CONDITIONS FOR EXISTENCE OF SOLUTIONS TO DISCRETE EQUATIONS WITH PRECOMPACT RANGE OF VALUES

Vasyl Slyusarchuk

UDC 517.929

We establish conditions for the existence of solutions of discrete equations with precompact range of values by using c-continuous operators and admissible pairs of compact sets.

1. Main Notation and the Object of Research

Let \mathbb{N} , \mathbb{Z} , and \mathbb{R} be, respectively, the sets of all positive, integer, and real numbers, let \mathbb{R}^m be a real *m*-dimensional space, let \mathbb{Z}^m be an Abelian group whose elements are vectors $\mathbf{n} = (n_1, n_2, \dots, n_m) \in \mathbb{R}^m$ with $n_1, n_2, \dots, n_m \in \mathbb{Z}$ with respect to the operation of addition:

$$\mathbf{n}_1 + \mathbf{n}_2 = (n_{1,1}, n_{1,2}, \dots, n_{1,m}) + (n_{2,1}, n_{2,2}, \dots, n_{2,m})$$
$$= (n_{1,1} + n_{2,1}, n_{1,2} + n_{2,2}, \dots, n_{1,m} + n_{2,m}),$$

let M be an arbitrary complete metric space with a metric ρ_M and let a be an arbitrary element of this space.

By \mathfrak{M} we denote a complete metric space of functions $\mathbf{x} = \mathbf{x}(\mathbf{n})$, $\mathbf{n} \in \mathbb{Z}^m$, with values in *M* for each of which

$$\sup_{\mathbf{n}\in\mathbb{Z}^m}\rho_M(\mathbf{x}(\mathbf{n}),a)<\infty\tag{1}$$

with the following metric:

$$\rho_{\mathfrak{M}}(\mathbf{x}_1, \mathbf{x}_2) = \sup_{\mathbf{n} \in \mathbb{Z}^m} \rho_M(\mathbf{x}_1(\mathbf{n}), \mathbf{x}_2(\mathbf{n})).$$
(2)

In equality (2), we have $\mathbf{x}_1 = \mathbf{x}_1(\mathbf{n})$ and $\mathbf{x}_2 = \mathbf{x}_2(\mathbf{n})$, $\mathbf{n} \in \mathbb{Z}^m$.

In view of (1), the elements of the space \mathfrak{M} are functions bounded on \mathbb{Z}^m . The metric space \mathfrak{M} is complete due to the completeness of the space M.

Consider an operator $\mathbf{F}: \mathfrak{M} \to \mathfrak{M}$. This operator is

- 1) bounded (maps every bounded set in the space \mathfrak{M} into a bounded set of this space [1, p. 14]);
- 2) *c*-continuous (see Definition 3 in Sec. 2).

National University of Water Management and Utilization of Natural Resources, Soborna Street, 11, Rivne, 33000, Ukraine; e-mail: V.E.Slyusarchuk@gmail.com.

Translated from Neliniini Kolyvannya, Vol. 26, No. 3, pp. 434–440, July–September, 2023. Ukrainian DOI: 10.3842/nosc.v26i3.1434. Original article submitted May 7, 2023.

Consider an equation

$$\mathbf{F}\mathbf{x} = \mathbf{h},\tag{3}$$

where $h \in \mathfrak{M}$. This equation is discrete and can be regarded as a generalization of difference equations.

The aim of the present paper is to establish the conditions under which, for every function $\mathbf{h} \in \mathfrak{M}$ with a precompact range of values in M, equation (3) has at least one solution $\mathbf{x} \in \mathfrak{M}$.

2. Locally Convergent Sequences and *c*-Continuous Mappings

In what follows, in the study of equation (3), an important role is played by locally convergent sequences of elements of the space \mathfrak{M} .

Definition 1. By analogy with [2], we say that a sequence of elements $\mathbf{y}_k = \mathbf{y}_k(\mathbf{n}), k \ge 1$, of the space \mathfrak{M} locally converges to an element $\mathbf{y} = \mathbf{y}(\mathbf{n}) \in \mathfrak{M}$ and write

$$\mathbf{y}_k \xrightarrow{\mathrm{loc}, \mathfrak{M}} \mathbf{y} \quad as \quad k \to \infty$$

if this sequence is bounded in \mathfrak{M} , i.e.,

$$\sup_{k\geq 2}\rho_{\mathfrak{M}}(\mathbf{y}_k,\mathbf{y}_1)<\infty,$$

and, for any $\mathbf{n} \in \mathbb{Z}^m$,

$$\lim_{k\to+\infty}\rho_M(\mathbf{y}_k(\mathbf{n}),\mathbf{y}(\mathbf{n}))=0.$$

The concept of locally convergent sequences was introduced in [3, 4].

Definition 2. A bounded sequence of elements $\mathbf{y}_k \in \mathfrak{M}$, $k \ge 1$, is called locally convergent if there exists an element $\mathbf{z} \in \mathfrak{M}$ such that

$$\mathbf{y}_k \xrightarrow{\mathrm{loc}, \mathfrak{M}} \mathbf{z} \quad for \quad k \to \infty.$$

Note that, in view of uniqueness of the limits of convergent sequences in the space \mathcal{M} , the element $\mathbf{z} \in \mathfrak{M}$ in Definition 2 is unique.

An important role is played by the following statement on the existence of locally coincident sequences of elements of the space \mathfrak{M} .

Lemma 1. Let $(\mathbf{y}_k)_{k\geq 1}$ be an arbitrary bounded sequence of elements of the space \mathfrak{M} for which the sets $\{\mathbf{y}_k(\mathbf{n}): k \geq 1\}, \mathbf{n} \in \mathbb{Z}^m$, are precompact.

There exists a locally convergent subsequence $(\mathbf{y}_{k_l})_{l\geq 1}$ of the sequence $(\mathbf{y}_k)_{k\geq 1}$, which locally converges to $\mathbf{z} = \mathbf{z}(g) \in \mathfrak{M}$ as $l \to \infty$, where

$$\mathbf{z}(\mathbf{n}) = \lim_{l \to \infty} \mathbf{y}_{k_l}(\mathbf{n}), \quad \mathbf{n} \in \mathbb{Z}^m$$

for which

$$\sup_{\mathbf{n}\in\mathbb{Z}^m}\rho_M(\mathbf{z}(\mathbf{n}),a) \le \sup_{l\ge 1, \mathbf{n}\in\mathbb{Z}^m}\rho_M(\mathbf{y}_{k_l}(\mathbf{n}),a).$$
(4)

Proof. Since the group \mathbb{Z}^m is countable, its elements can be enumerated and, hence, this group can be represented in the form $\mathbb{Z}^m = \{\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3, \ldots\}$.

Consider the following subsequences of the sequence $(\mathbf{y}_k)_{k>1}$:

It is assumed that these sequences are such that

1) each subsequent sequence is a subsequence of the previous sequence;

2) the next sequences are convergent:

$$\begin{aligned} \mathbf{y}_{k_{1,1}}(\mathbf{n}_1), \mathbf{y}_{k_{1,2}}(\mathbf{n}_1), \dots, \mathbf{y}_{k_{1,p}}(\mathbf{n}_1), \dots, \\ \mathbf{y}_{k_{2,1}}(\mathbf{n}_2), \mathbf{y}_{k_{2,2}}(\mathbf{n}_2), \dots, \mathbf{y}_{k_{2,p}}(\mathbf{n}_2), \dots, \\ \vdots \\ \mathbf{y}_{k_{l,1}}(\mathbf{n}_l), \mathbf{y}_{k_{l,2}}(\mathbf{n}_l), \dots, \mathbf{y}_{k_{l,p}}(\mathbf{n}_l), \dots, \\ \vdots \end{aligned}$$

The set of sequences with these characteristics is nonempty because the sets $\{\mathbf{y}_k(\mathbf{n}): k \geq 1\}$, $\mathbf{n} \in \mathbb{Z}^m$, are precompact.

In view of the properties of the analyzed sequences, the diagonal sequence

$$\mathbf{y}_{k_{1,1}}(\mathbf{n}), \mathbf{y}_{k_{2,2}}(\mathbf{n}), \dots, \mathbf{y}_{k_{l,l}}(\mathbf{n}), \dots$$

is convergent for every $\mathbf{n} \in \mathbb{Z}^m$ and, therefore, there are bounds

$$\mathbf{z}(\mathbf{n}) = \lim_{l \to \infty} \mathbf{y}_{k_{l,l}}(\mathbf{n}), \quad \mathbf{n} \in \mathbb{Z}^m.$$
(5)

In view of (5) and the boundedness of the sequence $(\mathbf{y}_k)_{k\geq 1}$ (by the conditions of Lemma 1), relation (4) is valid and the function given by the inequalities

$$\mathbf{z} = \mathbf{z}(\mathbf{n}), \quad \mathbf{n} \in \mathbb{Z}^m,$$

is an element of the space \mathfrak{M} .

Lemma 1 is proved.

(6)

Some specific cases of Lemma 1 were studied in [5, 6] and other works of the author by using the theory of c-continuous operators.

Definition 3. An operator $\mathbf{H}: \mathfrak{M} \to \mathfrak{M}$ is called *c*-continuous if, for every sequence $\mathbf{y}_k \in \mathfrak{M}$, $k \ge 1$, and $\mathbf{y} \in \mathfrak{M}$ such that $\mathbf{y}_{k_l} \xrightarrow{\text{loc}, \mathfrak{M}} \mathbf{y}$ as $l \to \infty$, the sequence $\mathbf{H}\mathbf{y}_k \in \mathfrak{M}$, $k \ge 1$, is locally convergent to $\mathbf{H}\mathbf{y}$ as $k \to \infty$.

The notion of *c*-continuous operators was introduced "in the ε , δ " language by Muhamadiev [7]. The definition of these operators based on the use of locally convergent sequences was proposed in [3, 8].

Note that, for the operators acting in the space \mathfrak{M} , the property of *c*-continuity does not follow from continuity and, vice versa, the property of continuity does not follow from *c*-continuity [9, p. 17–19].

3. The Set \mathfrak{P} of Periodic Elements of the Space \mathfrak{M}

In solving the problem of existence of bounded solutions to equation (3), we use local approximations of elements of the space \mathfrak{M} by periodic elements of a subset \mathfrak{P} of this space.

The set \mathfrak{P} contains only elements

$$\mathbf{x} = \mathbf{x}(\mathbf{n}) = \mathbf{x}((n_1, n_2, \dots, n_m))$$

of the space \mathfrak{M} that are (T_1, T_2, \ldots, T_m) -periodic, i.e., such that each of these elements satisfy the relation

$$\mathbf{x}((n_1 + t_1, n_2 + t_2, \dots, n_m + t_m)) = \mathbf{x}((n_1, n_2, \dots, n_m)$$

for all $t_1 \in \{0, T_1\}, t_2 \in \{0, T_2\}, \dots, t_m \in \{0, T_m\}$, and $\mathbf{n} \in \mathbb{Z}^m$. Note that, in this case, the natural numbers T_1, T_2, \dots, T_m are not fixed.

4. Pairs of Compact Sets Admissible for F with Respect to the Elements of the Set 3

Let $R(\mathbf{x})$ be the set of values of the function $\mathbf{x} \in \mathfrak{M}$, i.e., the set

$$R(\mathbf{x}) = \{\mathbf{x}(\mathbf{n}) \in M \colon \mathbf{n} \in \mathbb{Z}^m\}.$$

Definition 4. A pair (K_1, K_2) of compact sets $K_1, K_2 \subset M$ is called admissible for a mapping $\mathbf{F}: \mathfrak{M} \to \mathfrak{M}$ [or for equation (3)] with respect to the elements of \mathfrak{P} if, for each element $\mathbf{h} \in \mathfrak{P}$ such that $R(\mathbf{h}) \subset K_2$, equation (3) has a solution $\mathbf{x} \in \mathfrak{M}$ (which can be not unique) for which $R(\mathbf{x}) \subset K_1$.

5. Example of Equation with a Nonempty Set of Admissible Pairs of Compact Sets

Consider a Banach space E with the norm $\|\cdot\|_E$ as a metric space M and an equation

$$\mathbf{x}((n_1, n_2, \dots, n_m)) - \frac{q}{m} \Big(\mathbf{x}((n_1 - 1, n_2, \dots, n_m)) \\ + \mathbf{x}((n_1, n_2 - 1, \dots, n_m)) + \dots + \mathbf{x}((n_1, n_2, \dots, n_m - 1)) \Big) \\ = \mathbf{h}((n_1, n_2, \dots, n_m)), \quad (n_1, n_2, \dots, n_m) \in \mathbb{Z}^m,$$

where $q \in (0, 1)$ and $\mathbf{h} = \mathbf{h}((n_1, n_2, \dots, n_m))$ is a function bounded on \mathbb{Z}^m with values in E.

Clearly, this equation can be represented in the form

$$\mathbf{x}((n_1, n_2, \dots, n_m)) - q(\mathfrak{A}\mathbf{x})((n_1, n_2, \dots, n_m)) = \mathbf{h}((n_1, n_2, \dots, n_m)),$$
(7)
$$(n_1, n_2, \dots, n_m) \in \mathbb{Z}^m,$$

where $\mathfrak{A}:\mathfrak{M}\to\mathfrak{M}$ is a continuous linear operator:

$$(\mathfrak{A}\mathbf{x})((n_1,n_2,\ldots,n_m)) = \frac{1}{m} \big(\mathbf{x}((n_1-1,n_2,\ldots,n_m)) \big)$$

+ **x**($(n_1, n_2 - 1, ..., n_m)$) + ... + **x**($(n_1, n_2, ..., n_m - 1)$))

1041

with the norm $\|\mathfrak{A}\|_{L(\mathfrak{M},\mathfrak{M})}$ equal to 1. Here, the space \mathfrak{M} is considered as in the case M = E.

In view of the inclusion $q \in (0, 1)$, the unique solution $\mathbf{x}((n_1, n_2, ..., n_m))$ of equation (7) can be represented in the form

$$\mathbf{x}((n_1, n_2, \dots, n_m)) = \sum_{k \ge 0} q^k \left(\mathfrak{A}^k \mathbf{h}\right) ((n_1, n_2, \dots, n_m)), \quad (n_1, n_2, \dots, n_m) \in \mathbb{Z}^m.$$
(8)

Let K be an arbitrary nonempty absolutely convex [11, p. 15] set compact in E and let

 $\mathbf{h}(\mathbf{n}) \in K$

for all $\mathbf{n} \in \mathbb{Z}^m$. In view of (8), the equality

$$\|\mathfrak{A}\|_{L(\mathfrak{M},\mathfrak{M})} = 1,$$

and the absolute convexity of the set K, we get

$$\mathbf{x}(\mathbf{n}) \in (1-q)^{-1}K$$

for all $\mathbf{n} \in \mathbb{Z}^m$, where $(1-q)^{-1}K$, just as K, is also an absolutely convex set compact in E.

This implies that the pair $((1 - q)^{-1}K, K)$ of absolutely convex and compact sets in *E* is admissible for equation (6) with respect to the elements of the set \mathfrak{P} for each absolutely convex compact set *K*.

6. Conditions for the Existence of Solutions to Equation (3) with Precompact Range of Values

The following theorem is true:

Theorem 1. Let:

- (i) the operator $\mathbf{F}: \mathfrak{M} \to \mathfrak{M}$ in equation (3) be bounded and *c*-continuous;
- (ii) a pair (K_1, K_2) of compact sets $K_1, K_2 \subset \mathcal{M}$ be admissible for equation (3).

Then, for any element $\mathbf{h} \in \mathfrak{M}$ such that $R(\mathbf{h}) \subset K_2$, equation (3) has at least one solution $\mathbf{x} \in \mathfrak{M}$ for which $R(\mathbf{x}) \subset K_1$.

Proof. We fix an arbitrary element $\mathbf{h} \in \mathfrak{M}$ with the range of values $R(\mathbf{h})$ in K_2 and consider a sequence of elements $\mathbf{h}_k \in \mathfrak{P}, k \ge 1$, such that

$$\mathbf{h}_k \xrightarrow{\mathrm{loc}, \mathfrak{M}} \mathbf{h} \quad \mathrm{as} \quad k \to \infty.$$
(9)

By virtue of the inclusion $R(\mathbf{h}) \subset K_2$, the elements of \mathbf{h}_k , $k \ge 1$, can be chosen to guarantee that

$$R(\mathbf{h}_k) \subset K_2, \quad k \ge 1. \tag{10}$$

In view of (10), the periodicity of \mathbf{h}_k , and the admissibility of the pair (K_1, K_2) for **F**, the difference equation

$$\mathbf{F}\mathbf{x}_k = \mathbf{h}_k \tag{11}$$

possesses a solution \mathbf{x}_k in the space \mathfrak{M} and, moreover,

$$R(\mathbf{x}_k) \subset K_1$$
 for each $k \ge 1$.

By Lemma 2, there exists a locally convergent subsequence $(\mathbf{x}_{k_l})_{l \ge 1}$ of the sequence $(\mathbf{x}_k)_{k \ge 1}$ and an element \mathbf{x}_* such that

$$\mathbf{x}_{k_l} \xrightarrow{\mathrm{loc}, \mathfrak{M}} \mathbf{x}_* \quad \mathrm{as} \quad l \to \infty$$
 (12)

and

$$R(\mathbf{x}_*) \subset K_1.$$

We now show that

$$(\mathbf{F}\mathbf{x}_*)(\mathbf{n}) = \mathbf{h}(\mathbf{n}) \quad \text{for all} \quad \mathbf{n} \in \mathbb{Z}^m.$$
 (13)

Applying the triangle axiom to elements of space M [10, p. 41], we conclude that, for each $\mathbf{n} \in \mathbb{Z}^m$, the following inequality is true:

$$\rho_M((\mathbf{F}\mathbf{x}_*)(\mathbf{n}), \mathbf{h}(\mathbf{n})) \le \rho_M((\mathbf{F}\mathbf{x}_*)(\mathbf{n}), (\mathbf{F}\mathbf{x}_{k_l})(\mathbf{n})) + \rho_M((\mathbf{F}\mathbf{x}_{k_l})(\mathbf{n}), \mathbf{h}_{k_l}(\mathbf{n})) + \rho_M(\mathbf{h}_{k_l}(\mathbf{n}), \mathbf{h}(\mathbf{n})).$$

Note that, in view of (9), (11), and (12) and the *c*-continuity of the operator **F**, for any $\mathbf{n} \in \mathbb{Z}^m$, we get

$$\lim_{l\to\infty} \left(\rho_M((\mathbf{F}\mathbf{x}_*)(\mathbf{n}), (\mathbf{F}\mathbf{x}_{k_l})(\mathbf{n})) + \rho_M((\mathbf{F}\mathbf{x}_{k_l})(\mathbf{n}), \mathbf{h}_{k_l}(\mathbf{n})) + \rho_M(\mathbf{h}_{k_l}(\mathbf{n}), \mathbf{h}(\mathbf{n}))\right) = 0.$$

1042

Hence,

$$\rho_M((\mathbf{F}\mathbf{x}_*)(\mathbf{n}), \mathbf{h}(\mathbf{n})) = 0$$
 for all $\mathbf{n} \in \mathbb{Z}^m$,

1043

i.e., relation (13) is valid and, hence, \mathbf{x}_* is a solution of equation (3).

Theorem 1 is proved.

Corollary 1. Suppose that, for an element $\mathbf{h} \in \mathfrak{M}$ with precompact range of values $R(\mathbf{h})$, there exists a set K compact in M for which the pair $(K, \overline{R(\mathbf{h})})$ is admissible for equation (3) with respect to the elements of the set \mathfrak{P} .

Then equation (3) possesses at least one solution $\mathbf{x} \in \mathfrak{M}$ such that $R(\mathbf{x}) \subset K$.

Note that, in Theorem 1, the requirement of precompactness of the range of values of the function $\mathbf{h} \in \mathfrak{M}$ on the right-hand side of equation (3) is essential. This requirement is satisfied if, e.g., \mathbf{h} is an almost periodic element of the space \mathfrak{M} or an element of the set \mathfrak{P} . The cases of almost periodic discrete and, in particular, difference equations were investigated in [12–17].

7. Additional Remarks

1. Lemma 1 on the existence of a locally convergent sequence of elements of the metric space \mathfrak{M} defined and bounded on the group \mathbb{Z}^m is presented for the first time.

2. The concept of admissible pair of compact sets for the discrete equation (3) with respect to the set \mathfrak{P} is introduced for the first time. This concept does not coincide with the notion of admissibility of a pair of Banach function spaces for differential equations, which was considered in [18].

3. The set of admissible pairs of compact sets for equation (3) is nonempty, as shown in Section 5.

The author states that there is no conflict of interest.

REFERENCES

- 1. M. A. Krasnosel'skii, V. Sh. Burd, and Yu. S. Kolesov, Nonlinear Almost Periodic Oscillations [in Russian], Nauka, Moscow (1970).
- 2. V. E. Slyusarchuk, "Necessary and sufficient conditions for the existence and uniqueness of bounded and almost periodic solutions of nonlinear differential equations," *Nelin. Kolyv.*, **2**, No. 4, 523–539 (1999).
- 3. V. E. Slyusarchuk, "Method of *c*-continuous operators in the theory of impulsive systems," in: *Abstracts of the All-Union Conference* on the Theory and Applications of Functional Differential Equations, Dushanbe (1987), pp. 102–103.
- 4. V. E. Slyusarchuk, "Weakly nonlinear perturbations of normally solvable functional-differential and discrete equations," *Ukr. Mat. Zh.*, **39**, No. 5, 660–662 (1987); *English translation: Ukr. Math. J.*, **39**, No. 5, 540–542 (1987).
- V. E. Slyusarchuk, "Necessary and sufficient conditions for existence and uniqueness of bounded and almost-periodic solutions of nonlinear differential equations," *Acta Appl. Math.*, 65, No. 1-3, 333–341 (2001); https://doi.org/10.1023/A:1010687922737.
- 6. V. Yu. Slyusarchuk, *Implicit Nondifferentiable Functions in the Operator Theory* [in Ukrainian], Nats. Univ. Vodn. Gosp. Pryrodokoryst., Rivne (2008).
- É. Muhamadiev, "On the invertibility of functional operators in the space of functions bounded on the axis," *Mat. Zametki*, **11**, No. 3, 269–274 (1972).
- 8. V. E. Slyusarchuk, "Weakly nonlinear perturbations of impulsive systems," Mat. Fiz. Nelin. Mekh., Issue 15, 32-35 (1991).
- 9. V. Yu. Slyusarchuk, *Invertibility of Nonlinear Differential Operators* [in Ukrainian], Nats. Univ. Vodn. Gosp. Pryrodokoryst., Rivne (2006).
- 10. A. M. Kolmogorov and S. V. Fomin, *Elements of the Theory of Functions and Functional Analysis* [in Ukrainian], Vyshcha Shkola, Kyiv (1974).
- 11. A. P. Robertson, W. J. Robertson, Topological Vector Spaces [Russian translation], Mir, Moscow (1967).

- 12. V. Yu. Slyusarchuk, "Conditions for the existence of almost periodic solutions of nonlinear difference equations with discrete argument," *Nelin. Kolyv.*, **16**, No. 3, 416–425 (2013); *English translation: J. Math. Sci. (N.Y.)*, **201**, Issue 3, 391–399 (2014).
- 13. V. Yu. Slyusarchuk, "Almost periodic solutions of difference equations with discrete argument on metric space," *Miskolc Math. Notes*, **15**, Issue 1, 211–215 (2014); https://doi.org/10.18514/MMN.2014.1092.
- V. Yu. Slyusarchuk, "Almost periodic solutions of nonlinear discrete systems that can be not almost periodic in Bochner's sense," *Nelin. Kolyv.*, 17, No. 3, 407–418 (2014); *English translation: J. Math. Sci. (N.Y.)*, 212, No. 3, 335–348 (2016); https://doi.org/10.1007/s10958-015-2668-y.
- 15. V. Yu. Slyusarchuk, "Periodic and almost periodic solutions of difference equations in metric spaces," *Nelin. Kolyv.*, **18**, No. 1, 112–119 (2015); *English translation: J. Math. Sci.* (*N.Y.*), **215**, No. 3, 387–394 (2016); https://doi.org/10.1007/s10958-016-2845-7.
- V. E. Slyusarchuk, "Almost periodic solutions of discrete equations," *Izv. RAS. Ser. Mat.*, 80, No. 2, 125–138 (2016); *English translation: Izv. RAS, Ser. Math.*, 80, No. 2, 403–416 (2016); https://doi.org/10.1070/IM8279.
- V. Yu. Slyusarchuk, "Conditions for the existence of solutions of difference equations in the metric space of bounded sequences," *Nelin. Kolyv.*, 26, No. 1, 146–154 (2023); *English translation: J. Math. Sci.*, 278, No. 6, 1092–1101 (2024).
- 18. J. L. Massera and J. J. Schaffer, Linear Differential Equations and Function Spaces, Academic Press, New York (1966).