = O(6°) and |J3| = o(1) as § — 0. By the inequality (2.3),

2 2
|J2| < C(||UtHW2H/2(O,§;L2(Q)) + ||U||W2(1+M)/2(0,6;W21(Q)))‘

Passing to the limit as § — 0, we get u(t,z) = 0.

Case 3. Assume that k(0,2) < 0 and k(T,z) < 0. First of all, we extend the equality
(3.7) inside Qo 2r. By Lemma 4.4, u(t,z) € WQHTN (0,27, W(€)) and (see [3, Theorem 11.6])
u(t,x) € W;/Q(O, 2T; Lo (R)) since pu < 1. We set

H(t,z) = —J"Au(t, z) + y1JJ"w(t, x) + yu(t, x),
H(t,z) = H(t,z) + H2T —t, ).
By (3.6) and (3.8), x1(x) =0 and H(T,z) = xo. Next, let T' < ¢t < 2T". By definition,
k(t, 2)us(t, 2) = —k(2T — t, 2)u (2T — t, ) + k(t, 2)u, (2T — ¢, 2),
where k(t, ) = k(2T — t,z) — k(t,z). So, for T < t < 2T
k(t, )u(t, 2) + H(t,2) = k(t, 2)u (2T — t,2) + H(t,z) — xo(x).

Finally, we have

E(t, x)u(t, ) — J"Au(t, x) + y1J ue(t, x) + you(t, ) — xo(z) = G(t, x),

oy 1O t<T,
L) =4 ~ -
k(t,z)u, (2T — t,z) + H(t,z) —2H(T,x), t>T.

where

Let 0 <0 <T/2, v(t,z) = us(t,x). Then for (t,z) € Qs1
(k(t,x)ve(t,x))y — DFAv(t, x) + y1 DFo(t, ) + yove(t, x) = Fy(6,t, x) + Gae(t, ).

As above, we multiply this equation by 2uv(t,z) and integrate over Qsr. Since v(T,z) = 0,
we get

—k(0, 2)v? (6, 2) dQ + o v2dQ < [ (E(0,x) — k(0,z))v2(5,z) dQ
f ey

Qo, T Q

+2 / v (=DM Av(t, ) + y1 D vy (t, ) + youe(t, x)) dQ
Qo,s

+ / F (5.1, )t 2)| dQ + / Gsi(t,2)or(t, )] dQ.

Qs,T Qr_s,T
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Compared to Case 2, we need to estimate the term
J = / |Gst(t, x)v(t, )] dQ.
Qr-sT

Let Hi(t,z) = JYAu(t,z) — JYAu(T, z), Ha(t, z) = JYus(t, ) — JYue(T, ), H3(t, ) = w(t, x) —
Ut(T,CC),

0, t<T,
GO(ta .%') =3\~
k(t,z)u, (2T —t,x), t>T,
and for k =1,2,3
0, t<T,
Gi(t,x) =

Hy(t,x) + H, (2T — t,x), t>1T.
Then we can write
J] < Z / |Gt (t, 2)ve(t, @) dQ = Jo + J1 + J2 + J3.
k= 0Qr_ 5T

It is obvious that
|J3] < C||UtHL2 (Qr—251)"

By Lemma 4.3,

|Jo| < C||UtHL2 Qr— 6T)||ut”L2 Qr—_25T)"

We consider the term Gs(t,z). By Lemmas 4.4 and 4.5, Ga(t,z) € W;+“/2(T —0,T; La(S2)),
and, by (2.3),

2
|']2| C/\1||,Ul‘/||v[/#/2 T—6,T;La( ))HJ;/f(SGQ&f(t?x)HLQ(QT—Qé,T) < CHut||W;/2(T76,T;L2(Q))'

Finally, we consider the term G (¢,x). By Lemmas 4.4 and 4.5, G15:(t, ) € WV/Z(O, T; Wy ()
and G5 (t,z) =0if t <T — 6. Using (2.3), we get

I/ 2
’J1| CH / UHLQ(T_&T;W%(Q))HGICSt(t?:1:)||W2”/2(07T;W2—1(Q)) < CH,UH?/VélJr“/Q)(T—(s,T;ﬁ/zl(Q))'

Thus, we have established all the required estimates and can pass to the limit as § — 0.

Case 4. Assume that k(0,z) > 0 and k(7T,z) < 0. According to (3.6), xo = 0 and
k(t, x)u(t, ©) — JZppAut, @) + 1 pue(t, @) + yoult, z) = G(¢, ).

Now, we multiply this equation by 2v(t,x) and integrate over the cylinder @_7/o 7. The rest
of the proof is the same as in Case 3. O
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