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We propose new two-sided estimates with sharp constants for the number e. Minorants

and majorants in the estimates are expressed as continued fractions. To justify the

estimate, we essentially use the integral representation of a special analytic function

obtained earlier by the authors. We discuss the validity of similar inequalities and

relationship with known results. Bibliography: 11 titles.

1 Statement of the Problem and the Main Result

In the works of the authors [1, 2] devoted to special aspects of the problem on the rational

approximation of the number e the function

H(x) ≡ 1− e−1(1 + x)1/x, x ∈ (−1,+∞) (1.1)

naturally arose and was studied. The study of properties of functions of similar structure turned

out to be useful in the study of one difficult problem in finite difference theory (see [3]).

The analytic function (1.1) admits the power expansion

H(x) =

∞∑

n=1

(−1)n−1 an x
n =

1

2
x− 11

24
x2 +

7

16
x3 − 2447

5760
x4 + . . . , x ∈ (−1, 1). (1.2)

It is proved [1, Proposition 2.1] that all the coefficients an in the representation (1.2) are positive
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rational numbers and can be found by the recurrence rule

an =
1

n

n∑

k=1

k

k + 1
an−k, n ∈ N, (1.3)

with a0 = 1. The number sequence (1.3) is strictly decreasing and tends to 1/e. The proof of

these properties is based on the integral representation

an =
1

e

(
1 +

1∫

0

ϕ(τ) τn dτ

)
, n ∈ N, (1.4)

obtained in [1, Proposition 4.1]. The function ϕ in (1.4) has the form

ϕ(τ) ≡ 1

π

sin(πτ)

τ1−τ (1− τ)τ
, τ ∈ (0, 1), ϕ(0) = ϕ(1) = 1. (1.5)

The elementary function (1.5) is symmetric, continuous on [0, 1], and infinitely differentiable on

(0, 1). Analyzing formula (1.4), we derive the asymptotic law [2, § 2]

an =
1

e

(
1 =

1

n
− lnn

n2
− γ

n2

)
+O

( ln2 n
n3

)
, n → ∞,

where γ = 0.57721 . . . is the Euler–Mascheroni constant.

Using (1.4), we can obtain the nice integral representation of the function (1.1)

H(x) =
x

e

(
1

1 + x
+

1∫

0

τϕ(τ)

1 + xτ
dτ

)
, x ∈ (−1,+∞), (1.6)

which follows from [2, Theorem 1].

Let us formulate the main result of the paper.

Theorem 1.1. The analytic function (1.1) satisfies the following two-sided sharp estimates:

e− 2

e
x � H(x) <

x

2
, (1.7)

x

2 +
11x

6

≡ 1
2

x
+

11

6

< H(x) � 1
2

x
+

4− e

e− 2

≡ x

2 +
(4− e)x

e− 2

∀ x ∈ (0, 1]. (1.8)

The left inequality in (1.7) becomes equality at the point x = 1, whereas the coefficient 1/2

at x in the right inequality cannot be replaced by a smaller one in view of the asymptotics (1.2)

H(x) =
x

2
+O

(
x2

)
, x → 0.

The right inequality in (1.8) becomes equality at the point x = 1, the number 11/6 in the

denominator of the fraction in the left inequality cannot be replaced by a smaller one in view of

the asymptotics

H(x) =
x

2 +
11x

6

+O
(
x3

)
, x → 0,

which follows from (1.2).
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2 Proof of Theorem 1.1

To derive (1.7) and (1.8), we need to use some properties of the auxiliary functions

Φ1(x) ≡ H(x)

x
=

1

x
(1− e−1(1 + x)1/x), Φ1(0) = a1 =

1

2
, (2.1)

Φ2(x) ≡ 1

x

(
1

Φ1(x)
− 1

Φ1(0)

)
=

1

H(x)
− 2

x
=

e

e− (1 + x)1/x
− 2

x
, Φ2(0) =

a2
a21

=
11

6
. (2.2)

These functions are defined and continuous for all x ∈ (−1,+∞).

Lemma 2.1. The function Φ1(x) defined by (2.1) is decreasing on the ray x > −1.

Proof. By (1.6),

Φ1(x) =
1

e

⎛

⎝ 1

1 + x
+

1∫

0

τϕ(τ)

1 + xτ
dτ

⎞

⎠ , x ∈ (−1,+∞). (2.3)

Since the function (1.5) is positive on [0, 1], the derivative

Φ′
1(x) = − 1

e

⎛

⎝ 1

(1 + x)2
+

1∫

0

τ2ϕ(τ)

(1 + xτ)2
dτ

⎞

⎠ (2.4)

is negative for all x ∈ (−1,+∞). Lemma 2.1 is proved.

Lemma 2.2. The function F (x) ≡ 1/Φ1(x), where Φ1(x) is defined by (2.1), is increasing

and strictly concave on the ray x > −1.

Proof. By Lemma 2.1, the function F (x) increases for x > −1. Let us show that F is

convcave on this ray. Since Φ1 is positive and

F ′(x) = − Φ′
1(x)

Φ2
1(x)

, F ′′(x) = − Φ1(x)Φ
′′
1(x)− 2(Φ′

1(x))
2

Φ3
1(x)

,

it suffices to prove the inequality

Φ1(x)Φ
′′
1(x) > 2(Φ′

1(x))
2, x ∈ (−1,+∞). (2.5)

Differentiating (2.4), we find

Φ′′
1(x) =

2

e

(
1

(1 + x)3
+

1∫

0

τ3ϕ(τ)

(1 + xτ)3
dτ

)
, x ∈ (−1,+∞). (2.6)

Substituting (2.3), (2.4), (2.6) into (2.5), we get

(
1

1 + x
+

1∫

0

τϕ(τ)

1 + xτ
dτ

)(
1

(1 + x)3
+

1∫

0

τ3ϕ(τ)

(1 + xτ)3
dτ

)

>

(
1

(1 + x)2
+

1∫

0

τ2ϕ(τ)

(1 + xτ)2
dτ

)2

. (2.7)
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Thus, it suffices to prove the relation (2.7) for all x > −1. For such x and τ ∈ [0, 1] we have

√
τϕ(τ)

1 + xτ

√
τ3ϕ(τ)

(1 + xτ)3
=

τ2ϕ(τ)

(1 + xτ)2
.

However, in this case, from the Cauchy–Bunyakovsky inequality it follows that

1∫

0

τϕ(τ)

1 + xτ
dτ

1∫

0

τ3ϕ(τ)

(1 + xτ)3
dτ �

⎛

⎝
1∫

0

τ2ϕ(τ)

(1 + xτ)2
dτ

⎞

⎠
2

, x > −1. (2.8)

Moreover, the inequality of arithmetic and geometric means for the same x yields

1

(1 + x)3

1∫

0

τϕ(τ)

1 + xτ
dτ +

1

1 + x

1∫

0

τ3ϕ(τ)

(1 + xτ)3
dτ � 2

(1 + x)2

√√√√√
1∫

0

τϕ(τ)

1 + xτ
dτ

1∫

0

τ3ϕ(τ)

(1 + xτ)3
dτ .

Evaluating the resulting radical expression by using (2.8), for all x > −1 we have

1

(1 + x)3

1∫

0

τϕ(τ)

1 + xτ
dτ +

1

1 + x

1∫

0

τ3ϕ(τ)

(1 + xτ)3
dτ >

2

(1 + x)2

1∫

0

τ2ϕ(τ)

(1 + xτ)2
dτ. (2.9)

We have the sign > in (2.9) because the inequality of arithmetic and geometric means is applied

to distinct positive quantities.

Summarizing (2.8) and (2.9) and then adding
1

(1 + x)4
to both sides, we obtain an inequality

which implies (2.7). Lemma 2.2 is proved.

The following assertion admits a simple geometric meaning and is a variant of the well-known

three-chord lemma (see, for example, [4, Chapter 7, Section 1, Problem 1.2]). For the sake of

completeness, we give a proof.

Lemma 2.3. Let G(x) be defined and strictly concave for x � 0. Then the difference ratio

g(x) ≡ G(x)−G(0)

x

decreases on the ray x > 0.

Proof. Let α ∈ (0, 1). By the definition of strict concavity, for any 0 � t1 < t2

G(α t1 + (1− α) t2) > αG(t1) + (1− α)G(t2).

We show that for all 0 < x1 < x2

g(x1) ≡ G(x1)−G(0)

x1
>

G(x2)−G(0)

x2
≡ g(x2).

Indeed, the latter is equivalent to the inequality

G(x1) >
x2 − x1

x2
G(0) +

x1
x2

G(x2) ≡ αG(0) + (1− α)G(x2),

which is valid by the strict concavity of G(x). Lemma 2.3 is proved.
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Lemma 2.4. The function Φ2(x) defined by (2.2) is decreasing along the ray x > 0.

Proof. By (2.2) and the definition of F (x) (see Lemma 2.2), we have

Φ2(x) ≡ 1

x

(
1

Φ1(x)
− 1

Φ1(0)

)
≡ F (x)− F (0)

x
, x ∈ (−1,+∞).

By Lemma 2.2, the function F (x) is strictly concave on the ray x > −1 (even on the ray x > 0).

However, in this case, from Lemma 2.3 it follows that the function Φ2(x) is decreasing for x > 0.

Lemma 2.4 is proved.

Proof of Theorem 1.1. So, both functions Φ1(x) and Φ2(x) decrease on the ray x > 0

(see Lemmas 2.1 and 2.4). It follows that for all x ∈ (0, 1] the following relations hold:

e− 2

e
= Φ1(1) � Φ1(x) ≡ 1

x
(1− e−1(1 + x)1/x) ≡ H(x)

x
< Φ1(0) =

1

2
,

4− e

e− 2
= Φ2(1) � Φ2(x) ≡ e

e− (1 + x)1/x
− 2

x
≡ 1

H(x)
− 2

x
< Φ2(0) =

11

6
.

Hence the inequalities (1.7) and (1.8) are valid. Theorem 1.1 is proved.

The method of proving the main statement shows that the monotonicity considerations play

an important role in deriving sharp estimates for numbers and functions required in analysis

(see [5]).

3 Rational Approximations of e

There is a lot of publications on the best rate of rational approximations of the number e

and other special numbers (see, for example, [6, 7]) We demonstrate how our results contribute

to the problem of approximating the Euler number by the sequence (1 + 1/m)m , m ∈ N.

As shown in [2, Theorem 3], the series (1.2) envelops the function H(x) for all x > 0. In

other words, for each x > 0 we have a series of two-sided estimates

2p∑

n=1

(−1)n−1 an x
n < 1− e−1(1 + x)1/x <

2q−1∑

n=1

(−1)n−1 an x
n, p, q ∈ N.

In particular, for x = 1/m ∈ (0, 1] and q = p+ 1

2p∑

n=1

(−1)n−1 an
mn

< 1− e−1
(
1 +

1

m

)m
<

2p+1∑

n=1

(−1)n−1 an
mn

(3.1)

for all m, p ∈ N. For example, setting p = 1 in (3.1), we have

1

2m
− 11

24m2
< 1− e−1

(
1 +

1

m

)m

<
1

2m
− 11

24m2
+

7

16m3
, m ∈ N, (3.2)

which improves the rational approximation of the number e

24m2

24m2 − 12m+ 11

(
1 +

1

m

)m

< e <
48m3

48m3 − 24m2 + 22m− 21

(
1 +

1

m

)m

, m ∈ N.
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Indeed, substituting the test value m = 100, we find the following bounds for e:

240000

238811
1.01100 = 2.7182806 . . . < e < 2.718281839 . . . =

48000000

47762179
1.01100, (3.3)

i.e., the minorant with five correct decimal places and the majorant with seven correct digits

after the decimal point, despite the fact that

(
1 +

1

100

)100

= 1.01100 = 2.7048 . . .

with only one correct digit after the decimal point.

We note that the envelopment is also used to study the asymptotic behavior of the gamma

function [8], central binomial coefficient [9], and remainders of number series [10].

Theorem 1.1 provides another useful format to estimate the amount of deviation

H

(
1

m

)
= 1− e−1

(
1 +

1

m

)m

, m ∈ N. (3.4)

Thus, choosing x = 1/m in the inequality (1.7), we arrive at the simplest estimate

e− 2

em
� 1− e−1

(
1 +

1

m

)m

<
1

2m
, m ∈ N, (3.5)

in which the constants (e−2)/e = 0.264 . . . and 1/2 on the set of all m ∈ N cannot be improved

because 1) due to the equality on the left-hand side of (3.5) for m = 1 and 2) due to enveloping

(3.1). If we use the double inequality (1.8), then a strengthening (3.5) variant arises

1

2m+ 11
6

< 1− e−1

(
1 +

1

m

)m

� 1

2m+ 4−e
e−2

, m ∈ N, (3.6)

where the choice of both constants 11/6 = 1.8(3) and (4 − e)/(e − 2) = 1.784 . . . for a given

pattern is again optimal by the same reasons as in (3.5). Comparing the lower bounds in (3.2)

and (3.6), we see that the second one is always better. The situation is different for the upper

bounds in (3.2) and (3.6): the first is better for all numbers m � 7, which is easily explained

by the nonasymptotic nature of the constant (4 − e)/(e − 2). The result (3.6) improves the

well-known double inequality

1

2m+ 2
< 1− e−1

(
1 +

1

m

)m

<
1

2m+ 1
, m ∈ N,

from the classic problem book [11, Part I, Chapter 4, Section 2].

For the number e itself the left-hand side of (3.6) gives for any m ∈ N the lower estimate

e >
12m+ 11

12m+ 5

(
1 +

1

m

)m

.

Testing it at the previous value m = 100, we write

e >
1211

1205
1.01100 = 2.718281782 . . . ,
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where six correct digits after the decimal point demonstrate slight improvement compared to

the lower bound of (3.3).

Let us mention another way to obtain nontrivial estimates for the Euler number based on the

connection between power means and Rado means. In this case, one can set for e (respectively

for (3.4)) the following inequalities valid for all m ∈ N and written out in order of increasing

accuracy:

e <

√
m+ 1

m

(
1 +

1

m

)m ⇐⇒ H
( 1

m

)
<

1

m+
√

m(m+ 1)
, (3.7)

e <
4(m+ 1)

(
√
m+

√
m+ 1 )2

(
1 +

1

m

)m ⇐⇒ H
( 1

m

)
<

2m+ 3− 2
√

m(m+ 1)

4(m+ 1)
, (3.8)

e <
( 2 3

√
(m+ 1)2

3
√
m2 + 3

√
(m+ 1)2

)3/2(
1 +

1

m

)m ⇐⇒ H
( 1

m

)
< 1−

( 3
√
m2 + 3

√
(m+ 1)2

2 3
√
(m+ 1)2

)3/2
. (3.9)

Choosing and substituting m = 100 into (3.7)–(3.9), we consistently find that

e <

√
101

10
1.01100 = 2.718304 . . . ,

e <
404

(10 +
√
101 )2

1.01100 = 2.71828743 . . . ,

e < 202

√
2

( 3
√
10000 + 3

√
10201)3

1.01100 = 2.7182818284631 . . . ,

where the accuracy of ten decimal places in the last estimate is achieved due to a significant

complication of its format.

We show that such a high accuracy can be achieved by without changing the “rational”

pattern of continued fractions chosen in the Theorem 1.1. However, it require a rigorous proof

of one plausible hypothesis confirmed by numerical calculation.

4 Open Question

On the set x ∈ (−1,+∞), we define the functional sequence Φn(x) with numbering n ∈ N

as follows. The first two elements Φ1 and Φ2 are given by formulas (2.1) and (2.2) respectively.

Let

Φ3(x) ≡ 1

x

( 1

Φ2(x)
− 1

Φ2(0)

)
=

1
x

H(x)
− 2

− 6

11x
=

1
x

1− e−1(1 + x)
1
x

− 2
− 6

11x
(4.1)

by the natural agreement

Φ3(0) =
(a1
a2

)2
a3 − a1 =

5

242
. (4.2)

Then

Φ4(x) ≡ 1

x

( 1

Φ3(x)
− 1

Φ3(0)

)
=

1
x

x

H(x)
− 2

− 6

11

− 242

5x
. (4.3)
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By continuity, we can assume that

Φ4(0) =
5027

250
. (4.4)

The general recurrence rule is as follows:

Φn+1(x) ≡ 1

x

( 1

Φn(x)
− 1

Φn(0)

)
, n ∈ N, (4.5)

with definition by continuity at the point x = 0. Thus, Φn(x) is an elementary analytic function

for x > −1 and any n ∈ N.

Conjecture. For any n ∈ N the function Φn(x) from the sequence (4.5) is decreasing on

the ray x > 0.

In Lemmas 2.1 and 2.4, the conjecture is confirmed for n = 1 and n = 2. Assuming that

the conjecture is true n = 3 and taking into account (4.2), for the function (4.1) we obtain the

following two-sided estimate:

17e− 46

11(4− e)
= Φ3(1) � Φ3(x) < Φ3(0) =

5

242
, x ∈ (0, 1], (4.6)

with bounds
17e− 46

11(4− e)
= 0.0149 . . . ,

5

242
= 0.0206 . . . .

This estimate can be written as

x

2 +
x

6

11
+

(17e− 46)x

11(4− e)

� H(x) <
x

2 +
x

6

11
+

5x

242

, x ∈ (0, 1]. (4.7)

By (4.7), the deviation (3.4) satisfies the inequalities

1

2m+
11

6 +
17e− 46

(4− e)m

� 1− e−1
(
1 +

1

m

)m
<

1

2m+
11

6 +
5

22m

, m ∈ N. (4.8)

The right-hand side of (4.8) can be written as

e <
264m2 + 252m

264m2 + 120m− 5

(
1 +

1

m

)m
, m ∈ N. (4.9)

Setting m = 100 in (4.9), we get

e <
2665200

2651995
1.01100 = 2.718281828651 . . .

with nine correct digits after the decimal point.

We assume that the conjecture is true for n = 4. Then, taking into account (4.4), for the

function (4.3) a two-sided estimate we have

11(1032− 379e)

5(17e− 46)
= Φ4(1) � Φ4(x) < Φ4(0) =

5027

250
, x ∈ (0, 1], (4.10)
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which can be written as

x

2 +
x

6

11
+

x
242

5
+

5027x

250

< H(x) � x

2 +
x

6

11
+

x

242

5
+

11(1032− 379e)x

5(17e− 46)

, x ∈ (0, 1], (4.11)

with the same constants as in (4.10)

5027

250
= 20.108 . . . ,

11(1032− 379e)

5(17e− 46)
= 18.485 . . . ,

found by a direct calculation on the basis of the expansion (1.2). In this case, from (4.11) we

obtain for the deviation (3.4) the double inequality

1

2m+
1

6

11
+

1
242m

5
+

5027

250

< H
( 1

m

)
� 1

2m+
1

6

11
+

1

242m

5
+

11(1032− 379e)

5(17e− 46)

(4.12)

for all m ∈ N. The left-hand side of (4.12) contains the estimate

e >
145200m2 + 198924m+ 55297

145200m2 + 126324m+ 22385

(
1 +

1

m

)m
, m ∈ N. (4.13)

Taking m = 100 in (4.13), we get

e >
12164857

12104585
1.01100 = 2.71828182845882 . . . ,

with eleven correct decimal places.

However, it is not yet known whether the “basic” relations (4.6) and (4.10) are valid. Ap-

parently, confirming the formulated conjecture in full requires a more subtle approach compared

to what was proposed in the proof of Theorem 1.1.
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