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We study the fractional wave equation with changing direction of evolution. The exis-

tence and uniqueness of a generalized solution are proved. Bibliography: 5 titles.

1 Introduction

Assume that T > 0 and Ω ⊂ Rm is a bounded domain with smooth boundary Γ = ∂Ω. In the

cylinder Q = (0, T ) × Ω, S = (0, T ) × Γ, 0 < ν < 1, we consider the mixed problem for the

model equation with fractional Gerasimov–Caputo derivative

∂ν
t (k(t, x)ut(t, x))−Δu(t, x) + γut(t, x) = f(t, x) (1.1)

where the coefficient k(t, x) ∈ C1(Q) is of arbitrary sign.

The fractional diffusion equation was considered in [2], where the solvability of some bound-

ary value problems was established by the method of a priori estimates of the form

T∫

0

ψ(v)Dν(kv) dt � C(‖v‖B).

More general inequalities and there applications can be found in [1] (see the references in [2]).

In the present paper, we use a similar technique to study the fractional wave equation. The

statement of the problem is similar to that for mixed type equations with usual derivative.
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Namely, under some conditions, the problem

(k(t, x)ut(t, x))t −Δu(t, x) + γut(t, x) = f(t, x),

u(t, x)|S = 0,

u(0, x) = 0,

ut(0, x) = u0(x), x ∈ Ω+
0 = {x|k(0, x) > 0},

ut(T, x) = u1(x), x ∈ Ω−
T = {x|k(T, x) < 0}

is well-posed. A similar mixed problem is well-posed for Equation (1.1). We prove the existence

of a generalized solution to this mixed problem. The uniqueness of a solution is established

under additional conditions on the sign of k(0, x) and k(T, x).

2 Auxiliaries

We use the following definitions and properties of fractional derivatives (see [3]). Assume

that 0 < ν < 1 and t > 0. The fractional integral of order ν with the origin at a point a is

defined by

Jν
a y(t) =

sgn(t− a)

Γ(ν)

t∫

a

y(s)

|t− s|1−ν
ds.

The fractional Riemann–Liouville derivative of order ν with the origin at a is defined by

Dν
ay(t) =

1

Γ(1− ν)

d

dt

t∫

a

y(s)

|t− s|ν ds.

The fractional Gerasimov–Caputo derivative is defined by

∂ν
ay(t) =

1

Γ(1− ν)

t∫

a

y′(s)
|t− s|ν ds.

In the case a = 0, we write Jνy(t), Dνy(t), ∂νy(t). As known, for ν �= 1/2

C0(ν)‖y(t)‖2W ν
2 (0,T ) �

T∫

0

(y2(t) + (Dνy(t))2) dt � C1(ν)‖y(t)‖2W ν
2 (0,T ).

We use some assertions proved in [2]. Let y(t) ∈ C1(0, T ). Then for some constant C > 0

we have (see [1, Lemma 4.1] and [2, formula (2.1)])

T∫

0

y(t)Dνy(t) dt � C

T∫

0

y2(t)
( 1

tν
+

1

(T − t)ν

)
dt+ C‖y(t)‖2

W
ν/2
2 (0,T )

; (2.1)

moreover, if y(0) = 0, then (see [1, Lemma 5.4])

T∫

0

y′(t)Dνy(t) dt =

T∫

0

D1−ν(Dνy(t))Dνy(t) dt � C‖Dνy(t)‖2
W

(1−ν)/2
2 (0,T )
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and
T∫

0

y′(t)Dνy(t) dt � C‖y(t)‖2
W

(1+ν)/2
2 (0,T )

. (2.2)

Further, for any smooth functions f(t) and g(t) we set

J(f, g) =

T∫

0

f(t)g(t) dt.

Then for any 0 < μ < 1/2 (see [2, formula (2.2)])

|J(f, g)| � C3(μ, T )‖Jμf(t)‖L2(0,T )‖Dμg(t)‖L2(0,T ). (2.3)

Assume that 0 < μ < 1 and 0 < θ < 1. We put

Jμ,θy(t) =
1

Γ(μ)

t∫

0

y(s)

(t− s+ θ)1−μ
ds,

Kμ,θy(t) =
1

Γ(1− μ)

d

dt

t∫

0

y(s)

(t− s+ θ)μ
ds.

It is easy to see that

Kμ,θv(t, x) =
d

dt
J1−μ,θ.

For some constant CK = CK(μ, T ) > 0 independent of θ we have (see [2, formula (2.3)])

T∫

0

y(t)Kμ,θy(t) dt � CK‖y(t)‖L2(0,T ). (2.4)

We set

Dμ,θ(y(t), z(t)) =

T∫

0

(Dμy(t)−Kμ,θy(t))z(t) dt.

Lemma 2.1 ([2, Lemma 2.1]). There exists a constant C(μ, T ) > 0 independent of θ such

that for any smooth functions y(t) amd z(t) the following inequality holds:

|Dμ,θ(y(t), z(t))| � C(μ, T )θ(1−μ)/2‖y(t)‖W 1
2 (0,T )‖z(t)‖W 1

2 (0,T ). (2.5)

Corollary 2.1 ([2, Corollary 2.1]). For any smooth function y(t) the following estimate

holds:
T∫

0

y(t)Kμ,θy(t) dt � CK1‖y(t)‖2
W

μ/2
2 (0,T )

− CK2θ
(1−μ)/2‖y(t)‖2W 1

2 (0,T ) (2.6)

with some constants CK1(μ, T ) > 0 and CK2(μ, T ) > 0.
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Corollary 2.2. For any smooth function y(t) such that y(0) = 0

T∫

0

y′(t)Kμ,θy(t) dt � CK3‖y(t)‖2
W

(1+μ)/2
2 (0,T )

− CK3θ
(1−μ)/2‖y(t)‖2W 2

2 (0,T ) (2.7)

with some constants CK3(μ, T ) > 0 and CK4(μ, T ) > 0.

Proof. First of all, we note that

T∫

0

y′(t)Kμ,θy(t) dt =

T∫

0

y′(t)Dμy(t) dt−Dμ,θ(y(t), y
′(t)).

Then we apply the inequality (2.2) and Lemma 2.1.

3 Statement of the Problem and Existence Theorem

By technical reasons, we consider a bit more general problem

∂ν(k(t, x)ut(t, x))−Δu(t, x) + γ1ut(t, x) + γ2∂
νu(t, x) = f(t, x), (3.1)

u(t, x)|S = 0, (3.2)

u(0, x) = 0, (3.3)

ut(0, x) = 0, x ∈ Ω+
0 = {x|k(0, x) > 0}, (3.4)

ut(T, x) = 0, x ∈ Ω−
T = {x|k(T, x) < 0}. (3.5)

A generalized solution to this problem is determined similarly to [2]. We denote

χ0(x) = k(0, x)ut(0, x), χT (x) = k(T, x)ut(T, x).

Note that (3.4) and (3.5) imply

suppχ0(x) ⊆ Ω−
0 , suppχT (x) ⊆ Ω+

T , , (3.6)

where Ω−
0 and Ω+

T are defined as in (3.4) and (3.5). Formally applying the operator Jν to

Equation (3.1), we obtain the equality for t ∈ [0, T ]

k(t, x)ut(t, x)− JνΔu(t, x) + γ1J
νut(t, x) + γ2u(t, x) = Jνf(t, x) + χ0(x) (3.7)

and

χT (x)− χ0(x)− JνΔu(T, x) + γ1J
νut(T, x) + γ2u(T, x) = Jνf(T, x). (3.8)

A function u(t, x) ∈ L2(Q) is called a generalized solution to the problem (3.1)–(3.5) if

ut(t, x) ∈ L2(Q), u(0, x) = 0,

∂1−νu(t, x) ∈ C([0, T ];W−1
2 (Ω)), k(t, x)ut(t, x) ∈ C([0, T ],W−1

2 (Ω)),

u(t, x) ∈ L2(0, T ; W̊
1
2 (Ω)), Jνu(t, x) ∈ C([0, T ]; W̊ 1

2 (Ω));
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moreover, (3.7), (3.8), and (3.6) hold for some functions χ0(x), χT (x) ∈ L2(Ω).

Everywhere below, we set μ = 1− ν.

Theorem 3.1. Assume that γ1 � 0, f(t, x) ∈ W
μ/2
2 (0, T ;L2(Ω)), and for some γ0 > 0

2CK(μ, T )γ1 + 2γ2 + kt(t, x) � γ0, (t, x) ∈ Q, (3.9)

where the constant CK(μ, T ) is taken from the inequality (2.4). Then the problem (3.1)–(3.5)

has a generalized solution such that

u(t, x) ∈ W
1+μ
2

2 (0, T ; W̊ 1
2 (Ω)), ut(t, x) ∈ W

μ/2
2 (0, T ;L2(Ω)) (3.10)

and

‖χ0‖2L2(Ω) + ‖χT ‖2L2(Ω) + ‖ut‖2
W

μ/2
2 (0,T ;L2(Ω))

+ ‖u‖2
W

1+μ
2

2 (0,T ;W̊ 1
2 (Ω))

� C‖f‖2
W

μ/2
2 (0,T ;L2(Ω))

.

Moreover, if Dμf(t, x) ∈ L2(Q), then∫

Q

(CK(μ, T )γ1 + γ2 + kt(t, x)/2)u
2
t (t, x) dQ �

∫

Q

Dμf(t, x)ut(t, x) dQ. (3.11)

Proof. As in [2], we use the regularization method proposed in [4]. Let 0 < ε < 1. We

introduce a family of smooth functions fε(t, x) such that

fε(0, x) = 0, (3.12)

lim
ε→0

‖fε(t, x)− f(t, x)‖
W

μ/2
2 (0,T ;L2(Ω))

= 0, (3.13)

lim
ε→0

ε‖fε(t, x)‖2W 1
2 (0,T ;L2(Ω)) = 0. (3.14)

Note that the condition (3.12) is compatible with the condition (3.13) since μ < 1. Then we

consider the problem (see [4])

− εuttt + (k(t, x)ut(t, x))t −DμΔu(t, x) + γ1D
μut(t, x) + γ2ut(t, x) = Dμfε(t, x),

u(t, x)|S = 0, u(0, x) = 0,

− εutt(0, x) + k+(0, x)ut(0, x) = 0,

− εutt(T, x) + k−(T, x)ut(T, x) = 0.

As usual,

η+ =

{
η, η > 0,

0, η � 0,
η− =

{
η, η < 0,

0, η � 0.

To establish the solvability of the regularized problem, we use the special Galerkin method. Let

{wk(x)}k∈N be the system of eigenfunctions of the problem

−Δwk = λkwk, wk(x)|Γ = 0,

that are orthonormal in L2(Ω). For any n > 0 we denote by En ⊂ L2(Ω) the subspace of

functions spanned by the vectors wk, k = 1, n. We note that the space En is finite-dimensional

and, consequently, for some constant C(n) we have the inequality

‖h‖2W 1
2 (Ω) � C(n)‖h‖2L2(Ω), ∀h ∈ En. (3.15)
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We denote by Pn the orthogonal projection in L2(Ω) onto the space En. Assuming that θ =

θ(ε, n) (the exact value will be indicated later), we consider the problem

− εvnttt(t, x) + Pn(k(t, x)vnt(t, x))t −Kμ,θΔvn(t, x)

+ γ1Kμ,θvnt(t, x) + γ2vnt = Kμ,θPnfε(t, x), (3.16)

vn(t, x)|S = 0, vn(0, x) = 0, (3.17)

− εvntt(x, 0) + Pn(k
+(0, x)vnt(0, x)) = 0, (3.18)

− εvntt(T, x) + Pn(k
−(T, x)vnt(T, x)) = 0, (3.19)

where vn(t, x) =
n∑

k=1

Vk(t)wk(x). If no comfusion arises, we omit the superscript n. It is easy to

see that the solvability of this system follows from the uniqueness of a solution. Therefore, it

suffices to derive a suitable a priori estimate for the solution.

We multiply Equation (3.16) by 2vt(t, x) and integrate over the cylinder Q
∫

Ω

(|k(0, x)|v2t (0, x) + |k(T, x)|v2t (T, x)) + 2ε

∫

Q

v2tt dQ+

∫

Q

(2γ2 + kt)v
2
t dQ

+ 2

∫

Q

((Kμ,θ∇v,∇vt) + γ1vtKμ,θvt) dQ = 2

∫

Q

vtKμ,θfε dQ. (3.20)

Let δ > 0. Using (2.4), (2.6), (2.7), (3.15), and (2.3), we get
∫

Ω

(|k(0, x)|v2t (0, x) + |k(T, x)|v2t (T, x)) + 2ε

∫

Q

v2tt dQ+ 2δCK1‖vt‖2
W

μ/2
2 (0,T ;L2(Ω))

+

∫

Q

(2CK(γ1 − δ) + 2γ2 + kt)v
2
t dQ+ CK3‖∇v‖

W
(1+μ)/2
2 (0,T ;L2(Ω))

� 2θ(1−μ)/2‖vtt‖2L2(Q)(δCK2 + C(n)CK4) + C‖f‖
W

μ/2
2 (0,T ;L2(Ω))

‖ut‖Wμ/2
2 (0,T ;L2(Ω))

.

Choosing δ and θ sufficiently small, we get the required estimate
∫

Ω

(|k(0, x)|v2t (0, x) + |k(T, x)|v2t (T, x)) + ε

∫

Q

v2tt dQ

+ ‖vt‖2
W

μ/2
2 (0,T ;L2(Ω))

+ ‖∇v‖
W

(1+μ)/2
2 (0,T ;L2(Ω))

� C‖f‖2
W

μ/2
2 (0,T ;L2(Ω))

. (3.21)

This estimate guarantees that the system (3.16)–(3.19) is uniquely solvable. Note that for all

(t, x) ∈ Q we have the equality

(−εvntt + Pn(kvnt))
∣∣t
0
= Jν,θ(Pnfε +Δvn − γ1vnt)− γ2vn

and, due to the conditions (3.17), (3.18), and (3.19),

Pn(k
+(T, x)vnt(T, x))− Pn(k

−(0, x)vnt(0, x)) = Jν,θ(Pnfε +Δvn − γ1vnt)(T, x)− γ2vn(T, x).
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Now, we can pass to the limit as n → ∞. Passing, if necessary, to a subsequence, we assume

that for some functions zε0(x), zεT (x), uε(t, x) the following convergences take place:√
|k(0, x)|vnt(0, x) ⇀ zε0(x), weakly in L2(Ω),√
|k(T, x)|vnt(T, x) ⇀ zεT (x), weakly in L2(Ω),

vn(t, x) ⇀ uε(t, x), weakly in W
(1+μ)/2
2 (0, T ;W 1

2 (Ω)),

vnt(t, x) ⇀ uεt(t, x), weakly in W
μ/2
2 (0, T ;L2(Ω))

as n → ∞. In this case, due to the estimate (3.21),

ε‖uεtt‖2L2(Q) + ‖Jνuεt‖
W

1+ν
2

2 (0,T ;W 1
2 (Ω))

� C. (3.22)

In particular, Jνuεt(t, x) ∈ C([0, T ];W 1
2 (Ω)) and Jνuεt(0, x) = 0. Next, we denote

χ0ε(x) = −
√

|k−(0, x)|zε0(x), χTε(x) =
√

|k+(T, x)|zεT (x).
It is clear that these functions satisfy the conditions (3.6) and, by virtue of (3.18) and (3.19),

the following equalities hold:

− εuεtt + kuεt − χ0ε = Jν(fε +Δuε − γ1uεt)− γ2uεt,

χTε(x)− χ0ε(x) = Jν(fε +Δuε − γ1uεt)(T, x)− γ2uεt(T, x).

Now, we can pass to the limit as ε → 0. All actions are standard, and we omit them.

Now, assume that Dμf(t, x) ∈ L2(Q). Passing to the limit as n → ∞ and then as ε → 0 in

(3.20), we get (3.11).

4 Uniqueness Theorems

In a more general case, the study of the uniqueness of such a generalized solution is difficult

even in the case of ordinary derivatives (see [4]). We consider a simpler case where the functions

k(0, x) and k(T, x) do not change the sign.

Theorem 4.1. Assume that k(0, x) � 0, k(T, x) � 0, γ1 > 0, and γ2 > 0 is large enough.

Then a generalized solution to the problem (3.1)–(3.5) is unique.

Proof. Consider a solution u(t, x) to the problem (3.1)–(3.5) with f(t, x) ≡ 0. Then

k(t, x)ut(t, x)− JνΔu(t, x) + γ1∂
1−νu(t, x) + γ2u(t, x) = χ0(x). (4.1)

By (3.6) and the inequality k(0, x) � 0, we have χ0(x) ≡ 0. Multiplying (4.1) by 2u(t, x) and

integrating over Q, we have∫

Ω

k(T, x)u2(T, x) dx+ 2

∫

Q

(Jν∇u(t, x),∇u(t, x)) dQ

+ 2γ1

∫

Q

u(t, x)∂1−νu(t, x) dQ+

∫

Q

(2γ2 − kt(t, x))u
2(t, x) dQ = 0.

Thus,

∫

Q

(2γ2 − kt(t, x))u
2(t, x) dQ � 0 and u(t, x) ≡ 0 provided that 2γ2 − kt(t, x) � γ > 0.
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We note that the above proof is similar to that of the uniqueness theorem for the wave

equation [5, Theorem 3.1].

Corollary 4.1. Let the assumptions of Theorem 3.1 hold. Assume that k(0, x) � 0 and

k(T, x) � 0. Then a generalized solution to the problem (3.1)–(3.5) is unique.

Proof. Consider a solution u(t, x) to the problem (3.1)–(3.5) with f(t, x) ≡ 0. It is clear

that for any λ

∂ν(k(t, x)ut(t, x))−Δu(t, x) + γ1ut(t, x) + (γ2 + λ)∂νu(t, x) = λ∂νu(t, x). (4.2)

We note that Dμ∂νu(t, x) = ut(t, x) ∈ L2(Q). By Theorem 4.1, the solution to problem (4.2),

(3.2)–(3.5) is unique, and, by Theorem 3.1 (see (3.11))
∫

Q

(CK(μ, T )γ1 + γ2 + λ+ kt(t, x)/2)u
2
t (t, x) dQ �

∫

Q

λu2t (t, x) dQ.

Thus, γ0

∫

Q

u2t (t, x) dQ � 0 ant u(t, x) ≡ 0.

A simple idea proposed in Theorem 4.1 does not work if k(0, x) � 0 or k(T, x) � 0. In

such cases, we use convolution mollifiers. The arguments are not difficult, but a rigorous proof

requires a lot of tedious technical work.

For any a and b we set

Qa,b = (a, b)× Ω.

First of all, we need to extend the functions k(t, x) and u(t, x) inside Q−T,2T . We set

u(t, x) =

{
0, t < 0,

u(2T − t, x), t > T.

The function k(t, x) is extended in such a way k(t, x) ∈ C1(Q−T,2T ), and the condition (3.9) is

satisfied in Q−T,2T . Let ρ(t) � 0 be a smooth even function such that supp ρ(t) ⊂ (−1, 1), and

let

sgn(t)ρ′(t) � 0,

1∫

−1

ρ(t) dt = 1. (4.3)

We note that
1∫

−1

tρ′(t) dt = −1. (4.4)

For any δ > 0 we denote

ρδ(t) =
1

δ
ρ(t/δ), uδ(t, x) = ρδ(t) ∗ u(t, x).

Lemma 4.1. Assume that a < b, w(t, x) ∈ L2(Qa,b), 0 < 2δ < b− a. Denote Q̃δ = Qa+δ,b−δ

and F (δ, t, x) = k(t, x)ρδ(t) ∗ w(t, x) − ρδ(t) ∗ (k(t, x)w(t, x)). Then Ft(δ, t, x) ∈ L2(Q̃δ) and

‖Ft(δ, t, x)‖L2( ˜Qδ)
→ 0 as δ → 0.
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Proof. Let (t, x) ∈ Q̃δ. It is easy to see that

Ft(δ, t, x) =

b∫

a

(ρδ(t− s)k′(t, x)− ρ′δ(t− s)(k(s, x)− k(t, x)))w(s, x) ds.

By the Taylor formula k(s, x) = k(t, x) + k′(t, x)(s− t) + o(|s− t|), it follows that

Ft(δ, t, x)(t, x) = k′(t, x)(ρδ(t) + tρ′δ(t)) ∗ w(t, x) + o(δ)

b∫

a

|ρ′δ(t− s)||w(s, x)| ds.

Taking into account (4.3) and (4.4), we obtain the required statement.

Lemma 4.2. Assume that a < b, 0 < α < 1/2, w(t, x) ∈ Wα
2 (a, b;L2(Ω)), 0 < 2δ < b − a.

Then for some β = β(α, a, b) > 0 and any t0 ∈ [a+ δ, b− δ]

‖wδ(t0, x)‖2L2(Ω) � Cδβ−1‖w(t, x)‖2Wα
2 (a,b;L2(Ω)).

Proof. Let 1/q = 1/2− α and 1/p = 1− 1/q. By the embedding theorem,

|wδ(t0, x)| � C‖ρδ(t)‖Lp(−δ,δ)‖w(t, x)‖Wα
2 (a,b) � Cδ(1−p)/p‖w(t, x)‖Wα

2 (a,b).

Note that 1 < p < 2. So, we put β = (2− p)/p and get

‖wδ(t0, x)‖2L2(Ω) � Cδβ−1‖w(t, x)‖2Wα
2 (a,b;L2(Ω)).

The lemma is proved.

Lemma 4.3. Assume that a < b, w(t, x) ∈ L2(Qa,b), k̃(t, x) ∈ C1(Qa,b), k̃(a, x) = 0.

0 < 2δ < b− a. Extend by zero k̃(t, x), w(t, x) for t < a and consider (k̃w)δ(t, x). Then

‖(k̃w)δt(t, x)‖L2(Qa−δ,a) � C‖w(t, x)‖L2(Qa,a+δ).

Proof. It is easy to see that for t < a

(k̃w)δt(t, x) = k̃(t, x)ρ′δ ∗ w(t, x) +
a+δ∫

a

ρ′δ(t− s)(k̃(s, x)− k̃(t, x)))w(s, x) ds.

It remains to note that k̃(s, x)− k̃(t, x) = O(|s− t|) and
δ∫

−δ

|ρ′δ(t)| dt � C/δ.

Lemma 4.4. Assume that a < b, 0 < α < 1, w(t) ∈ Wα
2 (a, b), and (an even continuation)

w(t) = w(2b− t) for t > b. Then w(t) ∈ Wα
2 (a, 2b− a).

Proof. Without loss of generality we can assume that a = 0 and b = 1. According to the

definition, we consider the integral

J =

2∫

0

dt

2∫

0

(w(t)− w(τ))2

|t− τ |1+2α
dτ.
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After trivial transformations we get

J = 2

1∫

0

dt

1∫

0

(w(t)− w(τ))2

|t− τ |1+2α
dτ + 2

1∫

0

dt

1∫

0

(w(τ)− w(t))2

|2− τ − t|1+2α
dτ.

It remains to note that 2− τ − t � |t− τ | for any 0 < t, τ < 1.

Lemma 4.5. Assume that a < b, 1/2 < α < 1, w(t) ∈ Wα
2 (a, b), w(a) = 0, and

z(t) =

{
0, t < a,

w(t)− w(a), t ∈ (a, b).

Then z(t) ∈ Wα
2 (2a− b, b).

Proof. Without loss of generality we can assume, a = 0, b = 1. Then

1∫

−1

dt

1∫

−1

(z(t)− z(τ))2

|t− τ |1+2α
dτ �

1∫

−1

dt

1∫

0

(w(t)− w(τ))2

|t− τ |1+2α
dτ + C

1∫

0

(w(t)− w(a))2

t2α
dt.

Note, that w(t) − w(a) = Jα
a ∂

α
aw(t). Thus the required statement follows from the inequality

(3.17) in [3])
1∫

0

(w(t)− w(a))2

t2α
dt � C‖w(t)‖2Wα

2 (a,b).

The lemma is proved.

Theorem 4.2. Let the condition (3.9) holds. The problem (3.1)-(3.5) has at most one

solution satisfying (3.10) provided that the functions k(0, x) and k(T, x) do not change sign.

Proof. Let f(t, x) ≡ 0, and u(t, x) a solution to problem (3.1)-(3.5), satisfying (3.10). We

have four slightly different cases to consider.

Case 1. Assume that k(0, x) � 0 and k(T, x) � 0. The required statement follows from

Corollary 4.1.

Case 2. Assume that k(0, x) � 0 and k(T, x) � 0. Assume also that 0 < δ < T/2, v(t, x) =

uδ(t, x), and F (δ, t, x) = k(t, x)vt(t, x)− ρδ(t) ∗ (k(t, x)ut(t, x)). Then for (t, x) ∈ Qδ,T−δ

k(t, x)vt(t, x)− JνΔv(t, x) + γ1J
νvt(t, x) + γ2v(t, x) = χ0 + F (δ, t, x),

(k(t, x)vt(t, x))t −DμΔv(t, x) + γ1D
μvt(t, x) + γ2vt(t, x) = Ft(δ, t, x).

As above, multiplying by 2vt(t, x) and integrating over Qδ,T−δ, we get∫

Ω

(k(T, x)v2t (T − δ, x)− k(0, x)v2t (δ, x)) dΩ + γ0

∫

Q0,T−δ

v2t dQ

�
∫

Ω

(k(T, x)− k(T − δ, x))v2t (T − δ, x) dΩ−
∫

Ω

(k(0, x)− k(δ, x))v2t (δ, x) dΩ

+ 2

∫

Q0,δ

vt(−DμΔv(t, x) + γ1D
μvt(t, x) + γ2vt(t, x)) dQ
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+

∫

Qδ,T−δ

|Ft(δ, t, x)vt(t, x)| dQ = J1 + J2 + J3.

By Lemmas 4.1 and 4.2, we have |J1| = O(δβ) and |J3| = o(1) as δ → 0. By the inequality (2.3),

|J2| � C(‖vt‖2
W

μ/2
2 (0,δ;L2(Ω))

+ ‖v‖2
W

(1+μ)/2
2 (0,δ;W̊ 1

2 (Ω))
).

Passing to the limit as δ → 0, we get u(t, x) ≡ 0.

Case 3. Assume that k(0, x) � 0 and k(T, x) � 0. First of all, we extend the equality

(3.7) inside Q0,2T . By Lemma 4.4, u(t, x) ∈ W
1+μ
2

2 (0, 2T ; W̊ 1
2 (Ω)) and (see [3, Theorem 11.6])

ut(t, x) ∈ W
μ/2
2 (0, 2T ;L2(Ω)) since μ < 1. We set

H(t, x) = −JνΔu(t, x) + γ1J
νut(t, x) + γ2u(t, x),

H̃(t, x) = H(t, x) +H(2T − t, x).

By (3.6) and (3.8), χ1(x) ≡ 0 and H(T, x) = χ0. Next, let T < t < 2T . By definition,

k(t, x)ut(t, x) = −k(2T − t, x)ut(2T − t, x) + k̃(t, x)ut(2T − t, x),

where k̃(t, x) = k(2T − t, x)− k(t, x). So, for T < t < 2T

k(t, x)ut(t, x) +H(t, x) = k̃(t, x)ut(2T − t, x) + H̃(t, x)− χ0(x).

Finally, we have

k(t, x)ut(t, x)− JνΔu(t, x) + γ1J
νut(t, x) + γ2u(t, x)− χ0(x) = G(t, x),

where

G(t, x) =

{
0, t < T ,

k̃(t, x)ut(2T − t, x) + H̃(t, x)− 2H(T, x), t > T .

Let 0 < δ < T/2, v(t, x) = uδ(t, x). Then for (t, x) ∈ Qδ,T

(k(t, x)vt(t, x))t −DμΔv(t, x) + γ1D
μvt(t, x) + γ2vt(t, x) = Ft(δ, t, x) +Gδt(t, x).

As above, we multiply this equation by 2vt(t, x) and integrate over Qδ,T . Since vt(T, x) = 0,

we get

∫

Ω

−k(0, x)v2t (δ, x) dΩ + γ0

∫

Q0,T

v2t dQ �
∫

Ω

(k(δ, x)− k(0, x))v2t (δ, x) dΩ

+ 2

∫

Q0,δ

vt(−DμΔv(t, x) + γ1D
μvt(t, x) + γ2vt(t, x)) dQ

+

∫

Qδ,T

|Ft(δ, t, x)vt(t, x)| dQ+

∫

QT−δ,T

|Gδt(t, x)vt(t, x)| dQ.
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Compared to Case 2, we need to estimate the term

J =

∫

QT−δ,T

|Gδt(t, x)vt(t, x)| dQ.

Let H1(t, x) = JνΔu(t, x)−JνΔu(T, x), H2(t, x) = Jνut(t, x)−Jνut(T, x), H3(t, x) = ut(t, x)−
ut(T, x),

G0(t, x) =

⎧⎨
⎩
0, t < T,

k̃(t, x)ut(2T − t, x), t > T,

and for k = 1, 2, 3

Gk(t, x) =

⎧⎨
⎩
0, t < T,

Hk(t, x) +Hk(2T − t, x), t > T.

Then we can write

|J | �
3∑

k=0

∫

QT−δ,T

|Gkδt(t, x)vt(t, x)| dQ = J0 + J1 + J2 + J3.

It is obvious that

|J3| � C‖ut‖2L2(QT−2δ,T ).

By Lemma 4.3,

|J0| � C‖ut‖L2(QT−δ,T )‖ut‖L2(QT−2δ,T ).

We consider the term G2(t, x). By Lemmas 4.4 and 4.5, G2(t, x) ∈ W
ν+μ/2
2 (T − δ, T ;L2(Ω)),

and, by (2.3),

|J2| � C‖vt‖Wμ/2
2 (T−δ,T ;L2(Ω))

‖Jμ/2
T−δG2δt(t, x)‖L2(QT−2δ,T ) � C‖ut‖Wμ/2

2 (T−δ,T ;L2(Ω))
.

Finally, we consider the term G1(t, x). By Lemmas 4.4 and 4.5, G1δt(t, x) ∈ W
ν/2
2 (0, T ;W−1

2 (Ω))

and G1δt(t, x) = 0 if t < T − δ. Using (2.3), we get

|J1| � C‖Jν/2
T v‖L2(T−δ,T ;W̊ 1

2 (Ω))‖G1δt(t, x)‖W ν/2
2 (0,T ;W−1

2 (Ω))
� C‖v‖2

W
(1+μ/2)
2 (T−δ,T ;W̊ 1

2 (Ω))
.

Thus, we have established all the required estimates and can pass to the limit as δ → 0.

Case 4. Assume that k(0, x) � 0 and k(T, x) � 0. According to (3.6), χ0 ≡ 0 and

k(t, x)ut(t, x)− Jν
−T/2Δu(t, x) + γ1J

ν
−T/2ut(t, x) + γ2u(t, x) = G(t, x).

Now, we multiply this equation by 2vt(t, x) and integrate over the cylinder Q−T/2,T . The rest

of the proof is the same as in Case 3.
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