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ON THE LIMIT DISTRIBUTION FUNCTION OF
THE VALUE OF A DIFFUSION SEMI-MARKOV
PROCESS ON INTERVAL WITH UNATTAINABLE
BOUNDARIES

B. P. Harlamov∗,∗∗ UDC 519.2

A diffusion semi-Markov process on a finite interval with unattainable boundaries is considered.
It is assumed that unattainable property is not connected with process stop in the interval. A limit
theorem for alternating renewal processes is applied to derive the limit distribution function of the
diffusion process. Bibliography: 8 titles

1. A diffusion semi-Markov process

Let C be the standard metric space of continuous functions ξ defined on the interval [0,∞)
with values in R (sample trajectories of the process), F the standard sigma-algebra of subsets
of C, and P a probability measure on F . A continuous random process of the general form
X is completely characterized by the triple (C,F , P ), where in some cases it is convenient to
consider a consistent set of probability measures rather than a single probability measure.

LetXt (t ≥ 0) be a function with parameter t on C, defined by the equalityXt(ξ) = ξ(t) (one-
coordinate projection of the trajectory), and let θt be a shift operator on C, where θt(ξ) ∈ C
and Xs(θt(ξ)) = ξ(t + s) for all s ≥ 0. We also consider the class T of measurable mappings
τ , where 0 ≤ τ(ξ) ≤ ∞ (random moments of time admitting infinite values) for all ξ as well
as the class T0 of Markov moments (times) defined in the standard way.

Let τ ∈ T . On the set {τ < ∞}, we define a functional Xτ and an operator θτ with random
parameter, where

Xτ (ξ) ≡ Xτ(ξ)(ξ), θτ (ξ) ≡ θτ(ξ)(ξ).

Let f2 ◦ f1 ≡ f2(f1) (superposition of two functions). On the set

{τ1 < ∞, τ2 ◦ θτ1 < ∞},

we can write

θτ2 ◦ θτ1 = θτ2(θτ1) = θτ2(θτ1 )(θτ1) = θτ3 ,

where

τ3 ≡ τ1 + τ2(θτ1) ≡ τ1+̇τ2.

This is the so-called shift addition defined on the set τ1 < ∞. Note that the operation +̇ is
associative but not commutative.

Thus,

θτ1+̇τ2
= θτ2 ◦ θτ1 .

Then

θτ1+̇...+̇τn = θτn ◦ . . . ◦ θτ1 . (1)

In what follows, we putXτ ≡ X(τ), assuming that both of these functions are random (depend
on ξ).
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Let (Px), x∈R, be a family of probability measures on F such that Px(S)≡Px(X(0)=x, S)
for all x and any set S ∈ F . We assume that this family is measurable with respect to the
parameter x.

A Markov moment τ1 is called a regeneration moment of the family of measures (Px) (x ∈ R)
if for all x, any Fτ1-measurable function f1, and any F-measurable function f2, we have

Ex(f1 · (f2 ◦ θτ1); τ1 < ∞, τ2 ◦ θτ1 < ∞) = Ex(f1 ·EX(τ1)(f2; τ2 < ∞); τ1 < ∞),

where Fτ1 is the standard sigma-algebra of events (sets) “preceding” the moment τ1, and
Ex(f ; S) is the integral of the function f on the set S over the measure Px.

For continuous semi-Markov processes, the moments of the first exit from open sets play a
special role. Let Δ = (a, b), where a < b. Denote by σΔ the moment of the first exit of the
process X from the set Δ. It is known (see [1, p. 194]) that σΔ is a Markov moment with
respect to natural filtering.

A continuous semi-Markov process is a process given by a family of measures (Px) such that
the Markov moment σΔ is a regeneration moment for any Δ.

Put

gΔ(λ, x) = Ex (exp(−λσΔ), σΔ < ∞, X(σΔ) = a) ,

hΔ(λ, x) = Ex (exp(−λσΔ), σΔ < ∞, X(σΔ) = b) .

These are the so-called semi-Markov transition generating functions. It is known (see [2]) that
the system of these functions defines a semi-Markov process.

Let Δ1 = (c, d) and Δ = (a, b), where Δ1 ⊂ Δ and x ∈ Δ1. From the definition of a
continuous semi-Markov process, it follows that the system of two equations below is satisfied:

gΔ(λ, x) = gΔ1(λ, x)gΔ(λ, c) + hΔ1(λ, x)gΔ(λ, d), (2)

hΔ(λ, x) = gΔ1(λ, x)hΔ(λ, c) + hΔ1(λ, x)hΔ(λ, d). (3)

A continuous semi-Markov process is called a diffusion semi-Markov process on the interval
Δ if each of these functions satisfies the differential equation

1

2
y′′ +A(x)y′ −B(λ, x)y = 0 (4)

with boundary values

gΔ(λ, a) = hΔ(λ, b) = 1, gΔ(λ, b) = hΔ(λ, a) = 0.

In this equation, A(x) is a continuously differentiable function, B(λ, x) is a positive function
continuous on the second argument, nondecreasing, continuously differentiable on the first
argument, and having a completely monotone partial derivative on the first argument. The
reason for this definition and, in particular, the property that the coefficient A(x) is indepen-
dent of λ, follows from the properties of the Laplace transform (see [2, pp. 159–163]).

When λ = 0, equation (4) becomes the equation

1

2
u′′ +A(x)u′ −B(0, x)u = 0,

where the solution does not depend on λ. It is known (see, e.g., [3, p. 15]) that the case
B(0, x) ≡ 0 relates to a Markov diffusion process without break. The same property is also
true for a semi-Markov diffusion process without infinite constancy interval (i.e., without
stopping “forever”). This property follows from [4, formula (18)].

The boundary a of the interval (a, b) is said to be regular for a continuous semi-Markov
process if

Px(σ(a,b) < ∞,X(σ(a,b)) = a) > 0
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for all x ∈ (a, b). The boundary a of the interval (a, b) is said to be unattainable for a
continuous semi-Markov process if

Px(σ(a,b) < ∞,X(σ(a,b)) = a) = 0

for all x ∈ (a, b). The regularity and unattainability of the right boundary of the interval (a, b)
are defined similarly.

We are interested in a diffusion semi-Markov process with values on the interval (a0, b0) for
which both bounds are unattainable.

The conditions of unattainability of the boundaries of the value interval of a diffusion semi-
Markov process whose transient derivative functions are given by the differential equation (4)
without the summand B(λ, x)u were considered in [5]. Necessary and sufficient conditions
for unattainability in terms of the coefficient A(x) were obtained there. However, the limit
distribution was not considered in that paper.

2. Alternating recovery process

To find the limit (as t → ∞) distribution, we use the results of recovery theory.
The recovery process is a random piecewise constant process Z with nondecreasing trajec-

tories for which the interval lengths between jumps are mutually independent positive random
variables (independence is understood with respect to some probability measure P ).

An alternating recovery processX(t) is a recovery process for which all odd intervals between
jumps have the same distribution F1 and all even intervals between jumps have the same
distribution F2, where, in general, F1 
= F2 (the names odd and even are defined according
to the sequence of jump points of a piecewise constant process Z) (see, e.g., [6]). We use the
following theorem of the theory of alternating recovery processes.

Theorem 1. The limit as t → ∞ of the probability that X(t) belongs to the even interval of
constancy of this process is equal to p1, where

p1 =
m1

m1 +m2
,

and m1 and m2 are the expectations of the lengths of the odd and even intervals, respectively.

The proof is given in [6, p. 98].
Let a0 < a < b < b0, and let (Δn)

∞
n=1 be a sequence of intervals, where Δn ⊂ (a0, b0) and

the boundaries of the last interval are unreachable and every interior point of the interval is
regular. This sequence gives rise to a set of nondecreasing sequences (T n

k )
∞
n=1, 1 ≤ k ≤ n

points on the time axis, where

T 1
1 = σΔ1 , T n+1

k = T n
k +̇σΔn+1 ,

whence

T n
k = σΔk

+̇σΔk+1
+̇ . . . +̇σΔn .

Also put T k−1
k = 0.

Let (tn) be an arbitrary sequence of numbers (tn ∈ R). Consider the set of sequences of
random variables (Sn

k )
n
k=1, where

Sn
k = tkσΔk

+ Sn
k+1 ◦ θσΔk

.

Also put Sn
n+1 = 0.

It follows that

Sn
k =

n∑

m=k

tm σΔm ◦ θTm−1
k

,
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and hence

Sn
1 = t1σΔ1 +

n∑

k=2

tk σΔk
◦ θT k−1

1

Let Δn = (a0, b) if n is odd, and Δn = (a, b0) if n is even.

Condition A. For any interval Δ, where Δ ⊂ (a0, b0) and Δ 
= (a0, b0), and for any x ∈ Δ,
we have Px(σΔ < ∞) = 1 and Px(σ(a0,b0) < ∞) = 0.

From this condition and the definition of unattainability of the boundaries of the interval
(a0, b0), it follows that XTn

1
= b with Pa-probability one if n is odd, and XTn

1
= a if n is even.

Furthermore, from Condition A, it follows that Px(T
n
k < ∞) = 1 for all n ≥ 1 and 1 ≤ k ≤ n,

and therefore Ex(f ; T
n
k < ∞) = Ex(f).

Lemma 1. Let a be initial point of the process X on the interval (a0, b0) with unreach-
able boundaries. If Condition A is satisfied, then for any n ≥ 2, the random variables
T 1
1 , T

2
1 − T 1

1 , . . . T
n
1 −T n−1

1 are mutually independent random variables with respect to the mea-
sure Pa.

Proof. To simplify the notation, throughout the proof of the lemma, we put

τk ≡ σΔk
, βk ≡ θτk , φk ≡ tkτk,

and omit the symbol “◦” between operators where it is undoubted.
In these notation, we have

Sn
k = φk + Sn

k+1βk,

where T 1
1 = τ1, T

0
1 = 0, and θ0 is the identity transformation operator (i.e., θ0(ξ) = ξ).

By the method of inverse mathematical induction, we obtain

Sn
k =

n∑

m=k

φmθTm−1
k

. (5)

From the condition A, it follows that

Ea(exp(iS
n
1 ) ; T

n−1
1 < ∞) = Ea(exp(iS

n
1 )),

where i ≡
√
−1 (imaginary unit).

By the semi-Markov property of the process, we obtain

Ea(exp(iS
n
1 )) = Ea(exp(iφ1))Eb(exp(iS

n
2 )).

Since a constant function (e.g., f ≡ 1) is measurable with respect to any sigma-algebra, we
have

Eb(exp(iS
n
2 )) = Ea(exp(iS

n
2 β1)).

Consequently,

Ea(exp(iS
n
1 )) = Ea(exp(iφ1))Ea(exp(iS

n
2 β1))

= Ea(exp(iφ1))Ea(exp(iφ2β1))Ea(exp(iφ3β2β1) . . . Ea(exp(iφnβn−1 . . . β1))

= Ea(exp(iφ1))Ea(exp(iφ2θT 1
1
)Ea(exp(iφ

n
3θT 2

1
) . . . Ea(exp(iφnθTn−1

1
))

= Ea(exp(it1τ1))Ea(exp(it2τ2θT 1
1
)Ea(exp(it3τ3θT 2

1
) . . . Ea(exp(itnτnθTn−1

1
)).

On the other hand,

Sn
1 = t1τ1 + t2τ2θT 1

1
+ t3τ3θT 2

1
+ · · ·+ tnτnθTn−1

1
.
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From here and from the well-known theorem on multivariate characteristic functions (see, for
example, [7, p. 304]), it follows that the random variables

τ1, τ2θT 1
1
, τ3θT 2

1
, . . . τnθTn−1

1

are mutually independent random variables with respect to the measure Pa.
From the definition of T n

1 and the associative property of the operation +̇, it follows that
T n
1 − T n−1

1 = τnθTn−1
1

, where n ≥ 1.

The lemma is proved. �

From Lemma 1, it follows that the point process Z ≡ Z(a, b) defined by the sequence
of points T n

1 on the time axis is an alternating recovery process with distribution functions
F1(t) ≡ Pa(σ(a0,b) < t) on odd intervals and F2(t) ≡ Pb(σ(a,b0) < t) on even intervals.

3. Limit distribution function

Put

l(δ,β)(x) ≡ Ex(σ(δ,β), σ(δ,β)) < ∞, X(σ(δ,β)) = δ),

m(δ,β)(x) ≡ Ex(σ(δ,β), σ(δ,β)) < ∞, X(σ(δ,β)) = β),

where δ < x < β.
Let a0 < a < b < b0, and let Nt(a, b) be the event {at time t, the random variable Xt does

not belong to the interval (b, b0) of the alternating recovery process corresponding to the pair
of points {a, b}}. From this definition, we see that the event Nt(a, b) is equal to the event
{Xt ∈ (a0, b)}. Hence, according to Theorem 1, we have

lim
t→∞Pa(Xt ∈ (a0, b)) =

m(a0,b)(a)

l(a,b0)(b) +m(a0,b)(a)
.

It follows that on the interval (a, b0) this fraction, as a function of b, is nondecreasing and
tends to one as b → b0.

Let a0 < c < a < b0, and let Mt(c, a) be the event {at time t, the random variable Xt does
not belong to the interval (a0, c) of the alternating recovery process corresponding to the pair
of points {c, a}}. From this definition, we see that the event Mt(c, a) is equal to the event
{Xt ∈ (c, b0)}. Hence, according to Theorem 1, we have

lim
t→∞Pa(Xt ∈ (c, b0)) =

l(c,b0)(a)

l(c,b0)(a) +m(a0,a)(c)
.

It follows that on the interval (a0, a) this fraction, as a function of c, is nondecreasing and
tends to one as c → a0.

As a result, we have proved the following theorem.

Theorem 2. If Condition A is satisfied, then the diffusion semi-Markov process X(t) with
probability measure Pa on a finite interval (a0, b0) has the following distribution functional as
t → ∞:

Ka(x) ≡ lim
t→∞Pa(X(t) ∈ (a0, x)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m(a0, a, x)

l(a, x, b0)+m(a0, a, x)
if x ∈ (a, b0),

m(a0, x, a)

l(x, a, b0)+m(a0, x, a)
if x ∈ (a0, a).
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3.1. On calculating mathematical expectations. From the definition of transition de-
rivative functions, it follows that there exist distribution functions GΔ(t |x) and HΔ(t |x) such
that

gΔ(λ, x) =

∞∫

0

e−λtdGΔ(t |x),

hΔ(λ, x) =

∞∫

0

e−λtdHΔ(t |x).

By the uniform continuity of the functions gΔ(λ, x) and hΔ(λ, x) over λ and in view of these
integral representations, the derivatives of them over λ can be obtained as the result of differ-
entiation under the integrals

[gΔ(λ, x)]
′
λ =

∞∫

0

(−t)e−λtdGΔ(t |x),

[hΔ(λ, x)]
′
λ =

∞∫

0

(−t)e−λtdHΔ(t |x).

Setting λ = 0 and Δ = (a, b), we obtain the equations

lΔ(x) = −[gΔ(λ, x)]
′
λ=0,

mΔ(x) = −[hΔ(λ, x)]
′
λ=0.

Our next task is to use the equation

1

2
u′′ +A(x)u′ −B(λ, x)u = 0

to find the expectations included in the definition of the distribution function Ka(x).
Differentiating the terms of this differential equation by λ, changing the order of differen-

tiation by x and λ, and setting λ = 0, we obtain a differential equation with respect to the
variable x for the function lΔ(x),

lΔ(x)
′′ + 2A(x) lΔ(x)

′ + [2B(λ, x)]′λ=0 gΔ(0, x) − 2B(0, x) lΔ(x) = 0.

The last summand on the left-hand side of this equation is zero, because the process under
consideration has no infinite constant interval (see above). It is also known (see, [2, p. 172])
that B′

λ(0, x) > 0 for a nondegenerate continuous semi-Markov process. Hence

lΔ(x)
′′ + 2A(x)lΔ(x)

′ + 2B′
λ(0, x)]gΔ(0, x) = 0. (6)

Similarly, we obtain the second equation

mΔ(x)
′′ + 2A(x)mΔ(x)

′ + 2B′
λ(0, x)hΔ(0, x) = 0. (7)

Thus, we have two second-order differential equations of the form

y′′i + 2A(x)y′i + γi(x) = 0 (i = 1, 2),

where

γ1(x) ≡ 2B′
λ(0, x)gΔ(0, x) > 0,

γ2(x) ≡ 2B′
λ(0, x)hΔ(0, x) > 0.

Put zi ≡ y′i. As a result, we obtain two first order differential equations

z′i + 2A(x)zi + γi(x) = 0 (i = 1, 2).
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The solutions of these equations can be written in explicit form (see, e.g., [8, p. 35]). On the
interval (a, b), the solution of such an equation can be represented as

zi(x) = e−F (x)

(
zi(c)−

x∫

c

γi(t)e
F (t) dt

)
, (8)

where a0 < c < b0 and F (x) ≡
x∫
c
2A(t) dt, and also we used the identity

x∫

c

f(t) dt ≡ −
c∫

x

f(t) dt.

For each of these equations, we can write down two boundary representations of their
solutions with respect to the interval Δ ≡ (a, b).

Condition B. According to the intuitive notion of an interval with regular boundaries for a
and b, we define

m(a,b)(a) = m(a,b)(b) = 0, l(a,b)(a) = l(a,b)(b) = 0.

Keeping in mind the convergence of a to a0, we represent the function mΔ(x) in terms of
the left end of the interval. If x > a, then

m′
(a,b)(x) ≡ z2(x) = e−Fa(x)

(
z2(a)−

x∫

a

γ2(t)e
Fa(t) dt

)
,

where

Fa(x) ≡
x∫

a

2A(t) dt.

Next, we have

m(a,b)(y) = C +

y∫

a

m′
(a,b)(x) dx,

where from Condition B it follows that the arbitrary constant C is zero. Thus,

m(a,b)(y) =

y∫

a

e−Fa(x)

(
m′

(a,b)(a)−
x∫

a

γ2(t)e
Fa(t) dt

)
dx.

For a final representation of m(a,b)(y) in terms of the coefficients of the original differential

equation, only the value of m′
(a,b)(a) is missing.

Let y = b. Then from Condition B, it follows

m′
(a,b)(a) =

( b∫

a

e−Fa(x) dx

)−1 b∫

a

e−Fa(x)

x∫

a

γ2(t)e
Fa(t) dt dx.

The desired representation of the expectation of m(a,b)(x) is obtained.
On the other hand,

l′(a,b)(x) ≡ z1(x) = e−Fb(x)

(
l′(a,b)(b) +

b∫

x

γ1(t)e
Fb(t) dt

)
,
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where Fb(x) =
x∫

b

2A(t) dt. Hence

l(a,b)(x) = C −
b∫

x

l′(a,b)(t) dt.

Applying Condition B twice, we obtain C = 0 and

l′(a,b)(b) = −
( b∫

a

eFb(x) dx

)−1 b∫

a

e−Fb(x)

b∫

x

γ1(t)e
Fb(t) dt dx.

The desired representation of the expectation of l(a,b)(x) is obtained.
We have found a representation of the functionKa(x) in terms of expectations of the times of

the first exit from finite intervals, one of whose boundaries is unattainable. These expectations
are found as limits from the expectations on intervals with regular boundaries found above.

Translated by I. Ponomarenko.
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