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DISTRIBUTION OF FUNCTIONALS OF BROWNIAN
MOTION WITH LINEAR DRIFT AND ELASTICALLY
KILLED AT ZERO

A. N. Borodin∗ UDC 519.2

Brownian motion with linear drift on positive half-line and killed elastically at zero is considered.
A goal is to get a result that allows us to calculate the distributions of integral functionals with
respect to spatial variable of local time of such a process. The explicit form of the distribution of
the supremum with respect to spatial variable of local time is calculated for Brownian motion with
linear drift reflecting at zero. Bibliography: 9 titles

We consider a Brownian motion with linear drift on positive half-line and elastically killed
at zero. A brief description of this process is given in [1, Sec. 19, Appendix 1].

We are interested in a result that allows us to calculate distributions of integral functionals
with respect to spatial variable of local time of such a process. This work continues the
research started in papers [2] and [3] for skew Brownian motion and Brownian motion with
discontinuous drift. For Brownian local time, this result is described in detail in [4, Chap. V,
Sec. 5]. A starting point for our research is the Ray-Knight description of Brownian local time
in space variable as a Markov process (see [5, 6]).

1. Brownian motion with linear drift on positive half-line and elastically
killed at zero

Denote this process by W ◦
μ(t), t ≥ 0. Let W ◦

μ(0) = x, and let W+(t) = |W (t)| be the process
of reflecting Brownian motion, where W (t) is a Brownian motion process.

In what follows, the subscript of the probability and mathematical expectation means the
initial state of the process.

By definition, W ◦
μ is a homogeneous Markov process on [0,∞), for which the Laplace trans-

form of the transition density with respect to time, i.e., the function

Gz(x) := λ

∞∫

0

e−λt d

dz
Ex(W

◦
μ(t) < z) dt, x ∈ [0,∞), λ > 0,

is for every z > 0 and γ > 0 the unique continuous bounded solution to the problem

1

2
G′′(x) + μG′(x)− λG(x) = 0, x ∈ (0,∞) \ {z}, (1.1)

G′(z + 0)−G′(z − 0) = −2λ, (1.2)

G′(0+) = γG(0). (1.3)

Let τ be random time exponentially distributed with parameter λ > 0 and independent
of the process W ◦

μ(t), t ≥ 0, and of the reflecting Brownian motion W+. This moment is
convenient to use the Laplace transforms with respect to the time. For example,

Gz(x) =
d

dz
Px(W

◦
μ(τ) < z).
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Let us find an explicit solution to problem (1.1)–(1.3). We are looking for a solution in the
form

Gz(x) = eμ(z−x) λ
√

2λ + μ2

{
e−|z−x|

√
2λ+η2 +Ae−(z+x)

√
2λ+μ2

}
, x ≥ 0. (1.4)

In this representation, we took into account that the functions e−μx±x
√

2λ+μ2
are solutions of

homogeneous equation (1.1) on the whole real line, the resulting solution (1.4) is bounded and
satisfies the condition on the jump of the derivative (1.2). The constant A must be calculated
from condition (1.3). We have

A = 1− 2(μ+ γ)
√

2λ+ μ2 + μ+ γ
.

Thus, for the Laplace transform of the transition density, we derive the formula

d

dz
Px(W

◦
μ(τ) < z) = eμ(z−x) λ

√
2λ+ μ2

×
{
e−|z−x|

√
2λ+η2 +

(
1− 2(μ+ γ)

√
2λ+ μ2 + γ + μ

)
e−(z+x)

√
2λ+μ2

}
, x ≥ 0. (1.5)

This expression coincides with the expression for the Green function Gλ(x, z) calculated in [1,
Sec. 19, Appendix 1] with respect to the speed measure m(dz) = 2e2μzdz.

There is an absolute continuity of measures,

dP◦
x

dP+
x

∣∣∣∣
Ft

= exp
(
μ(W+(t)− x)− μ+ γ

2
�+(t, 0)− 1

2
μ2t

)
Px-a.s., (1.6)

where P◦
x and P+

x are the measures with respect to Brownian motion on the positive half-line
with linear drift and elastically killed at zero, and reflecting Brownian motion, respectively, Ft

is the σ-algebra generated by the Brownian motion up to moment t, and �+(t, 0) is the local
time of the reflecting Brownian motion with respect to Lebesgue measures, i.e.,

�+(t, 0) := lim
ε↓0

1

ε

t∫

0

�[0,ε)(W+(s)) ds.

For γ = 0, the process W ◦
μ turns into a Brownian motion on [0,∞) with linear drift μ reflecting

at zero. A brief description of this process is given in [1, Sec. 16, Appendix 1]. In this case, (1.6)
turns into a result by G. N. Kinkladze in [7].

Since the Brownian motion with linear drift and elastically killed at zero, and reflecting
Brownian motion are homogeneous Markov processes, to establish the absolute continuity
of measures (1.6), it suffices to prove the following equality for the Laplace transforms of
transition densities with respect to time:

d

dz
Px

(
W ◦

μ(τ) < z
)
= eμ(z−x) d

dz
Ex

{
exp

(
− μ+ γ

2
�+(τ, 0) − μ2τ

2

)
;W+(τ) < z

}
. (1.7)

Here and below, in order to simplify formulas, we put E{ξ;A} := E{ξ�A}.
The proof of a similar statement can be found in [8].
Let us verify (1.7). According to formula 3.1.3.5 in [1], for r = 0, we have

d

dz
Ex

{
exp

(
− μ+ γ

2
�+(τ, 0)

)
;W+(τ)<z

}
=

√
λ√
2

{
e−|z−x|√2λ+

(
1− 2(μ+γ)√

2λ+μ+γ

)
e−(z+x)

√
2λ
}
. (1.8)

Adding −μ2τ

2
to the exponent on the left-hand side leads to the transformation of the Laplace

transform with respect to time, which implies the replacements in (1.8):
√
2λ by

√
2λ+ μ2

42



and the factor

√
λ√
2
by the factor

λ
√

2λ + μ2
. Together with (1.5), formula (1.8) after such a

transformation proves (1.7) and hence also (1.6).
By virtue of the absolute continuity of measures, the process W ◦

μ(s), s ≥ 0, a.s. has the
local time

�◦μ(t, y) := lim
ε↓0

1

ε

t∫

0

�[y,y+ε)(W
◦
μ(s)) ds, y ∈ [0,∞), (1.9)

since it exists for the reflecting Brownian motion.
From formula (1.6), it follows that for any bounded measurable functional ℘(X(s), 0≤s≤ t),

we have

Ex℘
(
W ◦

μ(s), 0 ≤ s ≤ t
)

= Ex

{
℘(W+(s), 0 ≤ s ≤ t) exp

(
μ(W+(t)− x)− γ + μ

2
�+(t, 0) − μ2t

2

)}
. (1.10)

The Laplace transform with respect to t in this equality leads to the fact that it holds for τ
instead of t, and hence

Ex

{
℘
(
W ◦

μ(s), 0 ≤ s ≤ τ
)
;W ◦

μ(τ) ∈ dz
}

= eμ(z−x)Ex

{
℘(W+(s), 0 ≤ s ≤ τ) exp

(
γ + μ

2
�+(τ, 0) − μ2τ

2

)
;W+(τ) ∈ dz

}
(1.11)

=
2λeμ(z−x)

2λ+ μ2
Ex

{
℘(W+(s), 0 ≤ s ≤ τ̃) exp

(
γ + μ

2
�+(τ̃ , 0)

)
;W+(τ̃) ∈ dz

}
.

We used the change of time in the Laplace transform. Here and below, τ̃ is a random

variable exponentially distributed with parameter λ+
μ2

2
and independent of other processes.

We focus on integral functionals with respect to spatial variable of local time.

2. Distributions of functionals of local time

We consider the following question: how to calculate the distributions of functionals of local
time? An integral functional of local time �◦μ(t, y) with respect to space variable has the form

B◦
μ(t) :=

∞∫

0

f(�◦μ(t, y)) dy, (2.1)

where f(v), v ∈ [0,∞), is some nonnegative piecewise continuous function. For the Laplace
transform of the distribution of such a functional, we will obtain explicit formulas expressed in
terms of solutions of second-order differential equations satisfying some boundary conditions.
Having expressions for the Laplace transforms of distributions of nonnegative integral func-
tionals of the process, one can calculate distributions of supremum-type functionals. Thus, for
example, to calculate the supremum of an arbitrary continuous process X(y), we can use the
relation

Px

(
sup

0≤y≤b
X(y) ≤ h

)
= lim

γ→∞Ex exp
(
− γ

b∫

0

�(h,∞)(X(y)) dy
)
, (2.2)

see [4, Chap. III, Sec. 2]. In many cases, if

Ex exp
(
− γ

b∫

0

�[h,∞)(X(y)) dy
)

(2.3)
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is expressed by solutions of some differential equations, then it is not necessary to calculate the
mathematical expectation explicitly and then find the limit. Instead, one can to prove only that
the limit value for this mathematical expectation is also expressed via solutions of equations
with some boundary conditions. Such an approach simplifies the calculations substantially. It
has already been used by us in the proofs of [4, Chap. III, Theorem 2.1] and [4, Chap. IV,
Theorem 4.2], and also in [2] and [3]. In this section, we obtain results allowing us to calculate
the joint distribution of the functional B◦

μ(τ) and variables sup
y∈[0,∞)

�◦μ(τ, y).

Calculation of distribution of these functionals for a fixed time t is reduced to calculating
the inverse Laplace transforms with respect to λ of the distribution of the same functionals
stopped at random time τ .

Theorem 2.1. Let f(v), v ∈ [0, h], be a nonnegative piecewise continuous function satisfying
the condition f(0) = 0. Then

E0

[
exp

(
−

∞∫

0

f(�◦μ(τ, y)) dy
)
; sup
y∈[0,∞)

�μ(τ, y) ≤ h
]
= λ

h∫

0

e−(μ+γ)v/2Q(v) dv, (2.4)

where the function Q(v), v ∈ [0, h], is the bounded continuous solution to the problem

2vQ′′(v) + 2Q′(v)−
((

λ+
μ2

2

)
v − μ+ f(v)

)
Q(v) = −R(v), (2.5)

Q(h) = 0, (2.6)

and the function R(v), v ∈ [0, h], is the unique bounded continuous solution to the problem

2vR′′(v) −
((

λ+
μ2

2

)
v + f(v)

)
R(v) = 0, (2.7)

R(0) = 1, R(h) = 0. (2.8)

Remark 2.1. For a piecewise continuous function f equations (2.5), (2.7) should be inter-
preted as follows: they hold at all points of continuity of the function f , and at points of
discontinuity of the function f , their solutions are continuous together with the first deriva-
tive.

Proof of Theorem 2.1. First assume that h = ∞ and f is bounded twice continuously differen-
tiable function with bounded first and second derivatives. Since in the calculations below, all
the integrands are positive, and the left-hand side of the equalities is bounded, all the integrals
converge.

Using (1.11), we find

E0 exp

(
−

∞∫

0

f(�◦μ(τ, y)) dy
)

=

∞∫

0

E0

{
exp

(
−

∞∫

0

f(�◦μ(τ, y)) dy
)
;W ◦

μ(τ) ∈ dz
}

=
2λ

2λ+ μ2

∞∫

0

eμzE0

{
exp

(
−

∞∫

0

f(�+(τ̃ , y)) dy − μ+ γ

2
�+(τ̃ , 0)

)
;W+(τ̃ ) ∈ dz

}

=
2λ

√
2λ + μ2

∞∫

0

e(μ−
√

2λ+μ2)zE0

{
exp

(
−

∞∫

0

f(�+(τ̃ , y)) dy

− μ+ γ

2
�+(τ̃ , 0)

)∣∣∣∣W+(τ̃) = z
}
dz =

2λ
√

2λ+ μ2

∞∫

0

ez(μ−
√

2λ+μ2)I(z) dz,

(2.9)
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where

I(z) := Ez
0 exp

(
−

∞∫

0

f(�+(τ̃ , y)) dy − μ+ γ

2
�+(τ̃ , 0)

)
.

In this representation, we used a new probability space that is generated by conditional dis-
tributions

Pz
0(B) = P0(B|W+(τ̃) = z).

Probability and mathematical expectation related to this space will be supplied with super-
scribed index z and subscribed index 0.

Using the expression for the distribution density of local time of the reflecting Brownian
motion in a new probability space (formula 3.1.3.6 in [1] for x = 0, r = 0), we obtain

I(z) =

√
2λ+ μ2

2

∞∫

0

e−v
√

2λ+μ2/2e−(μ+γ)v/2 Ez
0 exp

(
−

∞∫

0

f(�+(τ̃ , y)) dy

)∣∣∣∣�+(τ̃ , 0) = v
}
dv.

Now we make use of the description of the local time �+(τ̃ , y), y ≥ 0, as a Markov process in
the probability space with measure Pz

0. Such a description follows, for example, from paper [2]
for β = 1. Our notation are consistent with those of paper [2] as follows: �+(τ̃ , y) = �1(τ̃ , y) if
y > 0 and �+(τ̃ , 0) = �1(τ̃ , 0+) = 2�1(τ̃ , 0).

As a result, the probability space with measure Pz
0 admits the following representation:

�+(τ̃ , y) =

{
V1(y − z) if y ≥ z,

V2(y) if 0 ≤ y ≤ z,

where Vk(h), h ≥ 0, k = 1, 2, are nonnegative homogeneous diffusion processes independent
for fixed initial values. They have the same initial values V1(0) = V2(z) and

d

dv
P(V2(0) < v) =

√
2λ+ μ2

2
e−v

√
2λ+μ2/2, v > 0,

and the generating operators have the form

L1 = 2v
(

d2

dv2
−

√
2λ+ μ2 d

dv

)
, L2 = 2v

(
d2

dv2
−

√
2λ+ μ2 d

dv

)
+ 2

d

dv
,

respectively.
Applying the Markov property of local time in the new probability space, we get

I(z) =

√
2λ + μ2

2

∞∫

0

e−v
√

2λ+μ2/2 e−(μ+γ)v/2 q̄(z, v) dv, (2.10)

where

q̄(z, v) := E
{
exp

(
−

∞∫

0

f(V1(h) dh −
z∫

0

f(V2(h)) dh

)∣∣∣∣V2(0) = v
}
dv

=

∞∫

0

Ev

{
exp

(
−

∞∫

0

f(V1(h) dh −
z∫

0

f(V2(h)) dh

)∣∣∣∣V2(z) = g
}
Pv

(
V2(z) ∈ dg

)
,

and the subscript v means that the expectation and probability are calculated for the process V2

with initial value V2(0) = v. From (2.9) and (2.10), it follows that

E0 exp

(
−

∞∫

0

f(�◦μ(τ, y)) dy
)
=λ

∞∫

0

dve−(μ+γ)v/2e−v
√

2λ+μ2/2

∞∫

0

ez(μ−
√

2λ+μ2)q̄(v, z) dz. (2.11)
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Let us continue the calculation of the function q̄(v, z). Using independence of the processes V1

and V2 for fixed initial values, and condition V1(0) = V2(z), we get

q̄(z, v) =

∞∫

0

E
{
exp

(
−

∞∫

0

f(V1(h)) dh
)∣∣∣V1(0) = g

}

×Ev

{
exp

(
−

z∫

0

f(V2(h)) dh
)∣∣∣V2(z) = g

}
Pv

(
V2(z) ∈ dg

)
,

=

∞∫

0

R̄(g)Ev

{
exp

(
−

z∫

0

f(V2(h)) dh
)
;V2(z) ∈ dg

}

= E
{
R̄(V2(z)) exp

(
−

z∫

0

f(V2(h)) dh
)∣∣∣V2(0) = v

}
.

Here,

R̄(g) := E
{
exp

(
−

∞∫

0

f(V1(h)) dh
)∣∣∣V1(0) = g

}
.

Using the expression for the generating operator of the process V1 and applying [4, Chap. II,
Theorem 12.5], we conclude that the function R̄(v), v ∈ (0,∞), is a bounded solution of the
homogeneous equation

2v
(
R̄′′(v)−

√
2λ+ μ2 R̄′(v)

) − f(v)R̄(v) = 0. (2.12)

According to [4, Chap. V, Proposition 2.1], the process V1(h), h ≥ 0, is expressed as the square
of a 0-dimensional Bessel process. It is known that if a 0-dimensional Bessel process hits zero
or starting from zero, then it never leaves zero, i.e., it stays at zero. In the description of the
process V1, a similar statement is true for it. Since f(0) = 0, this implies that R̄(0) = 1.

Let us apply [4, Chap. II, Theorem 13.2]. Then the function q̄(z, v), (z, v) ∈ [0,∞)× [0,∞),
is the solution to the problem

∂

∂z
q̄(z, v) = 2v

(
∂2

∂v2
q̄(z, v) −

√
2λ+ μ2 ∂

∂v
q̄(z, v)

)
+ 2

∂

∂v
q̄(z, v) − f(v)q̄(z, v), (2.13)

q̄(0, v) = R̄(v). (2.14)

The specific of application of Theorems 12.5 and 13.2 in [4, Chap. II] is that the processes V1

and V2 are nonnegative and their diffusion coefficient σ2(v) = v degenerates at zero.

The replacement q(z, v) = e−v
√

2λ+μ2/2q̄(z, v) leads to to the problem

∂

∂z
q(z, v) = 2v

∂2

∂v2
q(z, v) + 2

∂

∂v
q(z, v)−

((
λ+

μ2

2

)
v −

√
2λ+ μ2 + f(v)

)
q(z, v), (2.15)

q(0, v) = R(v), (2.16)

where the substitution R(v) := e−v
√

2λ+μ2/2R̄(v) leads to the problem

2vR′′(v)− ((
λ+

μ2

2

)
v + f(v)

)
R(v) = 0, R(0) = 1. (2.17)

Put

Q(v) :=

∞∫

0

ez(μ−
√

2λ+μ2)q(z, v) dz.

46



Then from (2.15) and (2.16), it follows that the function Q(v) satisfies equation (2.5) for
h ∈ (0,∞). Now, by virtue of (2.11), we have

E0 exp

(
−

∞∫

0

f(�◦μ(τ, y)) dy
)

= λ

∞∫

0

e−(μ+γ)v/2Q(v) dv.

This is the same as (2.4) for the case h = ∞ and f is bounded twice continuously differentiable
function with bounded first and second derivatives.

As in the proof of Theorem 4.1 in [4, Chap. IV], the assertion for piecewise continuous
functions f is proved via approximating f by continuously differentiable functions. The proof
of Theorem 2.1 for h < ∞ is based on an obvious variant of relation (2.2):

Eγ := E
[
exp

(
−

∞∫

0

f(�◦μ(τ̃ , y)) dy
)
; sup
y∈[0,∞)

�◦μ(τ̃ , y) ≤ h
]

= lim
γ→∞E

[
exp

(
−

∞∫

0

(f(�◦μ(τ̃ , y)) + γ�(h,∞)(�
◦
μ(τ̃ , y))) dy

)]
.

(2.18)

Similar calculations are described in more detail in [4, Chap. V, Sec, 5]. �

3. Distribution of the supremum of local time

Consider an example of application of Theorem 2.1. Consider a Brownian motion on [0,∞)
with linear drift μ reflecting at zero, i.e., the case γ = 0. For γ = 0, we calculate an explicit
form of the distribution of the supremum of the local time �+μ (τ, y) := �◦μ(τ, y) with respect to
the variable y ∈ [0,∞). In [3], the distribution of the supremum of the local time of Brownian
motion with discontinuous drift was calculated.

We use the standard notation: the functions Il(x), x ∈ R, are modified Bessel functions
of order l, functions Mn,m(x), Wn,m(x), x ∈ (0,∞), are the Whittaker functions (see [1,
Appendix 2] or [9, Chap. 13]).

Theorem 3.1. For h ≥ 0,

P0

(
sup

y∈[0,∞)
�+μ (τ, y) > h

)
=

√
θ
√
h

sh(h
√
θ)Mμ/4

√
θ,0(2h

√
θ)

h∫

0

e−μv/2

√
v

Mμ/4
√
θ,0(2v

√
θ) dv, (3.1)

where θ :=
λ

2
+

μ2

4
.

Remark 3.1. For μ = 0, we have W ◦
μ(s) = W+(s) and

P

(
sup

y∈[0,∞)
�+(τ, y) > h

)
=

√
λ/2

sh(h
√

λ/2)I0(h
√

λ/2)

h∫

0

I0(v
√

λ/2) dv, (3.2)

which coincides with formula 3.1.11.2 in [1].
Indeed, in this case M0,0(2x) =

√
2xI0(x) (see [1, Appendix 2] or [9, Chap. 13]).

Proof of Theorem 3.1. We apply Theorem 2.1 for f = 0. Let θ :=
λ

2
+

μ2

4
. A solution to

problem (2.7), (2.8) for f ≡ 0 has the form

R(v) =
sh((h− v)

√
θ)

sh(h
√
θ)

, 0 ≤ v ≤ h. (3.3)
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Linearly independent solutions of the homogeneous equation

Y ′′(v) + 1

v
Y ′(v)− (

θ − μ

2v

)
Y (v) = 0, v > 0,

have (see Eq. (16) in [1, Appendix 4]) the form

ψ(v) =
1√
v
Mμ/4

√
θ,0(2v

√
θ), ϕ(v) =

1√
v
Wμ/4

√
θ,0(2v

√
θ),

and their Wronskian is ω(v) =
2
√
θ

vΓ(1/2 − μ/4
√
θ)
. Moreover, ψ is a nonnegative increasing

solution and ϕ is a nonnegative decreasing solution. It is important here that
1

2
− μ

4
√
θ
> 0 for

any μ ∈ R. From handbook [9, Chap. 13], one can extract that ϕ(v) � − ln v, as v ↓ 0, i.e., ϕ
is unbounded at zero.

A partial solution of equation (2.5) for R(v) = sh((h − v)
√
θ)/ sh(h

√
θ) has the form

Q0(v) =
2
√
θ ch((h− v)

√
θ) + μ sh((h− v)

√
θ)

2λ sh(h
√
θ)

, 0 ≤ v ≤ h.

Then the bounded solution to the problem (2.5), (2.6) for f ≡ 0 has the form

Q(v) = Q0(v) − Q0(h)ψ(v)

ψ(h)
, 0 ≤ v ≤ h, (3.4)

i.e.,

Q(v) =
2
√
θ ch((h− v)

√
θ) + μ sh((h− v)

√
θ)

2λ sh(h
√
θ)

−
√
θ
√
hMμ/4

√
θ,0(2v

√
θ)

λ
√
v sh(h

√
θ)Mμ/4

√
θ,0(2h

√
θ)
, 0 ≤ v ≤ h. (3.5)

It is easy to check that

λ

h∫

0

e−μv/2Q0(v) dv = 1.

Now from (2.4) with f ≡ 0, γ = 0, and from (3.5), we get (3.1). �
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