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ON PERIODIC SOLUTIONS OF A SECOND-ORDER
ORDINARY DIFFERENTIAL EQUATION

V. V. Abramov and E. Yu. Liskina UDC 517.925.42

Abstract. We consider a differential equation containing first- and second-order forms with respect to
the phase variable and its derivative with constant coefficients and a periodic inhomogeneity. Using
the method of constructing a positively invariant rectangular domain, we examine the existence of a
asymptotically stable (in the Lyapunov sense) periodic solution. Criteria for the existence of a periodic
solution are formulated in terms of properties of isoclines. We consider cases where the zero isocline is
a nondegenerate second-order curve.
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1. Introduction. Consider the differential equation

ẍ+ ax+ bẋ+ c(t) + ax2 + βxẋ+ γ(ẋ)2 = 0, (1)

where the coefficients a, b, α, β, and γ are constants and c(t) is a bounded T -periodic function. We
state conditions for the existence of a stable T -periodic solution for Eq. (1).

Equations of the form (1) are often used as a model of nonlinear oscillator; it belongs to the class of
generalized Rayleigh-type equations. Classical results related to the existence of periodic solutions of
equations of the Lienard and Rayleigh types can be found in [2]. In this paper, we apply the method
of canonical domains based on the following assertion (see [1]).

Theorem 1. Let a system ẋ = f(t, x) have a T -periodic in t right-hand side and possess the property
of existence and uniqueness of a solution of the Cauchy problem in a set R×D. If there exists a convex
compact set Ω ⊂ D bounded by smooth curves Φi(x) = 0 on which the estimates (gradΦi(x), f(t, x)) ≤
0 hold, i = 1,m, then the system ẋ = f(t, x) has a T -periodic solution with an initial value from IntΩ.

Any domain Ω satisfying Theorem 1 is said to be canonical.

2. Auxiliary results. We reduce Eq. (1) to an equivalent second-order normal system. Let ẋ =
kx − y, where k is a parameter. Then ẍ = kẋ − ẏ. Substituting ẋ and ẍ into Eq. (1), we obtain the
relation

k2x− ky − ẏ + ax+ bkx− by + c(t) + αx2 + βxy + γk2x2 + γy2 − 2γkxy = 0;

then

ẏ = x2(α+ βk + γk2) + y2γ + x(a+ bk + k2)− xy(β + 2γk) − y(k + b) + c(t).

Below we assume that the parameter k satisfies the condition β + 2γk = 0. Then Eq. (1) corresponds
to the system {

ẋ = f1(x, y) = kx− y,

ẋ = f2(t, x, y) = x2(α− γk2) + γy2 + x(a+ bk + k2)− y(k + b) + c(t).
(2)
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Thus, the problem on periodic solutions of Eq. (1) is reduced to the problem on periodic solutions of
the system (2).

We state necessary conditions of the existence of a periodic solution. For this purpose, consider the
location of the infinity isocline I∞: ẋ = 0 and the movable zero isocline I∞t : ẋ = 0 of the system (2).

For each t, the isocline I∞ (I0t ) divides the plane xOy into two parts: interior, where ẋ < 0 (ẏ < 0),

and exterior, where ẋ > 0 (ẏ > 0). We denote these parts by X int and Xext (or Y Xint

t and Y ext
t ),

respectively. For the isocline I0t , construct the corresponding fixed (stationary) interior and exterior
parts of the phase plane:

Y ext = {(x, y) : f2(t, x, y) > 0, t ∈ R}, Y int = {(x, y) : f2(t, x, y) < 0, t ∈ R}.
Obviously, for all t ∈ R, the isoclines satisfy the conditions

I∞ = X = ∂X = ∂X int ∪ ∂Xext, I0t ⊂ Y, ∂Y = ∂Y int ∪ ∂Y ext,

where Y is the domain containing all isoclines of the origin I0t . Since in each of the domains X int, Xext,
Y int, and Y ext the components of the vector solution of the system (2) are strictly monotonic, the
trajectory of the periodic solution of the system (2) cannot entirely lie in these domains. Therefore,
the following assertion on the localization of a canonical domain holds.

Lemma 1. If Ω is a canonical domain for the system (2), then Ω ⊃ X ∩ Y .

We rewrite the system (2) in the vector form ż = f(z) + colon(0, c(t)), where

z =

(
x

y

)
, f(z) =

(
kx− y

x2(α− γk2) + γy2 + x(a+ bk + k2)− y(k + b)

)
.

Choose some solutions z1 = z1(t), z2 = z2(t) of the system (2). For the function V (z1, z2) = (z1− z2)
2,

calculate the derivative with respect to the system (2). By the Lagrange formula we obtain

V̇ (z1, z2) = 2(z1 − z2)
TF (z̃)(z1 − z2),

where

F (z̃) =
1

2

(
∂f(z̃)

∂z
+

(
∂f(z̃)

∂z

)T
)

is the Hermitian component of the Jacobi matrix and z̃ is a vector depending on z1 and z2.
Assume that Λ is a positive invariant domain for the system (2). Choose z1(0) and z2(0) arbitrarily.

Then z1(t), z2(t) ∈ Λ for any t ≥ 0. Assume that z1 and z2 are different T -periodic solutions whose

trajectories lie in the positive invariant canonical domain Ω. If V̇ (z1, z2) < 0 for t ≥ 0, then V (z1, z2)
strictly decreases for t ≥ 0. Moreover,

z1(0) 
= z2(0), V (z1(0), z2(0)) > V (z1(T ), z2(T )),

that is,
‖z1(0) − z2(0)‖2 > ‖z1(T )− z2(T )‖2.

Therefore, the function z(t) = z1(t) − z2(t) is not T -periodic. Thus, if V̇ (z1, z2) < 0 for t ≥ 0 in the
domain Ω, then this domain contains a unique trajectory of the periodic solution of the system (2).

Moreover, if V̇ (z1, z2) < 0 for t ≥ 0, where z1(t) ∈ Ω is a T -periodic solution of the system (2) and
z2(t) ∈ Ω is an arbitrary solution of the system (2), then

V (z1(0), z2(0)) > V (z1(T ), z2(T )).

Therefore, the operator of shift by trajectories maps a neighborhood of the initial value z1(0) into
itself. By induction, this implies the stability of the periodic solution z1 (see [1]).

Thus, if F (z) < 0 in a positive invariant domain Ω, then V̇ (z1, z2) < 0 for t ≥ 0 for any pair of
solutions with initial values from Ω. Moreover, the domain Ω contains a unique trajectory of the stable
periodic solution of the system (2).
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For the system (2) we have

F (z) =

⎡
⎢⎣ k

2x(α− γk2) + (a+ bk + k2)− 1

2
2x(α− γk2) + (a+ bk + k2)− 1

2
2γy − (k + b)

⎤
⎥⎦ .

By the Sylvester criterion, the condition F (z) < 0 in Ω is equivalent to the system of estimates for
principal minors:

F (z) =

⎧⎨
⎩
Δ1 = k < 0,

Δ2(x, y) = (2γy − (k + b))− (2x(α − γk2) + (a+ bk + k2)− 1)2

4
> 0.

Therefore, everywhere below, we will assume that the condition

k < 0 (3)

holds. Moreover, the condition β + 2γk = 0 implies that the coefficients β and γ have the same sign.
In this paper, we search for the boundary ∂Ω of the canonical domain as a rectangle ABCD:

AB : Φ1(x, y) = y1 − y = 0; gradΦ1 = (0;−1); BC : Φ2(x, y) = x− x2 = 0; gradΦ2 = (1; 0);

AD : Φ3(x, y) = x1 − x = 0; gradΦ3 = (−1; 0); BC : Φ4(x, y) = y − y2 = 0; gradΦ4 = (0; 1).

In this case, Theorem 1 can be applied if the inequalities with nonlinear terms of the same order as
in the right-hand side of the system considered hold. Moreover, to verify the stability conditions, it
suffices to consider the vertices of the rectangle. Then Theorem 1 can be formulated as follows.

Theorem 2. Assume that the right-hand side of the system (2) on the boundary ABCD satisfies the
conditions ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

f2(t, x, y) ≥ 0 if Φ1 = 0,

f1(t, x, y) ≥ 0 if Φ2 = 0,

f1(t, x, y) ≥ 0 if Φ3 = 0,

f2(t, x, y) ≥ 0 if Φ4 = 0.

Moreover, at the vertices of the rectangle ABCD, the estimate Δ2(x, y) > 0 holds. Then the system (2)
has a stable T -periodic solution with an initial data inside ABCD.

3. Main results. Consider nondegenerate particular cases of the correspondence between the iso-
cline I0t and one of the standard forms for second-order curves if the system (2) is not linear.

We use the notation

c1 = inf
0,T

c(t), c2 = sup
0,T

c(t).

Assume that γ 
= 0 and α− γk2 
= 0. Extract the complete squares in the equation for I0t :

(α− γk2)(x− x0)
2 + γ(y − y0)

2 = m− c(t), (4)

where

(x0, y0) =

(−a− bk − k2

2(α− γk2)
;
k + b

2γ

)
is the center of the curve,

m =
(a+ bk + k2)2

2(α − γk2)
+

(k + b)2

4γ
.

Assume that the following estimates hold:

γ < 0, α− γk2 > 0, c1 > m. (5)

355



Then the curve (4) is a hyperbola with the semiaxes√
c(t)−m

α− γk2
,

√
m− c(t)

γ
.

To apply Theorem 2, we assume that the lines I∞: y = kx and

I01 :
(y − y0)

2

s21
− (x− x0)

2

q21
= 1, y > y0,

do not intersect; here

q1 =

√
|m− c2|
α− γk2

, s1 =

√
|m− c2|

|γ| .

Thus, the discriminant of the equation

(kx− y0)
2

s21
− (x− x0)

2

q21
= 1 (6)

must be positive. This condition holds if the following inequality is fulfilled:

(kx0 − y0)
2 + (k2q21 − s21) > 0. (7)

Thus, under the condition (7), the lines I∞ and I01 , y > y0, intersect at some points (h1, kh1) and
(h2, kh2), where h1 and h2 are the roots of Eq. (6), h1 < h2.

For the hyperbola I02 , consider the vertex (x0, y0+s2), s2 =
√|m− c1|/|γ|. Under the condition (7),

the lines I∞ and I02 intersect twice. Consider the intersection point with the largest abscissa l. Consider
the straight lines

AB : y = yl =

[
kl, l ≤ x0,

y0 + s2, l > x0,
BC : x = x2 =

y1
k
; (8)

then AB ⊂ Y ext, BC ⊂ X int.
Calculate the ordinate y2 of the intersection point of the straight line BC with the line I01 . If the

condition

kh2 ≤ y2 ≤ kh1 (9)

holds, then we choose the straight lines

CD : y = y2, DA : x = x1 =
y2
k
. (10)

The stability condition holds in the rectangle Ω bounded by the lines (8) and (10) if the following
inequalities are fulfilled:

Δ2(x1, y1) > 0, Δ2(x2, y1) > 0. (11)

Thus, by Theorem 2, the following assertion holds.

Theorem 3. If the conditions (3), (5), (7), (9), and (11) are fulfilled, then the system (2) has a stable
T -periodic solution whose trajectory lies inside the domain bounded by the straight lines (8) and (10).

Similarly we can consider the other cases in which the zero isocline is a hyperbola and the case
where the line (4) is an ellipse or a parabola.

Assume that the following estimates hold:

γ > 0, α− γk2 > 0, c2 < m. (12)

Then for any t ∈ R the isocline I0t defined by Eq. (4) is an ellipse with the semiaxes√
m− c(t)

α− γk2
,

√
m− c(t)

γ
.
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Then the numbers

q1 = inf
[0,T ]

(√
m− c(t)

α− γk2

)
=

√
m− c2
α− γk2

, s1 = inf
[0,T ]

(√
m− c(t)

γ

)
=

√
m− c2

γ

are the semiaxes of the boundary I0t of the domain Y int, which contains the center (x0, y0) of the
ellipse and the numbers

q2 = sup
[0,T ]

(√
m− c(t)

α− γk2

)
=

√
m− c1
α− γk2

, s2 = sup
[0,T ]

(√
m− c(t)

γ

)
=

√
m− c1

γ

are the semiaxes of the boundary I02 of the domain Y ext. To apply Theorem 2 in this case, we assume
that the lines I∞ and I0t intersect twice at some points (h1, kh1) and (h2, kh2), where h1 < h2. This
is possible if

(k2q21 + s21)− (kx0 − y0)
2 > 0. (13)

Under the condition (13), the lines I∞ and I02 also intersect twice. Assume that l is the largest of the
abscissas of their intersection points. We choose the straight lines

AB : y = yl =

[
kl, l ≤ x0,

y0 + s2, l > x0,
BC : x = x2 =

y1
k
. (14)

Let y2 be the ordinate of the intersection point of the straight line BC with the isocline I01 . If

kh2 ≤ y2 ≤ kh1, (15)

then we choose the straight lines

CD : y = y2, DA : x = x1 =
y2
k
. (16)

In the rectangle Ω bounded by the lines (14) and (18), the stability condition holds if the following
inequalities are fulfilled:

Δ2(xi, yj) > 0; i, j = 1, 2. (17)

Thus, due to Theorem 2, the following assertion holds.

Theorem 4. If the conditions (3), (12), (13), (15), and (17) are fulfilled, then the system (2) has a
stable T -periodic solution whose trajectory lies inside the domain bounded by the straight lines (14)
and (17).

Assume that in the system (3)

γ = 0, α > 0, k + b > 0. (18)

Then for any t the zero isocline is the parabola

y =
α

k + b
x2 +

a+ bk + k2

k + b
x+

c(t)

k + b
(19)

directed downward and the abscissa of the vertex is x0 = (−a−bk−k2)/(2α). Under the condition (18),
the domains Y ext and Y int are located below and above the parabola (19), respectively. The ordinates
of the vertices of the fixed zero isoclines I01 and I02 are

s1 =
c2

k + b
, s2 =

c1
k + b

,

respectively. Assume that

a2 − 4αc2 > 0. (20)

Then the lines I∞ and I01 have two intersection points (h1, kh1) and (h2, kh2), where h1 < h2.
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Choose the straight lines

AB : y = yl =

[
kl, l ≤ x0,

y0 + s2, l > x0,
; BC : x = x2 =

y1
k
. (21)

where l is the largest of the abscissas of the intersection points of the lines I∞ and I02 . Calculate the
ordinate y2 of the intersection point of BC and I01 . Under the condition

kh2 ≤ y2 ≤ kh1, (22)

we choose the straight lines

CD : y = y2, DA : x = x1 =
y2
k
. (23)

In the rectangle ABCD, the stability condition holds if the following estimates are fulfilled:{
Δ2(x1, y1) > 0,

Δ2(x2, y1) > 0.
(24)

Thus, the following assertion holds.

Theorem 5. If the conditions (3), (18), (20), (22), and (24) are fulfilled, then the system (2) has a
stable T -periodic solution whose trajectory lies inside the domain bounded by the straight lines (21)
and (23).
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