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Abstract
We consider multidimensional integral operators with homogeneous kernels of degree � . We obtain the 
conditions for � , which are necessary for the boundedness of these operators in Lebesgue spaces. Using the 
conditions for � , we establish sufficient conditions for the boundedness of integral operators with homoge‑
neous kernels in Lebesgue spaces. In addition, concrete examples of operators are considered in this paper.
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Introduction

At the present time, there are many papers dealing with multidimensional integral operators with homogeneous kernels 
of degree (−n) . The investigation of such operators was started by L. G. Mikhailov in connection with studying of elliptic 
differential equations with singular coefficients (see [1]–[2]). Further, the study of integral operators with homogeneous 
kernels was continued by N. K. Karapetyants, S. G. Samko, O. G. Avsyankin, V. M. Deundyak and other authors (e.g., 
see [3]–[11] and the bibliography therein). For operators, whose kernels are homogeneous of degree (−n) and invariant 
with respect to the rotation group SO(n), criteria for invertibility and the Fredholm property were obtained, the Banach 
algebras generated by these operators were studied, and the conditions for the projection method to apply were found. We 
especially note the articles [3, 5], and [10], in which the boundedness of operators with homogeneous kernels in various 
spaces was investigated.
The present paper is devoted to multidimensional integral operators whose kernels are homogeneous of degree � , where 
� ≠ n . We consider these operators either in the space Lp(�n) or in the space Lp(ℝn ⧵ 𝔹n) , where �n is the unit ball in ℝn . 
We obtain the conditions for the homogeneity degree � , which are necessary for the boundedness of the integral operator 
in these spaces. Taking this into account, we establish sufficient conditions for the boundedness of integral operators with 
homogeneous kernels in these spaces. The case of kernels, which are invariant with respect to the rotation group SO(n), 
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is considered separately. We also give application our results to various concrete examples of operators with homogene‑
ous kernels.
We use the following notation:
∙ ℝn is the n‑dimensional Euclidean space; x = (x1,… , xn) ∈ ℝn;
∙ |x| =

√
x2
1
+…+ x2

n
 ; x� = x∕|x| ; x ⋅ y = x1y1 +…+ xnyn;

∙ 𝔹n = {x ∈ ℝn ∶ |x| ⩽ 1} ; C𝔹n = ℝn ⧵ 𝔹n;
∙ 𝕊n−1 = {x ∈ ℝn ∶ |x| = 1};
∙ ℝ+ = (0,∞).
∙ Let 1 ⩽ p ⩽ ∞ , and D ⊆ ℝn be a measurable set. Then, Lp(D) is the space of (classes of) measurable complex‑valued 
functions with norm

The necessity of the condition ̨ ⩾ −n (or ̨ ⩽ −n)

Let 1 ⩽ p ⩽ ∞ . In the space Lp(�n) , consider the integral operator

where the function k(x, y) defined on ℝn ×ℝn (here and below, it is assumed that n ⩾ 2 ) is measurable and homogeneous 
of degree � ( � ∈ ℝ ), i.e.,

The purpose of this section is to find a condition for � , which is necessary for the boundedness of the operator K in the 
space Lp(�n) . To achieve it, define the operator U� , where 𝛿 > 0 , as follows:

if 0 < 𝛿 < 1 , and

if 𝛿 > 1 . Note that for 0 < 𝛿 < 1 the operator U� is left invertible, and the left inverse operator U−1
�

 is defined by the equa‑
tion U−1

�
= U�−1 . It is known (see [6]) that ‖U�‖ = 1.

Lemma 1 If the function k(x, y) is homogeneous of degree � and the operator K is bounded in the space Lp(�n) , then 
� ⩾ −n.

Proof Let 0 < 𝛿 < 1 . Taking into account the property (2), we have

‖f‖Lp(D) =
�

∫
D

�f (x)�p dx
�1∕p

, 1 ⩽ p < ∞; ‖f‖L∞(D) = ess sup
x∈D

�f (x)�.

(1)(K�)(x) = ∫
�n

k(x, y)�(y) dy,

(2)k(𝜆x, 𝜆y) = 𝜆𝛼k(x, y) ∀𝜆 > 0.

(U𝛿𝜑)(x) =

{
𝛿−n∕p𝜑(x∕𝛿), |x| ⩽ 𝛿,

0, |x| > 𝛿,

(U��)(x) = �−n∕p�(x∕�),

(U−1
�
KU��)(x) = ∫

|y|⩽�

k(�x, y)�(y∕�) dy
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Since K� = �−(n+�)U−1
�
KU�� and ‖U�‖ = 1 , then the inequality

is valid. Assume that n + 𝛼 < 0 . Then, letting � tend to zero, we obtain that ‖K�‖Lp(�n)
= 0 for any function � ∈ Lp(�n) . 

Hence, the operator K is the null operator. This contradiction leads to the inequality n + � ⩾ 0.

In the space Lp(C�n) , we consider the operator

where the function k(x, y) is defined on ℝn ×ℝn and satisfies the condition (2). Define the operator U� , 𝛿 > 0 , in Lp(C�n) 
by the formulas

if 𝛿 > 1 , and

if 0 < 𝛿 < 1 . Note that for 𝛿 > 1 the operator U� is left invertible, and the left inverse operator U−1
�

 is given by the equation 
U
−1
�

= U�−1.

Lemma 2 If the function k(x, y) is homogeneous of degree � and the operator K is bounded in the space Lp(C�n) , then 
� ⩽ −n.

Proof Let 𝛿 > 1 . Using the change of variables y = �t and taking into account (2), we obtain

From here it follows that

If n + 𝛼 > 0 , then letting � tend to infinity, we obtain that ‖K�‖Lp(C�n)
= 0 for any function � ∈ Lp(C�n) . Therefore, K is 

a null operator, which is impossible. Hence, n + � ⩽ 0.

Remark 1 In the space Lp(ℝn) , consider the operator

where k(x, y) satisfies the condition (2). It follows from Lemma 1 and Lemma 2 that if K is bounded, then it is necessary 
that � = −n.

= �n+� ∫
|y|⩽1

k(x, t)�(t) dt = �n+�(K�)(x).

‖K�‖Lp(𝔹n)
⩽ �−(n+�)‖K‖‖�‖Lp(𝔹n)

(3)(K�)(x) = ∫
C�n

k(x, y)�(y) dy,

(U𝛿𝜓)(x) =

{
𝛿−n∕p𝜓(x∕𝛿), |x| ⩾ 𝛿,

0, |x| < 𝛿,

(U��)(x) = �−n∕p�(x∕�),

(U−1
�
KU��)(x) = ∫

|y|⩾�

k(�x, y)�(y∕�) dy = �n+�(K�)(x).

‖K�‖Lp(C𝔹n)
⩽ �−(n+�)‖K‖‖�‖Lp(C𝔹n)

.

(K�)(x) = ∫
ℝn

k(x, y)�(y) dy,
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Sufficient conditions for boundedness

In the space Lp(�n) , 1 ⩽ p ⩽ ∞ , consider the operator K defined by the formula (1). The aim of this section is to find suf‑
ficient conditions for the boundedness of the operator K in Lp(�n).

Theorem 1 Let the function k(x, y) be homogeneous of degree � , where � ⩾ −n , and satisfy the following conditions

where p� = p∕(p − 1) . Then, the operator K of the form (1) is bounded in the space Lp(�n) , 1 ⩽ p ⩽ ∞ , and

Proof Let us consider two cases. 

1) Let 1 ⩽ p < ∞ . Applying the Holder’s inequality, we obtain 

 Let us transform the first integral. Using the change of variables y = |x|t and taking into account (2), we have 

 Thus, we have the inequality 

 Hence, 

(4)�1 = ess sup
𝜎∈𝕊n−1

∫
ℝn

|k(𝜎, t)||t|−n∕p dt < ∞,

(5)�2 = ess sup
𝜎∈𝕊n−1

∫
ℝn

|k(t, 𝜎)||t|−n∕p�−𝛼−n dt < ∞,

(6)‖K�‖Lp(𝔹n)
⩽ �1∕p�

1
�1∕p

2
‖�‖Lp(𝔹n)

.

|(K�)(x)| ⩽ ∫
|y|⩽1

|k(x, y)||�(y)| dy

= ∫
|y|⩽1

(
|k(x, y)|1∕p� |y|−n∕pp�

)(
|k(x, y)|1∕p|y|n∕pp� |�(y)|

)
dy

⩽

(

∫
|y|⩽1

|k(x, y)||y|−n∕p dy
)1∕p�(

∫
|y|⩽1

|k(x, y)||y|n∕p� |�(y)|p dy
)1∕p

.

∫
|y|⩽1

|k(x, y)||y|−n∕p dy = |x|−n∕p+�+n ∫
|t|⩽ 1

|x|

|k(x�, t)||t|−n∕p dt

⩽ |x|−n∕p+�+n ∫
ℝn

|k(x�, t)||t|−n∕p dt ⩽ �1|x|−n∕p+�+n.

|(K�)(x)| ⩽ �1∕p�

1
|x|−n∕(pp�)+(�+n)∕p�

(

∫
|y|⩽1

|k(x, y)||y|n∕p� |�(y)|p dy
)1∕p

.
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 In the inner integral, we make the change of variables x = |y|t and use the condition (2). As a result, we obtain 

 Since � + n ⩾ 0 , then |t|(�+n)p ⩽ |y|−(�+n)p . Thus, 

 From here it follows inequality (6).
2) Let p = ∞ . Then, we have 

 Using the change of variables y = |x|t and the condition (2), we obtain 

 Since n + � ⩾ 0 , then |x|n+� ⩽ 1 for all x ∈ �n . Thus, 

 for almost all x ∈ �n . Therefore, 

 The proof is complete.

Remark 2 For p = 1 , it suffices to have only one condition (5). More precisely, if only condition (5) is satisfied, where 
p = 1 , then the operator K is bounded in the space L1(�n) and

‖K�‖p
Lp(𝔹n)

⩽ �p∕p�

1 ∫
�x�⩽1

�x�−n∕p�+(�+n)p∕p� dx ∫
�y�⩽1

�k(x, y)��y�n∕p� ��(y)�p dy

= �p∕p�

1 ∫
�y�⩽1

��(y)�p�y�n∕p� dy ∫
�x�⩽1

�k(x, y)��x�−n∕p�+(�+n)(p−1) dx.

‖K�‖p
Lp(𝔹n)

⩽ �p∕p�

1 ∫
�y�⩽1

��(y)�p�y�(�+n)p dy ∫
�t�⩽ 1

�y�

�k(t, y�)��t�−n∕p�+(�+n)(p−1) dt.

‖K�‖p
Lp(𝔹n)

⩽ �p∕p�

1 ∫
�y�⩽1

��(y)�p dy ∫
�t�⩽ 1

�y�

�k(t, y�)��t�−n∕p�−�−n dt

⩽ �p∕p�

1 ∫
�y�⩽1

��(y)�p dy∫
ℝn

�k(t, y�)��t�−n∕p�−�−n dt

⩽ �p∕p�

1 ∫
�y�⩽1

��(y)�p
�
ess sup
y�∈𝕊n−1

∫
ℝn

�k(t, y�)��t�−n∕p�−�−n dt
�
dy

= �p∕p�

1
�2 ∫

�y�⩽1

��(y)�p dy ⩽ �p∕p�

1
�2‖�‖pLp(𝔹n)

.

�(K�)(x)� ⩽ ∫
�y�⩽1

�k(x, y)���(y)� dy ⩽ ‖�‖L∞(𝔹n) ∫
�y�⩽1

�k(x, y)� dy.

�(K�)(x)� ⩽ ‖�‖L∞(𝔹n)
�x�n+� ∫

ℝn

�k(x�, t)� dt.

�(K�)(x)� ⩽ ‖�‖L∞(𝔹n)
ess sup
x�∈𝕊n−1

∫
ℝn

�k(x�, t)� dt ⩽ �1‖�‖L∞(𝔹n)

(7)‖K�‖L∞(𝔹n)
⩽ �1‖�‖L∞(𝔹n)

.

‖K�‖L1(𝔹n)
⩽ �2‖�‖L1(𝔹n)

.
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Similarly, if only condition (4) is satisfied, where p = ∞ , then the operator K is bounded in L∞(�n) and the inequality 
(7) holds.

Remark 3 For � = −n conditions (4) and (5) coincide with the well‑known conditions of N.K. Karapetyants (see [3]).

For integral operators whose kernels are invariant under all rotations of ℝn , conditions (4) and (5) are significantly simpli‑
fied. Recall that a function k(x, y) is called invariant under the rotation group SO(n) if

Corollary 1 Let the function k(x, y) be homogeneous of degree � , where � ⩾ −n , invariant under the rotation group SO(n), 
and satisfy the condition

where e1 = (1, 0,… , 0) . Then, the operator K of the form (1) is bounded in the space Lp(�n) , 1 ⩽ p ⩽ ∞ , and

Proof In (4) and (5), we make the change of variables t = ��(�) , where �� is any element of the group SO(n) such that 
��(e1) = � . Then, taking into account (8), we reduce the formulas (4) and (5) to the form

To finish the proof, we show that �1 = �2 = � . Passing to the spherical coordinates t = �� , we have

Using the change of variables � = 1∕r and using the condition (2), we obtain

Since k(x, y) satisfies the condition (8), there exists a function k0(r, �, t) such that k(x, y) = k0(|x|, |y|, x� ⋅ y�) (see [4, p. 68]). 
Then,

Therefore,

Since �1 = �2 = � , this consequence follows directly from Theorem 1.

(8)k(�(x),�(y)) = k(x, y) ∀� ∈ SO(n).

(9)� = ∫
ℝn

|k(e1, t)||t|−n∕p dt = ∫
ℝn

|k(t, e1)||t|−n∕p
�−𝛼−n dt < ∞,

(10)‖K�‖Lp(𝔹n)
⩽ �‖�‖Lp(𝔹n)

.

�1 = ess sup
𝜎∈𝕊n−1

∫
ℝn

|k(𝜎, t)||t|−n∕p dt = ∫
ℝn

|k(e1, 𝜏)||𝜏|−n∕p d𝜏 < ∞,

�2 = ess sup
𝜎∈𝕊n−1

∫
ℝn

|k(t, 𝜎)||t|−n∕p�−𝛼−n dt = ∫
ℝn

|k(𝜏, e1)||𝜏|−n∕p
�−𝛼−n d𝜏 < ∞.

�1 = ∫
ℝn

|k(e1, �)||�|−n∕p d� =

∞

∫
0

∫
𝕊n−1

|k(e1, ��)|�n∕p
�−1 d�d�.

�1 =
∞

∫
0

∫
�n−1

|k(re1, �)|r−n∕p
�−�−1 drd�.

k(re1, �) = k0(r, 1, e1 ⋅ �) = k0(r, 1, � ⋅ e1) = k(r�, e1).

�1 =
∞

∫
0

∫
𝕊n−1

|k(r�, e1)|r−n∕p
�−�−1 drd� = ∫

ℝn

|k(�, e1)||�|−n∕p
�−�−n d� = �2.
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If k(x, y) ⩾ 0 and � = −n , then the condition (9) is necessary for the boundedness of the operator K (see [3, 4, p. 70]). But 
if � ≠ n , then (9) is not necessary for the boundedness of the operator K with a non‑negative kernel. Indeed, in the space 
L2(�n) consider the operator

It is known (e.g., see [12, p. 212]) that this operator is bounded in L2(�n) . However, (9) is not fulfilled because

Example 1 Let us provide an example of a function satisfying the conditions of Corollary 1. Consider the function

where i2 = −1 , 𝛽, 𝛾 > 0 and 𝛽 + 𝛾 < n . It is obvious that this function is homogeneous of degree � = −(� + �) and invari‑
ant under the rotation group SO(n). Moreover,

if 1 < p < n∕(n − 𝛽 − 𝛾) . Thus, the operator K with the kernel k(x, y) of the form (11) is bounded in the space Lp(�n) for 
1 < p < n∕(n − 𝛽 − 𝛾).

In the case � + � = n , where 𝛾 > 0 , the operator K is bounded in Lp(�n) for 1 < p < ∞.

Further, in the space Lp(�n) , consider the operator of Volterra type

Corollary 2 Let the function k(x, y) be homogeneous of degree � , where � ⩾ −n , invariant under the rotation group SO(n), 
and satisfy the condition

Then, the operator K̃ is bounded in the space Lp(�n) , 1 ⩽ p ⩽ ∞ , and

Proof Represent the operator K̃ in the form (1) with the kernel k̃(x, y) given by the formula

Then, (12) is equivalent to the condition (9) for the function k̃(x, y) . Therefore, by virtue of Corollary 1 the operator K̃ is 
bounded in Lp(�n) and the inequality (10) takes the form (13).

Example 2 Consider the operator K̃ with the kernel k(x, y) of the form (11), assuming that 𝛽, 𝛾 > 0 and 𝛽 + 𝛾 < n . Since

(K�)(x) = ∫
�n

�(y)

|x − y|n∕2
dy.

∫
ℝn

dt

|e1 − t|n∕2|t|n∕2
= ∞.

(11)k(x, y) =
exp(i(x� ⋅ y�))

(|x|� + |y|� )|x − y|�
,

� = ∫
ℝn

|k(e1, t)||t|−n∕p dt = ∫
ℝn

1

(1 + |t|𝛾 )|e1 − t|𝛽|t|n∕p
dt < ∞

(�K𝜑)(x) = ∫
|y|<|x|

k(x, y)𝜑(y) dy.

(12)�� = ∫
|t|<1

|k(e1, t)||t|−n∕p dt = ∫
|t|>1

|k(t, e1)||t|−n∕p
�−𝛼−n dt < ∞.

(13)‖K̃�‖Lp(𝔹n)
⩽ �̃‖�‖Lp(𝔹n)

.

�k(x, y) =

{
k(x, y), |y| < |x|,
0, |y| > |x|.
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for 1 < p ⩽ ∞ , the operator K̃ is bounded in Lp(�n) for these values of p.

Let us proceed to the investigation of the operator K of the form (3). We consider this operator in the space Lp(C�n).

Theorem 2 Let the function k(x, y) be homogeneous of degree � , where � ⩽ −n , and satisfy conditions (4)–(5). Then, the 
operator K of the form (3) is bounded in the space Lp(C�n) , 1 ⩽ p ⩽ ∞ , and

Proof The proof is similar to the proof of Theorem 1.

Corollary 3 Let the function k(x, y) be homogeneous of degree � , where � ⩽ −n , invariant under the rotation group SO(n), 
and satisfy condition (9). Then, the operator K of the form (3) is bounded in the space Lp(C�n) , 1 ⩽ p ⩽ ∞ , and

Proof It follows from the equality �1 = �2 = � , which was obtained in the proof of Corollary 1.

Example 3 Consider the operator K with the kernel k(x, y) of the form (11), where 𝛾 > 0 , 0 < 𝛽 < n and 𝛽 + 𝛾 > n . Then,

if 1 < p ⩽ ∞ . It follows that the operator K is bounded in Lp(C�n) for these values of p.

The one‑dimensional case

In this section, we will make some clarifications related to one‑dimensional integral operators with homogeneous 
kernels of degree �.
In the space Lp(0, 1) , where 1 ⩽ p ⩽ ∞ , consider the operator

where the function q(x,  y) defined on ℝ+ ×ℝ+ is measurable and homogeneous of degree � ( � ∈ ℝ ), i.e., 
q(�x, �y) = ��q(x, y) for any 𝜆 > 0.
As in Lemma 1, the boundedness of the operator Q in the space Lp(0, 1) implies that � ⩾ −1 . The following theorem 
provides sufficient conditions for the boundedness of the operator Q.

Theorem 3 Let the function q(x, y) be homogeneous of degree � , where � ⩾ −1 , and satisfy the condition

Then, the operator Q is bounded in the space Lp(0, 1) , 1 ⩽ p ⩽ ∞ , and

�� = ∫
|t|<1

1

(1 + |t|𝛾 )|e1 − t|𝛽|t|n∕p
dt < ∞

‖K�‖Lp(C𝔹n)
⩽ �1∕p�

1
�1∕p

2
‖�‖Lp(C𝔹n)

.

‖K�‖Lp(C𝔹n)
⩽ �‖�‖Lp(C𝔹n)

.

� = ∫
ℝn

1

(1 + |t|𝛾 )|e1 − t|𝛽|t|n∕p
dt < ∞,

(Qf )(x) =

1

∫
0

q(x, y)f (y) dy,

(14)𝜗 =

∞

∫
0

|q(1, t)|t−1∕p dt =
∞

∫
0

|q(t, 1)|t−1∕p�−𝛼−1 dt < ∞.
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Proof The equality of integrals in formula (14) is verified directly. The proof for the boundedness of the operator Q is analo‑
gous to the proof of Theorem 1.

Example 4 In the space Lp(0, 1) , consider the Hardy‑type operator

where 0 < 𝛽 < 1 . The kernel of this operator is the function

It is easy to see that this function is homogeneous of degree (−�) and satisfies the conditions (14) for 1 < p ⩽ ∞.
In conclusion, it should be noted that the inequality � ⩽ −1 is the necessary condition for boundedness of the operator

in the space Lp(1,∞) , and the condition (14) is sufficient for the boundedness of this operator.
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x�
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{
1∕x𝛽 , y < x,

0, y > x.
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