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QUASILINEAR INTERPOLATION BY MINIMAL
SPLINES

L. P. Livshits,∗ A. A. Makarov,† and S. V. Makarova‡ UDC 519.6

The paper studies quasilinear interpolation by minimal splines constructed on nonuniform grids
with multiple nodes. Asymptotic representations for normalized splines are obtained. The sharp-
ness of biorthogonal approximation and the order of accuracy of quasilinear interpolation with
respect to the grid stepsize are established. Results of numerical experiments on approximating
some test functions, which demonstrate the effect of choosing a generating vector function in
constructing the corresponding minimal spline, are presented. Bibliography: 35 titles.

To the memory of Yuri Kazimirovich Dem’yanovich

1. Introduction

The concept of spline as a piecewise polynomial function was introduced by Schoenberg [27].
The classical approach to construction of interpolation splines implies solving a system of linear
algebraic equations, the order of which is determined by the number of interpolation conditions
necessary to solve a particular interpolation problem (Lagrange, Hermite, or Hermite–Birkhoff
problems) in a class of functions with “piecewise” properties with a certain smoothness at the
nodes of the grid under consideration. The principal achievement of this theory was the con-
struction of the B-splines (basis splines), having minimal support for a prescribed smoothness.
This ensures that addition of new interpolation nodes implies only a local modification of the
interpolating spline. On the other hand, in every specific case, the approximation properties
and computational complexity of the resulting splines are studied individually [2, 28].

The first and one of the simplest examples of approximation by splines was the continuous
piecewise linear interpolation (the Euler method) [35]. Generally speaking, such an approx-
imation method is a local one, which does not require solving a large-order system of linear
algebraic equations. Instead, a few systems of smaller order must be solved. In local methods,
the coefficients at the basis functions are determined as the values of some approximation
functionals, which are, for example, linear combinations of the values of the approximated
function and its derivatives at some points. However, this does not necessarily lead to a loss of
approximation accuracy. Local schemes in which the maximum order of accuracy is achieved
are called quasi-interpolation schemes [1, 32]. In solving most applied problems, methods of
approximation theory and numerical analysis somehow related to local approximation are used
(for more detail, e. g., see [3, 17–20,29,33,34]).

The local basis functions themselves can be determined, for instance, by solving small-order
systems of linear algebraic equations. This approach appeared in connection with the theory
of finite-element method and was applied by Goel [12], Strang and Fix [30], and Mikhlin and
Dem’yanovich [5, 11, 25]. The Mikhlin–Dem’yanovich approach to constructing polynomial
splines satisfying approximation relations and having a prescribed smoothness focuses on de-
riving the simplest approximation formulas. In this case, first one minimizes the multiplicity of
overlapping (the so-called minimum multiplicity of overlapping supports of the basis functions)
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of the basis splines, and then the degree of the splines is minimized. The functions constructed
in this way are called the minimal splines for chosen approximation relations and a prescribed
smoothness. In view of the importance of these relations, Mikhlin [25] called them fundamen-
tal relations. If approximation relations of interpolation nature are used, then the resulting
approximations will be accurate on polynomials of a certain degree (this degree is called order
of accuracy). This allows one to find minimal splines with a local interpolation basis. An
important characteristic of approximation is the number of derivatives of the approximated
function it involves. This number is called approximation height. A zero-height spline only
uses the values of the function being approximated but not its derivatives; such splines are said
to be Lagrangian. A spline that uses consecutive ith derivatives of the approximated function
(i = 0, 1, . . . ,H, where H ∈ N) is called a Hermitian spline or a spline of height H. The works
by Dem’yanovich [6–8] and by his students and colleagues (for more detail, see [9,13,15,21] and
the references therein) are devoted to generalizing approximation relations and to developing
the general theory of minimal splines on their basis (both with a local interpolation and an
approximation bases, polynomial as well as nonpolynomial). The approximations constructed
there are accurate on powers of an arbitrary sufficiently smooth function.

It can be seen that the classes of splines obtained from approximation relations have
nonempty intersections with splines obtained by applying other approaches. For example, the
well-known polynomial B-splines are minimal splines, which exhibits an intimate connection
between the Schoenberg and Mikhlin–Dem’yanovich approaches. The Ryaben’ky splines [26]
are minimal Lagrangian splines whose orders of smoothness and accuracy coincide. The clas-
sical Hermitian splines are a special case of the minimal Hermitian splines. The well-known
quadratic and cubic continuous finite-element approximations [31] prove to be minimal splines.
The piecewise polynomial Jenkins functions, known in the theory of osculatory interpolation,
also are a special case of minimal splines [4]. For other examples, e.g., see [10,14,16].

This paper considers the minimal splines obtained from approximation relations using a
complete chain of vectors and a generating vector function ϕ. A certain method for choosing
a complete chain of vectors allows one to consider the minimal splines that have maximum
smoothness (Bϕ-splines) and to establish the uniqueness of the space of such splines among all
spaces of minimal splines (that are determined by an arbitrary choice of the above-mentioned
chain of vectors for a given grid and a given generating vector function).

The purpose of this work is to study quasilinear interpolation by minimal splines (with
maximum smoothness), which are constructed on nonuniform grids with multiple nodes. In
this paper, asymptotic representations for normalized splines are obtained. Theorems on the
accuracy of biorthogonal approximation and on the order of accuracy of quasilinear inter-
polation with respect to the grid stepsize are proved. Results of numerical experiments on
approximating some test functions using different generating vector functions for constructing
the corresponding minimal spline are presented.

2. Space of coordinate splines

Let Z and R
1 be the sets of integers and reals, respectively. By Cr[a, b] we denote the set

of r times continuously differentiable functions on an interval [a, b], assuming that C0[a, b] :=
C[a, b]. The space of piecewise continuous functions with finitely many discontinuities of the
first kind on [a, b] is denoted by C −1[a, b]; in this paper, it is assumed that every function of
this space is left-continuous.

On [a, b] ⊂ R
1, consider a grid X with two extra nodes outside the interval [a, b]:

X : x−1 < a = x0 < x1 < · · · < xn−1 < xn = b < xn+1. (1)
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Let Ji,k := {i, i + 1, . . . , k}, where i, k ∈ Z, i < k. An ordered set of vectors A := {aj ∈
R
2 | j ∈ J−1,n−1} is called a vector chain. A chain A is said to be complete if the square

matrices (aj−1,aj), composed of the vectors aj−1 and aj , are invertible, i.e.,

det(aj−1,aj) �= 0, j ∈ J−1,n−1. (2)

The union of all elementary grid intervals is denoted by M := ∪j∈J−1,n(xj , xj+1); X(M) is
the linear space of real-valued functions defined on the set M .

Assume that A is a complete vector chain. Given a vector function ϕ : [a, b] → R
2, define

the functions ωj ∈ X(M), j ∈ J−1,n−1, by the following relations:

k∑

j′=k−1

aj′ ωj′(t) ≡ ϕ(t), t ∈ (xk, xk+1), k ∈ J−1,n−1,

ωj(t) ≡ 0, t /∈ [xj , xj+2] ∩M.

(3)

For any fixed t ∈ (xk, xk+1), relations (3) can be regarded as a system of linear algebraic
equations in the unknowns ωj(t). By assumption (2), the system (3) has a unique solution,
and suppωj(t) ⊂ [xj , xj+2].

By Kramer’s rule, from the linear algebraic equations (3) we obtain

ωj(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

det(aj−1,ϕ(t))

det(aj−1,aj)
, t ∈ [xj , xj+1),

det(ϕ(t),aj+1)

det(aj,aj+1)
, t ∈ [xj+1, xj+2),

0 otherwise.

(4)

The linear span of the functions ωj(t) is called the space of minimal coordinate (A,ϕ)-splines
and is denoted by S(X,A,ϕ). Identities (3) are referred to as the approximation relations.
The vector function ϕ is called the generating vector function for the (A,ϕ)-splines. The
term coordinate splines is used for functions that form a basis of a spline space (in order to
avoid using the term “basis splines,” which is interpreted differently by different authors). The
functions ωj that solve approximation relations of the form (3) are called minimal coordinate
splines of Lagrangian type.

Consider the chain of vectors A defined by the formula

aj := ϕj+1 = (1, ρj+1)
T , (5)

where the generating vector function is defined by the relation ϕ(t) := (1, ρ(t))T . Here, T
means transposition, and ϕj := ϕ(xj), ρj := ρ(xj), j ∈ J−1,n−1. The function ρ(t) is also said
to be generating.

In the sequel, we will assume that the function ρ(t) satisfies the following conditions:

ρ ∈ C1[a, b], ρ′(t) �= 0, t ∈ [a, b]. (6)

The completeness of the chain (5) is obvious. In view of the Lagrange mean-value theorem
(formula of finite increments), the left-hand side of relation (2) can be written as

det(aj−1,aj) = ρj+1 − ρj = ρ′(θ)(xj+1 − xj), θ ∈ (xj , xj+1).

It follows that if the function ρ(t) is strictly monotone on [a, b], then the chain (5) is complete.
For the grid (1) this follows from conditions (6).
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For the complete chain (5), formulas (4) can be written in the form

ωj(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

det(ϕj ,ϕ(t))

det(ϕj,ϕj+1)
=

ρ(t)− ρj
ρj+1 − ρj

, t ∈ [xj , xj+1),

det(ϕ(t),ϕj+2)

det(ϕj+1,ϕj+2)
=

ρj+2 − ρ(t)

ρj+2 − ρj+1
, t ∈ [xj+1, xj+2),

0 otherwise.

(7)

The continuity of the functions (7) on the set M of elementary grid intervals is ensured by
the continuity of the function ρ(t). At the grid nodes, continuity immediately follows from the
relation

ωj(xi) = δj,i−1, (8)

where δj,i is the Kronecker symbol.
As has been shown above, the function ρ(t) is strictly monotone by virtue of condition (6).

Thus, the functions (7) are positive on their supports, i.e.,

ωj(t) > 0, t ∈ (xj , xj+2). (9)

The functions (7) yield a partition of unity, i.e.,

n−1∑

j=−1

ωj(t) ≡ 1, t ∈ [a, b], (10)

which is established by considering the approximation relations component-by-component.
Below, for convenience, the vector components will be denoted by square brackets with

nonnegative integer subscripts. For instance, a vector aj ∈ R
2 can be represented as aj :=

([aj ]0, [aj]1)
T . Then, in view of (5), [aj ]0 = 1 and [ϕ(t)]0 = 1. Thus, the coefficient at the

function ωj(t) and the right-hand side of (3) are equal to 1, which implies (10).
The space S(X,A,ϕ), where the chain A is determined from the vector function ϕ(t) via

(5) and ρ satisfies conditions (6), is denoted by

S(X) :=
{
u | u =

n−1∑

j=−1

cj ωj, cj ∈ R
1
}

and is called the space of normalized linear minimal coordinate Bϕ-splines (of the second order)
on the grid X. The splines themselves will be called the normalized minimal coordinate splines
of maximum smoothness.

If the generating vector function is defined by the equality ϕ(t) = (1, t)T , i.e., in (5) we
set ρ(t) = t, then the functions (7) coincide with the known polynomial B-splines of the first
degree (second order), i.e., with the one-dimensional Courant functions

ωB
j (t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t− xj
xj+1 − xj

, t ∈ [xj , xj+1),

xj+2 − t

xj+2 − xj+1
, t ∈ [xj+1, xj+2),

0 otherwise.

(11)

In the case where the generating vector function ϕ has polynomial components, one can
speak of the degree of the spline. Obviously, the polynomial splines of maximum smoothness
(11) are splines of the first degree, i.e., linear splines. The difference between the degree of a
polynomial spline and the order of its highest continuous derivative is called the spline defect.
Thus, the splines (11) are splines with smallest defect (equal to 1).
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3. Splines with multiple nodes

Let

hj := xj+1 − xj , h := max
j

{hj}, j ∈ J−1,n, (12)

be the stepsizes and fineness characteristic of the grid (1).
Assume that h → +0. The symbol o(1) will be used for infinitesimals as h → 0, i.e.,

o(1) −→
h→0

0.

In what follows, we will use the Taylor expansion of the function ρ(t),

ρ(t) = ρj+k + (t− xj+k)ρ
′
j+k + (t− xj+k)o(1). (13)

It is clear that for t = xj+p the above formula can be written as

ρj+p = ρj+k + (xj+p − xj+k)ρ
′
j+k + (xj+p − xj+k)o(1). (14)

Theorem 1. The functions ωj(t) of the form (7) possess the following asymptotic represen-
tation:

ωj(t) =

⎧
⎪⎪⎨

⎪⎪⎩

t− xj
hj

(1 + o(1)) , t ∈ [xj , xj+1),

xj+2 − t

hj+1
(1 + o(1)) , t ∈ [xj+1, xj+2).

(15)

Proof. By using expansions (13) and (14), for the function ωj(t) and for t ∈ [xj, xj+1) from
representation (7) we obtain

ωj(t) =
(t− xj)(ρ

′
j + o(1))

(xj+1 − xj)(ρ′j + o(1))
=

t− xj
xj+1 − xj

(1 + o(1)) .

Similarly, for t ∈ [xj+1, xj+2) we have

ωj(t) =
(t− xj+2)(ρ

′
j+2 + o(1))

(xj+1 − xj+2)(ρ′j+2 + o(1))
=

xj+2 − t

xj+2 − xj+1
(1 + o(1)) .

With account for (12), the desired relation (15) is established. �

Remark 1. The main part of the asymptotics in (15) coincides with the representation of the
B-spline (11).

On an interval [a, b] ⊂ R
1, consider a grid Xn, where

x−1 ≤ a = x0 ≤ x1 ≤ · · · ≤ xn−1 ≤ xn = b ≤ xn+1. (16)

The grid nodes (16) whose values coincide are called multiple nodes. If a node xj of the grid
Xn occurs k times, i.e., xj = xj+1 = · · · = xj+k−1, then it has multiplicity k.

Theorem 2. At nodes of multiplicity 2 the function ωj belongs to the space C−1[a, b]; further-
more,

(1) if xj = xj+1 < xj+2, then ωj(xj + 0) = 1;
(2) if xj < xj+1 = xj+2, then ωj(xj+1 − 0) = 1.

Proof. Obviously, ωj(xj − 0) = 0. By virtue of representation (15), we have

ωj(xj + 0) = lim
t→xj+1+0

xj+2 − t

hj+1
(1 + o(1)) = 1,

which implies the first assertion of the theorem. The second assertion is established in a similar
way. �
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Remark 2. For grids of the form (1) the claim of Theorem 2 can be interpreted as follows.
It is unnecessary to introduce extra nodes in the grid (1) outside of [a, b]. Then the boundary
functions ω−1 and ωn−1 must be defined by the following formulas:

ω−1(t) =

⎧
⎨

⎩

ρ1 − ρ(t)

ρ1 − ρ0
, t ∈ [x0, x1),

0 otherwise;

ωn−1(t) =

⎧
⎨

⎩

ρ(t)− ρn−1

ρn − ρn−1
, t ∈ [xn−1, xn],

0 otherwise.

4. Spline approximation

Consider a linear space U over the field of reals and its conjugate space U∗ of linear functionals
λ over the space U. The value of a functional λ on an element u ∈ U is denoted by 〈λ, u〉.

A system of functionals {μi}i∈Z is said to be biorthogonal to the system of functions {fj}j∈Z
if 〈μi, fj〉 = δi,j , where δi,j is the Kronecker symbol. The functionals μi are the biorthogonal
or dual functionals for the functions fj.

Consider the splines (7), their derivatives

ω′
j(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ′(t)
ρj+1 − ρj

, t ∈ [xj , xj+1),

− ρ′(t)
ρj+2 − ρj+1

, t ∈ [xj+1, xj+2),

0 otherwise,

(17)

and the linear functionals λ
〈r〉
j , r = 0, 1, j ∈ J−1,n−1, given by the following formulas:

〈λ〈0〉
j , u〉 := u(xj) +

ρj+1 − ρj
ρ′j

u′(xj), u ∈ C1[a, b]; (18)

〈λ〈1〉
j , u〉 := u(xj+1), u ∈ C[a, b]. (19)

Theorem 3. For any fixed r ∈ {0, 1}, the system of linear functionals {λ〈r〉
j } defined by

(18)–(19) is biorthogonal to the system of functions {ωj′}, i.e.,
〈λ〈r〉

j , ωj′〉 = δj,j′, j, j′ ∈ J−1,n−1. (20)

Proof. For r = 1, the theorem assertion is obvious in view of (8). For r = 0, the left-hand side
of (20) can be represented in the form

〈λ〈0〉
j , ωj′〉 = ωj′(xj) +

ρj+1 − ρj
ρ′j

ω′
j′(xj). (21)

In view of the distribution of the supports of the functions ωj′ and ω′
j′ , occurring in (21),

the equality 〈λ〈0〉
j , ωj′〉 = 0 holds for all j such that j �= j′ and j �= j′ + 1. If j = j′, then,

by using (8) and (17), for t = xj we obtain 〈λ〈0〉
j , ωj〉 = 1. Using the same properties, for

j = j′ + 1 we derive 〈λ〈0〉
j , ωj−1〉 = 0. This completes the proof of the theorem. �

Remark 3. For a general method for constructing functionals biorthogonal to minimal splines,
see [22,23].
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Consider the interpolation problem

〈λ〈r〉
i , ũ〉 = vi, i ∈ J−1,n−1, ũ ∈ S(X), (22)

where {vi} is a given sequence of numbers. For any fixed r ∈ {0, 1}, in the space S(X) there
is a unique solution of the direct interpolation problem (22), which is given by

ũ(t) =

n−1∑

j=−1

vj ωj(t), t ∈ [a, b].

Given a function u on [a, b], consider the spline

uh(t) =
n−1∑

j=−1

〈μj , u〉ωj(t), t ∈ [a, b], (23)

where 〈μj, u〉 are some linear functionals, which will be referred to as the approximation func-
tionals. If the system of functionals {μi} is biorthogonal to the system of functions {ωj}, then
the approximation (23) will be called the biorthogonal spline approximation.

Consider the biorthogonal spline approximation (23) for 〈μj , u〉 = 〈λ〈r〉
j , u〉. Taking into

account the location of the supports of the functions ωj for t ∈ [xk, xk+1], we conclude that
the sum (23) involves only two nonzero terms, whence

u
〈r〉
h (t) =

k∑

j=k−1

〈λ〈r〉
j , u〉ωj(t), t ∈ [xk, xk+1]. (24)

Theorem 4. For any fixed r ∈ {0, 1}, the approximation (24) is sharp on the components of
the vector function ϕ, i.e., if u ∈ {1, ρ(t)}, then

u
〈r〉
h (t) ≡ u(t).

Proof. The approximation relations (3) can be written in the following componentwise form:

k∑

j=k−1

〈λ〈r〉
j , [ϕ]i〉ωj(t) = [ϕ]i(t), i = 0, 1. (25)

For i = 0 we have [ϕ]i = 1, and 〈λ〈r〉
j , 1〉 = 1 for r = 0, 1. Therefore, sharpness is equivalent

to the partition of unity (10). For [ϕ(t)]1 = ρ(t) we deduce that 〈λ〈r〉
j , ρ〉 = ρj+1 for r = 0, 1,

whence sharpness on the function u = ρ immediately follows from relations (24) and (25). �

Let S(t) denote the approximation (24) with r = 1 and the approximation functional (19),

i.e., set S(t) := u
〈1〉
h (t). Then, for t ∈ [xk, xk+1], we have

S(t) =

k∑

j=k−1

u(xj+1)ωj(t) = u(xk)ωk−1(t) + u(xk+1)ωk(t)

= u(xk) (1 − ωk(t)) + u(xk+1)ωk(t) = u(xk) +
(
u(xk+1)− u(xk)

)
ωk(t).

(26)

From the computational point of view, in order to reduce the number of operations, from
all formulas (26), with account for (7), one should choose the formula

S(t) = uk +
(
uk+1 − uk

) ρ(t)− ρk
ρk+1 − ρk

, t ∈ [xk, xk+1], (27)

where uk := u(xk).
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Now it is clear that the spline (27) is an interpolation spline, i.e.,

S(xk) = uk, k ∈ J0,n.

For the generating vector function ϕ(t) = (1, t)T , i.e., for ρ(t) = t, the approximation (27)
is the well-known continuous piecewise linear interpolation. For other generators, the approx-
imation (27) will be referred to as the quasilinear interpolation (by minimal splines).

5. Error of quasilinear interpolation

In this section, in addition to conditions (6) imposed on the function ρ(t), we will also
assume that ρ ∈ C2[a, b]. This will allow us to continue using the Taylor expansion.

The norm in the space C[a, b] will be defined by the relation

‖f(t)‖C[a,b] = max
t∈[a,b]

|f(t)| , f ∈ C[a, b].

Theorem 5. For a function u ∈ C1[a, b], the approximation error satisfies the upper bound

|u(t)− S(t)| ≤ 2h ‖u′(t)‖C[a,b],

and for a function u ∈ C2[a, b], it satisfies the upper bound

|u(t)− S(t)| ≤ Ch2
(‖u′(t)‖C[a,b] + ‖u′′(t)‖C[a,b]

)
,

where the constant C > 0 is independent of u and h and is given by a closed-form expression.

Proof. By using representation (26), for t ∈ [xk, xk+1] we obtain

|S(t)− u(t)| = |uk +
(
uk+1 − uk

)
ωk(t)− u(t)|. (28)

For a function u ∈ C1[a, b], the formulas of finite increments, valid for some intermediate
values θk,t ∈ (xk, t) and θk,k+1 ∈ (xk, xk+1), yield

u(t) = uk + u′(θk,t)(t− xk), uk+1 = uk + u′(θk,k+1)(xk+1 − xk).

Substituting the latter expressions into (28), we find

|S(t)− u(t)| = |u′(θk,k+1)(xk+1 − xk)ωk(t)− u′(θk,t)(t− xk)|.
From (9) and (10) it follows that |ωk(t)| ≤ 1. Therefore, in the notation (12), we have

|S(t)− u(t)| ≤ 2 max
t∈[xk,xk+1]

|u′(t)|h,

and the first assertion of the theorem follows.
Now let expression (28) involve a function u ∈ C2[a, b], for which Taylor’s formula with the

Lagrange remainder yields

u(t) = uk + u′k(t− xk) +
1

2
u′′(θk,t)(t− xk)

2,

uk+1 = uk + u′k(xk+1 − xk) +
1

2
u′′(θk,k+1)(xk+1 − xk)

2,

where θk,t ∈ (xk, t) and θk,k+1 ∈ (xk, xk+1).
Substituting the above expressions for u(t) and uk+1 − uk into (28), we find

|S(t)− u(t)| =
∣∣∣u′k(xk+1 − xk)ωk(t)− u′k(t− xk)

+
1

2
u′′(θk,k+1)(xk+1 − xk)

2ωk(t)− 1

2
u′′(θk,t)(t− xk)

2
∣∣∣.

Denote
P := u′k(xk+1 − xk)ωk(t)− u′k(t− xk). (29)
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Then from the previous relation we obtain the upper bound

|S(t)− u(t)| ≤ |P |+ 1

2

∣∣u′′(θk,k+1)
∣∣ (xk+1 − xk)

2 |ωk(t)|+ 1

2

∣∣u′′(θk,t)
∣∣ (t− xk)

2.

Using the notation (12) and the fact that |ωk(t)| ≤ 1, we derive

|S(t)− u(t)| ≤ |P |+ max
t∈[xk,xk+1]

∣∣u′′(t)
∣∣ h2. (30)

Consider the first term of the right-hand side of inequality (30). With account for (7) and
(29), we have

P = u′k(xk+1 − xk)

(
ρ(t)− ρk
ρk+1 − ρk

− t− xk
xk+1 − xk

)
. (31)

The Taylor expansion of the function ρ(t) with Lagrange remainder, including the formula
of finite increments, has the form

ρ(t) = ρk + ρ′k(t− xk) +
1

2
ρ′′(τk,t)(t− xk)

2, ρk+1 = ρk + ρ′(τk,k+1)(xk+1 − xk), (32)

where τk,t ∈ (xk, t) and τk,k+1 ∈ (xk, xk+1).
Upon substituting (32) into (31), we obtain

P = u′k(xk+1 − xk)

(
ρ′k(t− xk) +

1
2ρ

′′(τk,t)(t− xk)
2

ρ′(τk,k+1)(xk+1 − xk)
− t− xk

xk+1 − xk

)

= u′k(t− xk)

(
ρ′k − ρ′(τk,k+1) +

1
2ρ

′′(τ k,t)(t− xk)

ρ′(τk,k+1)

)
.

(33)

Note that for the function ρ′ there is a point σk,τ ∈ (xk, τk,k+1) such that

ρ′k − ρ′(τk,k+1) = ρ′′(σk,τ )(xk − τk,k+1).

Therefore, we can write (33) in the form

P = u′k(t− xk)

(
ρ′′(σk,τ )(xk − τk,k+1) +

1
2ρ

′′(τk,t)(t− xk)

ρ′(τk,k+1)

)

and bound |P | from above as follows:

|P | ≤ ∣∣u′k
∣∣ |t− xk|

|ρ′′(σk,τ )| |xk − τk,k+1|+ 1
2 |ρ′′(τk,t)| |t− xk|

|ρ′(τk,k+1)|

≤
3
2 max
t∈[xk,xk+1]

|ρ′′(t)|
min

t∈[xk,xk+1]
|ρ′(t)| max

t∈[xk,xk+1]
|u′(t)|h2.

(34)

Finally, by combining inequalities (30) and (34), we obtain

|S(t)− u(t)| ≤ Ch2
(

max
t∈[xk,xk+1]

∣∣u′(t)
∣∣+ max

t∈[xk,xk+1]

∣∣u′′(t)
∣∣
)
, (35)

where C = max

{
1, 3

2 max
t∈[a,b]

|ρ′′(t)| / min
t∈[a,b]

|ρ′(t)|
}
, and max{ · , · } is the maximum of two num-

bers.
Now the second assertion of the theorem immediately follows from inequality (35). �
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Remark 4. In order to derive an error bound for a certain approximation, one can use the
method of integral representation of the remainder associated with an ordinary differential
operator, for which the components of the generating vector function provide a fundamental
system of solutions of the corresponding homogeneous equation (for more detail, see [9]).

6. Numerical experiments on quasilinear interpolation

Consider the quasilinear interpolation of the functions u(t) = arctan(t) and u(t) =
√
1− t2

on the interval [a, b] = [0.1, 0.6]. To this end, we will use grids of the form (1) with account for
Remark 2. Such grids will be denoted by Xn,[a,b], and their nodes xj, j ∈ J0,n, will be deter-

mined by the formula xj = x0 + j h, where x0 = a, h = b−a
n is the stepsize, and n = 10, 20, 30.

In performing numerical experiments for functions u(t) to be approximated, the quasilin-
ear interpolation S(t) will be constructed using formula (27) and different generating func-
tions ρ(t).

The error En of an approximation constructed is computed as the maximum of the absolute
value of the deviation of the interpolant S(t) from the original function u(t) at the nodes of
the auxiliary grid that is ten times finer than the original one, i.e.,

En = max
tj∈X10n,[a,b]

|u(tj)− S(tj)|. (36)

Results of numerical experiments on evaluating the approximation error (36) as a function
of the grid stepsize and the generating function ρ(t) are presented in Tables 1 and 2. The first
row of each of the tables corresponds to the case where ρ(t) = t, i.e., to the piecewise linear
interpolation (using the B-splines of the first degree).

Table 1. Approximation errors for the function u(t) = arctan(t).

ρ(t) n = 10 n = 20 n = 30
t 0.000203 0.000051 0.000023
sin(t) 0.000072 0.000018 0.000008
tanh(t) 0.000041 0.000011 0.000005

Table 2. Approximation errors for the function u(t) =
√
1− t2.

ρ(t) n = 10 n = 20 n = 30
t 0.000571 0.000147 0.000066√
1− t 0.000312 0.000079 0.000035

cosh(t) 0.000148 0.000040 0.000018

As is seen from the above tables, the accuracy of the approximations obtained depends
on the choice of the generating function ρ(t). The last rows of the tables contain the best
results obtained for the generating functions chosen. The results of numerical experiments
agree with the order of accuracy with respect to the grid stepsize provided by Theorem 5. In
view of Theorem 4, it is obvious that the best approximation (En = 0 up to round-off errors)
is obtained for the generating function ρ(t) = u(t). This result, being trivial, is not included
in the tables.

Note that approximation of an arc of the circle (see Table 2) is of independent interest as
it is widely used in computer-aided design systems (for more detail, see [24]).

Translated by the authors.
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