
Journal of Mathematical Sciences, Vol. 279, No. 6, March, 2024

CONVERGENCE THEORY OF ADAPTIVE MIXED
FINITE ELEMENT METHODS FOR THE STOKES
PROBLEM

Tsogtgerel Gantumur

National University of Mongolia
1, Ikh Surguuli St., Ulaanbaatar 14201, Mongolia

McGill University
845 Sherbrooke, Montreal H3A 0B9, Canada

gantumur.tsogtgerel@mcgill.ca

We establish a conditional optimality result for an adaptive mixed finite element method

for the stationary Stokes problem discretized by the standard Taylor–Hood elements un-

der the assumption of the so-called general quasiorthogonality. Optimality is measured

in terms of a modified approximation class defined through the total error. We prove

that the modified approximation class coincides with the standard approximation class,

modulo the assumption that the data is regular enough in an appropriate scale of Besov

spaces. Bibliography: 35 titles. Illustrations: 2 figures.

1 Introduction

We consider adaptive mixed finite element methods for the stationary Stokes problem

−Δu+∇p = f,

∇ · u = 0,
(1.1)

discretized by the standard Taylor–Hood elements. Here, u : Ω → R
n is the unknown velocity

field, p : Ω → R is the unknown pressure field, f ∈ L2(Ω,Rn) is the given data, and Ω ⊂ R
n is

a bounded polyhedral domain with Lipschitz boundary. One can think of the space dimension

to be n = 2 or n = 3. We impose the no slip boundary condition u|∂Ω = 0 on the velocity field,

and in order to ensure uniqueness, we require that the pressure field is of vanishing mean.

Convergence theory of adaptive finite element methods has been an active field of research

especially since the influential paper [1]. A near complete understanding was achieved for Poisson

type problems [2]–[5]. There is a growing body of literature on adaptive discretization of saddle

point problems such as (1.1), but the question of convergence rate for adaptive mixed finite

element methods with standard Taylor–Hood elements is entirely open.
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Building on the pioneering works [6, 7], optimal convergence rates were established for certain

elliptic reformulations of the Stokes problem in [8]. Moreover, for nonconforming discretizations

of the Stokes problem the same question was investigated in [9]– [11]. On the other hand,

adaptive mixed finite element methods for the Poisson problem were treated in [12]– [14].

Getting back to the discussion of adaptive mixed finite element methods with standard

Taylor–Hood elements, the first proof of convergence for such a method was published in [15],

where the standard a posteriori error estimator from [16] was modified. This proof was improved

in [17] to incorporate the a posteriori error estimator from [16] into analysis. We note that the

aforementioned results do not provide information about the rate of convergence.

In this paper, under the assumption of the so-called general quasiorthogonality, we establish

bounds on the convergence rates of adaptive mixed finite element methods for the Stokes problem

discretized by standard Taylor–Hood elements, and show that these bounds are in a certain sense

optimal. This was motivated by the conceptual understanding of the role played by the general

quasiorthogonality in the analysis of adaptive methods, cf. [18]. What the concept of general

quasiorthogonality provides is a framework to potentially exploit the Galerkin orthogonality for

noncoercive or strongly nonsymmetric problems, a bottleneck that has been faced by researchers

for some time.

In order to discuss our other results, we need to fix some notation and terminologies. The

solution (u, p) ∈ H1(Ω,Rn)×L2(Ω) of (1.1) is said to be a member of the standard approximation

class A s if there exists a sequence of conforming triangulations P1, P2, . . . of Ω, obtained from a

fixed initial triangulation P0 by applications of newest vertex bisections, such that #PN−#P0 �
N and

‖u− uN‖H1(Ω,Rn) + ‖p− pN‖L2(Ω) � CN−s ∀ N, (1.2)

where (uN , pN ) is the Galerkin approximation of (u, p) from the Taylor–Hood finite element

space (of degree d for the velocity field and degree d− 1 for the pressure field) defined over the

triangulation PN , and C is a constant independent of N . Suppose that we have an adaptive

algorithm (based on the same Taylor–Hood spaces and newest vertex bisections) that takes the

data f ∈ L2(Ω,Rn) and the initial triangulation P0 of Ω as its input, and produces the sequence

of triangulations P1, P2, . . ., and the corresponding Galerkin solutions (uk, pk) for k = 0, 1, . . ..

Then it stands to reason to say that the algorithm converges at the optimal rate if

‖u− uk‖H1(Ω,Rn) + ‖p− pk‖L2(Ω) � C(#Pk −#P0)
−s ∀ k, (1.3)

whenever (u, p) ∈ A s for some s > 0. For the Poisson equation Δu = g, such an optimality

result was obtained in [4], for an adaptive algorithm that uses an inner loop for resolving the data

g. It was later discovered in [5] that if we do not add an inner iteration, the algorithm remains

optimal provided that we modify the approximation class to include in its definition a measure

of resolution of g. The analogue of this modification in our setting is as follows. The solution

(u, p) ∈ H1(Ω,Rn)×L2(Ω) of (1.1) is said to be a member of the modified approximation class

A s∗ if there exists a sequence of conforming triangulations P1, P2, . . . of Ω, obtained from a fixed

initial triangulation P0 by applications of newest vertex bisections, such that #PN −#P0 � N

and

‖u− uN‖H1(Ω,Rn) + ‖p− pN‖L2(Ω) + oscN (f) � CN−s ∀ N, (1.4)

where (uN , pN ) is the Galerkin approximation of (u, p) from the Taylor–Hood finite element

space defined over the triangulation PN , and oscN (f) is the so-called oscillation term, which
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depends only on PN and f . Note that A s∗ is indeed a space of pairs (u, p), because f is completely

determined by u and p. Note also that A s∗ ⊂ A s, since the membership of A s∗ has the extra

requirement that the oscillation oscN (f) is suitably reduced as N grows. Although reducing

the oscillation is by no means among our initial ambitions, it turns out that A s∗ is completely

natural from the perspective of adaptive methods. In particular, the quantity on the left-hand

side of (1.4), called the total error, is equivalent to the error estimator, and so an algorithm

that only “sees” the error estimator will have to reduce the oscillation anyway. With respect

to the approximation classes A s∗ , we have the following conditional optimality result, which

will be proved in Section 4. The aforementioned general quasiorthogonality assumption appears

here in (1.5).

Main result 1. Let (u, p) ∈ A s∗ for some s > 0, and let P0, P1, . . . be the sequence

of triangulations generated by the adaptive algorithm defined in Section 4 with the Galerkin

solutions (uk, pk), k = 0, 1, . . .. In addition, we assume that there exists a constant c > 0 such

that
∞∑

k=�

(‖uk − uk+1‖2H1(Ω,Rn) + ‖pk − pk+1 ‖2L2(Ω))

� c(‖u− u�‖2H1(Ω,Rn) + ‖p− p�‖2L2(Ω))

(1.5)

for any integer �. Then

‖u− uk‖H1(Ω,Rn) + ‖p− pk‖L2(Ω) + osck(f) � C(#Pk −#P0)
−s ∀ k, (1.6)

where osck(f) denotes the oscillation on the mesh Pk.

We have this conditional optimality result for an algorithm that uses the a posteriori error

estimator from [16]. As a theoretical tool to be employed in the analysis, we introduce a sup-

posedly new a posteriori error estimator, which also yields optimal algorithms. For algorithms

that use the modified estimator from [15], we establish geometric error reduction, but we were

unable to prove optimal convergence rates, because of the apparently nonlocal character of the

estimator.

There is a remark to be made on the nature of the constant C that appears in (1.6). From

the experience with Poisson-type problems, one would expect that the constant C must be of

the form C = c|(u, p)|A s∗ , where c does not depend on (u, p), and |(u, p)|A s∗ is the norm of (u, p)

in the space A s∗ . In Main result 1, however, we do not rule out the possibility that c depends

on (u, p).

The final part of the current paper is independent of optimality results, and concerns interre-

lations between the modified approximation classes A s∗ and the standard approximation classes

A s. The pairs (u, p) contained in the gap A s \A s∗ can in principle be approximated with the

rate s by some approximation procedure, but Main result 1 cannot guarantee the convergence

of the adaptive finite element methods with the same rate. Our approach to this problem is to

show that (u, p) does not lie in the gap as long as the data f have some regularity in terms of a

scale of Besov spaces. Namely, the following result will be proved in Section 5.

Main result 2. Let f ∈ Bα
q,q(Ω,R

n) for some 0 < q < ∞ and α � n/q − n/2 satisfying

0 < α < d− 1 + max{0, 1/q − 1}. Then (u, p) ∈ A s implies (u, p) ∈ A s∗ with s = (α+ 1)/n.
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Figure 1. The shaded region represents the pairs (1/q, α) allowed in Main result 2. If the

function f ∈ Bα
q,q was being adaptively approximated in the H−1 norm and Bα

q,q ⊂ H−1,

then we would expect the rate of convergence to be determined by the vertical offset of

the point (1/q, α) in relation to the dotted line. Main result 2 basically says that the

same convergence rate is restored for the total error as long as Bα
q,q is embedded into

L2 and (u, p) is regular enough (to be in A s).

To prove this result, we adapt the techniques from [19] and [20], where the said techniques

have been used to show embeddings of the form Bα
q,q ⊂ A s. Earlier influential works in the

same vein include [21] and [22]. We also establish embeddings of the form Bα
q,q ⊂ A s in the

context of the Stokes problem, see Theorem 5.2. Note that the regularity of the Stokes problem

in the same Besov scale has been studied in [23].

This paper is organized as follows. In the next section, we discuss assumptions on the

triangulations, the refinement procedures, and the finite element spaces for discretizing the

Stokes problem. Then in Section 3, we introduce three kinds of a posteriori error estimators,

and establish some of their properties. The conditional optimality result mentioned above,

together with a theorem on geometric error reduction are proved in Section 4. In Section 5, we

deal with interplays between the approximation classes and Besov spaces.

2 Discretization of the Stokes Problem

Let Ω ⊂ R
n be a polyhedral domain with Lipschitz boundary, where n = 2 or n = 3. We

call a collection P of triangles (or tetrahedra) a partition of Ω if Ω =
⋃
τ∈P

τ , and τ ∩ σ = ∅

for any two different τ, σ ∈ P . For refining the partitions we use the so called newest vertex

bisection algorithm; details can be found in [3, 24]. A partition P ′ is called a refinement of P

and denoted P 
 P ′ if P ′ can be obtained by replacing zero or more τ ∈ P by its children, or by

a recursive application of this procedure. Throughout this paper, we only consider conforming

partitions that are refinements of some fixed conforming partition P0 of Ω. The newest vertex

bisection procedure produces shape regular partitions, meaning that

σs = sup
{(diam τ)n

vol(τ)
: τ ∈ P, P ∈ conf(P0)

}
< ∞, (2.1)

where conf(P0) denotes the family of all conforming partitions that are refinements of P0. This
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family is graded (or locally quasi-uniform), in the sense that

σg = sup
{diam σ

diam τ
: σ, τ ∈ P, σ ∩ τ �= ∅, P ∈ conf(P0)

}
< ∞. (2.2)

Note that the shape regularity and gradedness together imply local finiteness, meaning that the

number of triangles meeting at any given point is bounded by a constant that depends only on

σs, σg, and n.

In general, a naive refinement of a conforming partition would produce a nonconforming

partition, so, in order to ensure conformity, one must perform additional refinements. This pro-

cedure is called completion, and a quite satisfactory theory of completion has been developed in

[3, 24]. We consider the whole process of obtaining a conforming partition from an initial con-

forming partition as a single refinement step that works in the category of conforming partitions.

Given a partition P ∈ conf(P0) and a set R ⊂ P of its triangles, the refinement step produces

P ′ ∈ conf(P0), such that P \ P ′ ⊇ R, i.e., the triangles in R are refined at least once. Let us

denote it by P ′ = refine(P,R). We have the following on its efficiency: If {Pk} ⊂ conf(P0) and

{Rk} are sequences such that Pk+1 = refine(Pk, Rk) and Rk ⊂ Pk for k = 0, 1, . . ., then

#P� −#P0 � Cc

�−1∑

k=0

#Rk, � = 1, 2, . . . , (2.3)

where Cc > 0 is a constant.

Another notion we need is that of overlay of partitions: We assume that there is an operation

⊕ : conf(P0)× conf(P0) → conf(P0) satisfying

P ⊕Q � P, P ⊕Q � Q, #(P ⊕Q) � #P +#Q−#P0 (2.4)

for P,Q ∈ conf(P0). This assumption is verified in [4, 5], where P ⊕Q is taken to be the smallest

and common conforming refinement of P and Q.

Let V = H1
0 (Ω,R

n) and Q = L2(Ω)/R, the latter being the space of L2 functions with

vanishing mean, and let X = V ×Q be the Hilbert space equipped with the norm

‖(v, q)‖V×Q =
(‖v‖2V + ‖q‖2Q

) 1
2 . (2.5)

We consider the following weak formulation of the Stokes problem (1.1): Find (u, p) ∈ X

satisfying

a(u, v)− b(v, p)− b(u, q) = 〈f, v〉L2 ∀ (v, q) ∈ X, (2.6)

where the bilinear forms a : V × V → R and b : V ×Q → R are defined respectively by

a(u, v) =

∫

Ω

∑

i,k

∂iuk∂ivk, b(u, q) =

∫

Ω

q
∑

i

∂iui, (2.7)

and 〈·, ·〉L2 denotes the inner L2 product. It is known that for any f ∈ L2(Ω,Rn) the problem

(2.6) admits a unique solution (u, p) ∈ X (see, for example, [25]). In fact, the operator A : X →
X ′ defined by

〈A(u, p), (v, q)〉 = a(u, v)− b(v, p)− b(u, q), (u, p), (v, q) ∈ X, (2.8)
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is invertible, where 〈·, ·〉 denotes the duality pairing between X ′ and X. It is easy to see that A

is linear, bounded, and self-adjoint. In particular, by the Banach bounded inverse theorem, the

inverse A−1 : X ′ → X is bounded as well. In terms of the operator A, the Stokes problem (2.6)

can be written as

A(u, p) = F, (2.9)

where the linear functional F ∈ X ′ is defined by

〈F, (v, q)〉 = 〈f, v〉L2 ∀ (v, q) ∈ X. (2.10)

In the discretization of (2.6), we use the classical finite element spaces introduced by [26].

Given a partition P ∈ conf(P0), we define the discontinuous piecewise polynomial space Sd
P by

Sd
P = {u ∈ L∞(Ω) : u|τ ∈ Pd ∀τ ∈ P}, (2.11)

where Pd denotes the set of polynomials of degree less than or equal to d. Then the Taylor–

Hood finite element spaces are VP = V ∩ (Sd
P )

n and QP = Q ∩ C(Ω) ∩ Sd−1
P , and the Galerkin

approximation (uP , pP ) ∈ VP ×QP of (u, p) from VP ×QP is characterized by

a(uP , v)− b(v, pP )− b(uP , q) = 〈f, v〉L2 ∀ (v, q) ∈ VP ×QP . (2.12)

It is proved in [27, 28] that for any d � 2 and for n ∈ {2, 3} the pair (VP , QP ) satisfies the

stability property

‖q‖Q � Cs sup
v∈VP

b(v, q)

‖v‖V , q ∈ QP , (2.13)

with Cs depending only on the initial partition P0, under the sufficient condition that P0 contains

at least three simplices and each simplex has at least one vertex in Ω. Earlier works on the

stability of the Taylor–Hood elements include [25] and [29]– [32].

Throughout the paper, we assume that the stability (2.13) holds with Cs depending only on

P0. This assumption implies the well-posedness of the discrete problem (2.12), as well as the a

priori error estimate

‖(u− uP , p− pP )‖V×Q � C ′
s inf
(v,q)∈VP×QP

‖(u− v, p− q)‖V×Q, (2.14)

where the constant C ′
s depends only on Cs and the geometry of the domain Ω. Moreover, for

any (w, r) ∈ VP ×QP we have

‖(w, r)‖V×Q � C ′
s sup
(v,q)∈VP×QP

a(w, v)− b(w, q)− b(v, r)

‖(v, q)‖V×Q
. (2.15)

We close this section by remarking that the Galerkin problem (2.12) can be given in a

convenient operator formulation. Let XP = VP × QP , and let jP : XP → X be the natural

injection. Then (2.12) is simply

j′PAjP (uP , pP ) = j′PF, (2.16)

where j′P : X ′ → XP is the dual of jP and A and F are defined in (2.8) and (2.10) respectively.

The significance of the stability assumption in this formulation is that (2.15) gives not only the

invertibility of the operator AP = j′PAjP : XP → XP , but also it implies the bound ‖A−1
P ‖ � C ′

s.
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3 A Posteriori Error Estimators

For P ∈ conf(P0) we denote by EP the set of interior edges (or faces if n = 3) in the partition

P . Let hτ = |τ |1/n, and let he = |e|1/(n−1), where |τ | and |e| are the n- and (n− 1)-dimensional

volumes of τ ∈ P and e ∈ EP respectively. Moreover, for Q ⊂ P , we denote by EQ the set of

interior edges of Q, i.e., the set of edges that are adjacent to two triangles from Q. Then for

Q ⊂ P we introduce the residual based a posteriori error estimators

η0(P,Q) =
∑

τ∈Q
h2τ‖f +ΔuP −∇pP‖2L2(τ) +

∑

e∈EQ

he‖[∂νuP ]‖2L2(e), (3.1)

η1(P,Q) = η0(P,Q) +
∑

τ∈Q
‖∇ · uP ‖2L2(τ), (3.2)

η2(P,Q) = η0(P,Q) +
∑

τ∈Q
hτ‖∇ · uP |τ‖2L2(∂τ), (3.3)

where [∂νuP ] is the jump in the normal derivative of uP across the edge e. It is understood that

the differential operators Δ and ∂ν act on vector functions such as uP component-wise. The

estimator η1 was introduced in [16], and the estimator η0 was proposed in [15] as a variation on

η1. The estimator η2 seems to be new.

As shown in [16], we have the equivalence

‖u− uP ‖2V + ‖p− pP ‖2Q � η(P, P ) � ‖u− uP ‖2V + ‖p− pP ‖2Q + osc(P ), (3.4)

for the error estimator η = η1, where the oscillation is defined by

osc(P ) = min
g∈(Sd−2

P )n

∑

τ∈P
h2τ‖f − g‖2L2(τ). (3.5)

Hereinafter, we often dispense with giving explicit names to constants and use the Vinogradov

style notation X � Y which means X � C · Y with some constant C that is allowed to depend

only on P0 and (the geometry of) the domain Ω. Moreover, even when we give names to

constants, we will not explicitly mention that the constants can depend on P0 and Ω, and this

dependence will always be implicitly assumed.

The equivalence (3.4) also holds for η = η0 because

‖∇ · uP ‖2L2(Ω) �
∑

e∈EP

he‖[∂νuP ]‖2L2(e) (3.6)

and, consequently ([15, §3.3] and [7, Proposition 5.4]),

η0(P, P ) � η1(P, P ) � η0(P, P ). (3.7)

Now, that we have (3.4) for both η0 and η1, we get it also for η2 because

η0(P, P ) � η2(P, P ) � η1(P, P ), (3.8)

where the second inequality follows from ‖∇ · uP |τ‖L2(∂τ) � h
−1/2
τ ‖∇ · uP ‖L2(τ). To reiterate,

the global equivalence (3.4) holds for all three estimators η0, η1, and η2.
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A convenient fact is that each estimator dominates the oscillation in the sense that

osc(P ) � η0(P, P ), P ∈ conf(P0). (3.9)

This is immediate because ΔuP −∇pP ∈ (Sd−2
P )n in (3.1), while (3.5) involves the minimization

over the space (Sd−2
P )n.

By standard arguments, we easily get local discrete upper bounds for η1 and η2, which we

record in the next lemma. In the statement of the lemma, we note that P \ P ′ is the set of

triangles in P that are refined as one goes from P to P ′.
Lemma 3.1. For P, P ′ ∈ conf(P0) with P 
 P ′ the local discrete upper bound holds

‖uP ′ − uP ‖2V + ‖pP ′ − pP ‖2Q � η1(P, P \ P ′). (3.10)

Moreover, the local equivalence takes place

αη1(P,Q) � η2(P,Q) � βη1(P,Q), Q ⊂ P, (3.11)

where α > 0 and β are constants.

Proof. For any (v, q) ∈ (VP ′ , QP ′) and (vP , qP ) ∈ (VP , QP ) Equation (2.12) and integration

by parts give

a(uP ′ − uP , v)− b(v, pP ′ − pP )− b(uP ′ − uP , q)

= a(uP ′ − uP , v − vP )− b(v − vP , pP ′ − pP )− b(uP ′ − uP , q − qP )

= 〈f, v − vP 〉 − a(uP , v − vP ) + b(v − vP , pP ) + b(uP , q − qP )

= 〈f, v − vP 〉+
∑

τ∈P

( ∫

τ

Δu · (v − vP )−
∫

∂τ

∂νuP · (v − vP )

)

−
∫

Ω

(v − vP ) · ∇pP +

∫

Ω

(q − qP )∇ · uP . (3.12)

Let ω = int
⋃

τ∈P\P ′
τ , i.e., let ω be the interior of the region covered by the refined triangles.

Then we set (vP , qP ) to be equal to (v, q) in Ω \ ω and to the Scott–Zhang interpolator of (v, q)

in ω. In doing so, we choose the Scott–Zhang interpolator to be adapted to the boundary of ω,

thus ensuring that vP ∈ VP and qP ∈ QP (see [33]). With this preparation, we can continue the

chain of reasoning as follows:

a(uP ′ − uP , v)− b(v, pP ′ − pP )− b(uP ′ − uP , q)

=
∑

τ∈P

∫

τ

(f +Δu−∇pP ) · (v − vP )−
∑

e∈EP

∫

e

[∂νuP ] · (v − vP ) +

∫

Ω

(q − qP )∇ · uP

�
∑

τ∈P\P ′
‖f +Δu−∇pP ‖L2(τ)‖v − vP ‖L2(τ)

+
∑

e∈EP \EP ′

‖[∂νuP ]‖L2(τ)‖v − vP ‖L2(τ) +
∑

τ∈P\P ′
‖∇ · uP ‖L2(τ)‖q − qP ‖L2(τ). (3.13)
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Since (uP ′−uP , pP ′−pP ) ∈ (VP ′ , QP ′), we use the stability (2.15), in combination with standard

estimates for the Scott–Zhang interpolator and local finiteness to establish (3.10).

The second inequality in (3.11), namely, η2(P,Q) � η1(P,Q) follows from the inverse estimate

‖∇·uP |τ‖L2(∂τ) � h
−1/2
τ ‖∇·uP ‖L2(τ). In order to prove the other inequality η1(P,Q) � η2(P,Q),

we localize the argument from [7, 15]. Putting v = 0 in (2.12), we see that ∇·uP is L2-orthogonal

to the pressure space QP . Since ∫

Ω

∇ · uP = 0

by the divergence theorem, this means that ∇·uP is L2-orthogonal to the full space C(Ω)∩Sd−1
P .

In particular, (∇ · uP )|ω is L2-orthogonal to H1
0 (ω) ∩ Sd−1

P on ω, where ω = int
⋃
τ∈Q

τ , meaning

that

‖∇ · uP ‖L2(ω) � ‖∇ · uP − q‖L2(ω) (3.14)

for any q ∈ H1
0 (ω) ∩ Sd−1

P . Let S∗ = {g ∈ L2(ω) ∩ Sd−1
P : g ⊥L2(ω) H1

0 (ω) ∩ Sd−1
P }. Then we

claim that

‖g‖2L2(ω) �
∑

e∈EQ

he‖[g]‖2L2(e) +
∑

{e∈EP :e⊂∂ω}
he‖g‖2L2(e) (3.15)

for any g ∈ S∗, where [g] denotes the jump in g across e. Indeed, the right-hand side defines

a (squared) norm on S∗ since the vanishing of this quantity implies that g ∈ C(ω) ∩ Sd−1
P

and g|∂ω = 0, which means that g = 0 by g ⊥L2(ω) H1
0 (ω) ∩ Sd−1

P . The local scaling by he
can be deduced by a local homogeneity argument. Finally, plugging in g = ∇ · uP and using

straightforward bounds, we complete the proof.

We end this section with the following standard result.

Lemma 3.2. (a) Let P, P ′ ∈ conf(P0) be such that P 
 P ′, and let

η2(P, P \ P ′) � θη2(P, P ) (3.16)

for some 0 < θ � 1. Then

η2(P
′, P ′) � μη2(P, P ) + γ‖(uP − uP ′ , pP − pP ′)‖2V×Q, (3.17)

with μ < 1 and γ depending only on θ.

(b) Let P, P ′ ∈ conf(P0) be such that P 
 P ′, and let for some 0 < μ < 1/2

η2(P
′, P ′) � μη2(P, P ). (3.18)

Then

η2(P, P \ P ′) � θ∗(1− 2μ)η2(P, P ), (3.19)

where θ∗ > 0 is a constant independent of μ.

Proof. (a) By standard arguments, one can prove that

η2(P
′, P ′) � (1 + δ)η2(P, P )− λ(1 + δ)η2(P, P \ P ′) + Cδ‖(uP − uP ′ , pP − pP ′)‖2V×Q (3.20)

802



for any P, P ′ ∈ conf(P0) with P 
 P ′ and any δ > 0, where Cδ can depend on δ, and λ > 0 is

independent of δ. Upon using (3.16), this gives

η2(P
′, P ′) � (1 + δ)(1− λθ)η2(P, P ) + Cδ‖(uP − uP ′ , pP − pP ′)‖2V×Q. (3.21)

Choosing δ > 0 small enough we get (3.17).

(b) Observe that

η2(P, P ∩ P ′) � 2η2(P
′, P ∩ P ′) +

∑

τ∈P∩P ′
2h2τ‖Δ(uP − uP ′)−∇(pP − pP ′)‖2L2(τ)

+
∑

e∈EP∩EP ′

2he‖[∂ν(uP − uP ′)]‖2L2(e) +
∑

τ∈P∩P ′
2hτ‖∇ · (uP − uP ′)|τ‖2L2(∂τ)

� 2η2(P
′, P ∩ P ′) + C‖(uP − uP ′ , pP − pP ′)‖2V×Q. (3.22)

By this observation, the property (3.18), and the local upper bound from Lemma 3.1, we infer

(1− 2μ)η2(P, P ) � η2(P, P \ P ′) + η2(P, P ∩ P ′)− 2η2(P
′, P ′)

� η2(P, P \ P ′) + C‖(uP − uP ′ , pP − pP ′)‖2V×Q � η2(P, P \ P ′), (3.23)

which concludes the proof.

4 Convergence Rate

We are ready to start our discussion of adaptive algorithms and their convergence rates. A

template of an adaptive finite element method is displayed in Figure 2. The a posteriori error

estimator η can be chosen to be η0 from (3.1), η1 from (3.2), or η2 from (3.3). For theoretical

purposes, we think of the algorithm as generating an infinite sequence of triples {(Pk, uk, pk)},
where Pk ∈ conf(P0) and (uk, pk) ∈ VPk

× QPk
for all k ∈ N0. The heart of the method is,

after computing the Galerkin solution (uk, pk) on the mesh Pk, to identify a minimal (up to a

constant factor) set Rk ⊂ Pk of triangles satisfying the so-called Dörfler property

η(Pk, Rk) � θη(Pk, Pk), (4.1)

where 0 < θ � 1 is a global parameter. Then the next mesh is obtained as Pk+1 = refine(Pk, Rk).

Figure 2. Adaptive FEM.
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The first important question is if and how fast the approximations (uk, pk) converge to the

exact solution (u, p) as k → ∞. The following plain convergence result was obtained in [15, §3.3]
for η = η1 and in [17, §4.4] for η = η0. Following [34], we give here a slightly different proof.

Lemma 4.1. In the context of Adaptive FEM in Figure 2, let η be one of η0, η1, and η2.

Then (uk, pk) → (u, p) in V ×Q as k → ∞.

Proof. By [15, Lemma 4.2], we have (uk, pk) → (u∞, p∞) in V × Q as k → ∞ for some

(u∞, p∞) ∈ V ×Q.

On the other hand, since η0(Pk, Rk) � η2(Pk, Rk) and η2(Pk, Pk) � η0(Pk, Pk) from the

global equivalences (3.7) and (3.8), the Dörfler property (4.1) for η = η0 implies the same for

η = η2 with possibly a different constant θ > 0. Similarly, by the equivalence (3.11), the Dörfler

property (4.1) for η = η1 implies the same for η = η2 with possibly a different constant θ > 0.

The latter argument runs also in the other direction since (3.11) is a local equivalence. To

conclude, we can assume the Dörfler property (4.1) for both η = η1 and η = η2 with possibly

different constants θ > 0.

In any case, by Lemma 3.2 (a), there exist constants μ < 1 and γ � 0 such that

η2(Pk+1, Pk+1) � μη2(Pk, Pk) + γ‖(uk − uk+1, pk − pk+1)‖2V×Q (4.2)

for all k ∈ N. The last term converges to 0 as k → ∞ since (uk, pk) is convergent. Thus,

introducing the abbreviation ek = η2(Pk, Pk), we have

ek+1 � μek + αk, (4.3)

with αk → 0. Let ε > 0, and let k be such that αk+m � ε for all m � 0. Then we have

ek+m � μmek + ε(1 + μ+ . . .+ μm−1) � μmek +
ε

1− μ
(4.4)

for all m � 0. This shows that lim supk→∞ ek � ε/(1 − μ). Since ε > 0 is arbitrary and

ek � 0, we conclude that limk→∞ ek = 0. Finally, the global upper bound in (3.4) implies the

convergence (uk, pk) → (u, p) in V ×Q as k → ∞.

We have the following conditional error reduction theorem for all three estimators.

Theorem 4.1. In the context of Adaptive FEM in Figure 2, let η be one of η0, η1, and η2.

Assume that there exists a constant c > 0 such that

N∑

k=�

‖(uk − uk+1, pk − pk+1)‖2V×Q � c‖(u− u�, p− p�)‖2V×Q (4.5)

for any integers � and N . Then there are constants ρ < 1 and C > 0 such that

η(Pk, Pk) � Cρk−�η(P�, P�) (4.6)

for all k � � � 0. In particular,

‖(u− uk, p− pk)‖V×Q � C ′ρk (4.7)

for some constant C ′.
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Proof. As we have discussed in the proof of Lemma 4.1, we can assume the Dörfler property

(4.1) for both η = η1 and η = η2, with possibly different constants θ > 0. Hence, by Lemma 3.2

(a), there exist constants μ < 1 and γ � 0 such that

η2(Pk+1, Pk+1) � μη2(Pk, Pk) + γ‖(uk − uk+1, pk − pk+1)‖2V×Q (4.8)

for all k ∈ N. Then, by the assumption (4.5) and the global upper bound from (3.4), we get

N∑

k=�

η2(Pk+1, Pk+1) � μ
N∑

k=�

η2(Pk, Pk) + γ
N∑

k=�

‖(uk − uk+1, pk − pk+1)‖2V×Q

� μ

N∑

k=�

η2(Pk, Pk) + γc‖(u− u�, p− p�)‖2V×Q � μ

N∑

k=�

η2(Pk, Pk) + Cη2(P�, P�) (4.9)

for any � ∈ N and N � �. Since μ < 1, this implies the convergence of the series
∑

k η2(Pk, Pk)

and, consequently,

α� � μα� + (1 + C)η2(P�, P�), α� �
1 + C

1− μ
η2(P�, P�), (4.10)

where η2(P�, P�) is added to both sides of (4.9) and

α� =
∞∑

k=�

η2(Pk, Pk) (4.11)

is introduced. As a consequence,

α�+1 = α� − η2(P�, P�) �
μ+ C

1 + C
α�, (4.12)

which means that α� decays geometrically. This yields

η2(Pk, Pk) � αk �
(μ+ C

1 + C

)k−� 1 + C

1− μ
η2(P�, P�), (4.13)

where we took into account (4.10). Finally, the same geometric decay for both η0 and η1 follows

from the equivalences (3.7) and (3.8).

Now, we address the question of convergence rate. We start by defining

EP (u, p) = inf
(v,q)∈VP×QP

‖(u− v, p− q)‖V×Q (4.14)

for P ∈ conf(P0) and

σ∗
N (u, p) = inf

P∈PN

(
EP (u, p)

2 + osc(P )
) 1

2 (4.15)

for N ∈ N, where PN = {P ∈ conf(P0) : #P − #P0 � N}. Note that the oscillation de-

pends on u and p implicitly through Equation (2.6). Following [5], we then define the modified

approximation class

A s
∗ = {(u, p) ∈ V ×Q : |(u, p)|A s∗ ≡ sup

N∈N
N sσ∗

N (u, p) < ∞} (4.16)
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for s > 0. Thus, (u, p) ∈ A s∗ if and only if for each N ∈ N there exists a partition P ∈ conf(P0)

with #P −#P0 � N such that

EP (u, p)
2 + osc(P ) � c(#P −#P0)

−2s, (4.17)

where the constant c = c(u, p) is independent of P . The greatest lower bound for such constants

c is the quantity |(u, p)|2A s∗
.

The following is one of our main results alluded to in the Introduction.

Theorem 4.2. In the context of Adaptive FEM in Figure 2, let η be either η1 or η2, and

let θ > 0 be small enough. A sufficient condition is θ < θ∗ for η = η2 and θ < α
β θ

∗ for η = η1.

Suppose that f ∈ L2(Ω,Rn) and (u, p) ∈ A s∗ for some s > 0. In addition, assume (4.5) for the

solution sequence {(uk, pk)}. Then there exists a constant c > 0 such that

‖(u− uk, p− pk)‖2V×Q + osc(Pk) � c|(u, p)|2A s∗ (#Pk −#P0)
−2s. (4.18)

Proof. It suffices to consider η = η1 since this case is slightly nonstandard. Our strategy is

to use the local equivalence (3.11) to relate η1 with η2 and use standard arguments for η2. For

P ∈ conf(P0), we set

e(P ) = ‖(u− uP , p− pP )‖2V×Q + osc(P ). (4.19)

Note that from the a priori estimate (2.14) and the definition of oscillation (3.5) we have the

weak monotonicity

e(P ′) � e(P ) (4.20)

for any refinement P ′ ∈ conf(P0) of P .

By the definition of A s∗ , there exists a partition P ∈ conf(P0) such that

#P −#P0 � ε
−1/s
k |(u, p)|1/sA s∗

, EP (u, p)
2 + osc(P ) � ε2k, (4.21)

where εk = δη2(Pk, Pk) and δ > 0 is a small constant. Let P ′ = P ⊕ Pk. Then the global lower

bound (3.4) and the a priori estimate (2.14) yield

η2(P
′, P ′) � e(P ′) � e(P ) � ε2k = δη2(Pk, Pk). (4.22)

Upon choosing δ > 0 small enough, this implies η2(P
′, P ′) � μη2(Pk, Pk) with

μ =
1

2

(
1− βθ

αθ∗
)
.

By Lemma 3.2, we have

η2(Pk, Pk \ P ′) � βθ

α
η2(Pk, Pk).

Under the local equivalence (3.11), it becomes η1(Pk, Pk \P ′) � θη1(Pk, Pk). Since, by construc-

tion, Rk ⊂ Pk is a minimal (up to a constant factor) set satisfying η1(Pk, Rk) � θη1(Pk, Pk), we

infer #Rk � #(Pk \ P ′). Hence

#Rk � #Pk −#P ′ � #P −#P0 � ε
−1/s
k |(u, p)|1/sA s∗

, (4.23)

where we used the property (2.4) of overlays. Now, we invoke (2.3) and the geometric decay

(4.6) to conclude

#P� −#P0 �
�−1∑

k=0

#Rk � |(u, p)|1/sA s∗

�−1∑

k=0

ε
−1/s
k � ε

−1/s
� |(u, p)|1/sA s∗

. (4.24)

Recalling that the estimators dominate oscillation, we complete the proof.
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5 Approximation Classes

In Section 4, we established optimal convergence rates with respect to the modified approx-

imation classes (4.16). Ideally, however, one would like to have optimality with respect to the

standard approximation classes

A s = {(u, p) ∈ V ×Q : |(u, p)|A s ≡ sup
N∈N

N s inf
P∈PN

EP (u, p) < ∞}, (5.1)

where we recall PN = {P ∈ conf(P0) : #P −#P0 � N}. Perhaps, a more practical goal is to

know interrelations between A s and A s∗ . In this section, we study the interrelations in terms

of Besov space memberships of the data f .

It is convenient to define the oscillation classes

Os = {f ∈ L2(Ω,Rn) : |f |Os ≡ sup
N∈N

N s inf
P∈PN

osc(P )
1
2 < ∞}. (5.2)

It is obvious that A s∗ ⊂ A s for all s > 0. In the converse direction, we have the following

well-known result.

Lemma 5.1. Let (u, p) ∈ A s, and let f ∈ Os with s > 0, where u, p, and f satisfy Equation

(2.6). Then (u, p) ∈ A s∗ with |(u, p)|A s∗ � |(u, p)|A s + |f |Os .

Proof. Let N ∈ N be an arbitrary number. By the definition of A s, there exists a partition

P ′ ∈ conf(P0) such that

EP ′(u, p) � 2N−s|(u, p)|A s , #P ′ −#P0 � N. (5.3)

Similarly, by the definition of Os, there exists a partition P ′′ ∈ conf(P0) such that

osc(P ′′) � 2N−2s|f |2Os , #P ′′ −#P0 � N. (5.4)

Then for P = P ′⊕P ′′ we have #P−#P0 � 2N by (2.4). Moreover, the monotonicity arguments

guarantee that

EP (u, p)
2 + osc(P ) � EP ′(u, p)2 + osc(P ′′) � N−2s(|(u, p)|2A s + |f |2Os), (5.5)

which completes the proof.

Lemma 5.1 makes us wonder how regular f must be in order for it to be a member of

Os. Using quasiuniform partitions, one can show that Hα(Ω,Rn) ⊂ Os for s = (α+ 1)/n and

α � 0. For instance, if we want to recover the optimal convergence rates of the lowest order

Taylor–Hood elements (d = 2), then this would require f ∈ H1(Ω,Rn), which appears to be a

bit excessive. As it is natural in the current setting, we would like to investigate the question

in terms of the Besov regularity of f . Let us make precise what we mean by Besov spaces. For

0 < q � ∞, the mth order Lq-modulus of smoothness is

ωm(u, t,Ω)q = sup
|h|�t

‖Δm
h u‖Lq(Ωrh), (5.6)

where Ωmh = {x ∈ Ω : [x + mh] ⊂ Ω} and Δm
h is the mth order forward difference operator

defined recursively by [Δ1
hu](x) = u(x+ h)− u(x) and Δk

hu = Δ1
h(Δ

k−1
h )u, i.e.,

Δm
h u(x) =

m∑

k=0

(−1)m+k

(
m

k

)
u(x+ kh). (5.7)
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Then for 0 < q, r � ∞ and α � 0 with m > α − max{0, 1/q − 1} being an integer, the Besov

space Bα
q,r(Ω) consists of those u ∈ Lq(Ω) for which

|u|Bα
q,r(Ω) = ‖t �→ t−α−1/rωm(u, t,Ω)q‖Lr((0,∞)), (5.8)

is finite. Since Ω is bounded, being in a Besov space is a statement about the size of ωm(u, t,Ω)q
only for small t. From this it is easy to derive the useful equivalence

|u|Bα
q,r(Ω) � ‖(λjαωm(u, λ−j ,Ω)q)j�0‖�r (5.9)

for any constant λ > 1. The mapping ‖ · ‖Bα
q,r(Ω) = ‖ · ‖Lq(Ω) + | · |Bα

q,r(Ω) defines a norm when

q, r � 1 and only a quasinorm otherwise. So long as m > α−max{0, 1/q − 1}, different choices
of m result in (quasi-) norms that are equivalent to each other. On the other hand, if we

took m < α − max{0, 1/q − 1}, then the space Bα
q,r would have been trivial in the sense that

Bα
q,r = Pm−1.

We have the subadditivity property

∑

τ∈P
|f |qBα

q,q(τ)
� |f |qBα

q,q(Ω), f ∈ Bα
q,q(Ω), (5.10)

for P ∈ conf(P0) and 0 < q < ∞. A slightly stronger form of this is also true. Let {τk} be a

finite collection of disjoint triangles with each τk ∈ Pk for some Pk ∈ conf(P0). Let τ̂k denote

the star around τk with respect to Pk, i.e., let τ̂k be the interior of
⋃{σ ∈ Pk : σ ∩ τk �= ∅}.

Then ∑

k

|f |qBα
q,q(τ̂k)

� |f |qBα
q,q(Ω), f ∈ Bα

q,q(Ω). (5.11)

Now, we describe various embedding relationships among the Besov and Sobolev spaces.

Since Ω is bounded, it is clear that Bα
q,r(Ω) ↪→ Bα

q′,r(Ω) for any α � 0, 0 < r � ∞ and ∞ �
q > q′ > 0. From the equivalence (5.9) we have the lexicographical ordering Bα

q,r(Ω) ↪→ Bα′
q,r′(Ω)

for α > α′ with any 0 < r, r′ � ∞ and Bα
q,r(Ω) ↪→ Bα

q,r′(Ω) for 0 < r < r′ � ∞. Nontrivial

embeddings are Bα
q,r(Ω) ↪→ Bα′

q′,r(Ω) for (α− α′)/n = 1/q − 1/q′ > 0, and

Bα
q,q(Ω) ↪→ Lr(Ω),

α

n
=

1

q
− 1

r
> 0. (5.12)

Finally, we recall the fact that Bα
2,2(Ω) = Hα(Ω) for all α > 0.

We need the Whitney estimate

inf
g∈Pm

‖f − g‖Lq(G) � ωm+1(f,diam G,G)q, f ∈ Lq(G), (5.13)

valid for any convex domain G ⊂ R
n with an implicit constant depending only on n, m, and q

(see [35]). The same estimate is also true when G is the star around τ ∈ P for some partition

P ∈ conf(P0) with the implicit constant additionally depending on the shape regularity constant

of conf(P0) (see [20]).

In the ensuing discussions, we often need vector-valued versions of the Besov and other func-

tion spaces that should, strictly speaking, be denoted by Bα
p,q(Ω,R

n) or Lp(Ω)n etc. However,

for simplicity of the notation we write Bα
p,q(Ω) or L

p(Ω) etc. to mean the same things.
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Theorem 5.1. We have Bα
q,q(Ω,R

n) ⊂ Os with s = (α+ 1)/n as long as 0 < q < ∞,

α/n � 1/q − 1/2, and α < d− 1 + max{0, 1/q − 1}.

Proof. In this proof, it is understood that all Besov seminorms are defined by using ωd−1.

Hence, in particular, we have |g|Bα
q,q

= 0 for g ∈ Pd−2. For any g ∈ (Pd−2)
n and convex domain

G ⊂ R
n

‖f − g‖L2(G) � ‖f − g‖Lq(G) + |f |Bα
q,q(G) (5.14)

by the embedding (5.12) and

‖f − g‖Lq(G) � ωd−1(f,diam G,G)q � |f |Bα
q,q(G) (5.15)

by the Whitney estimate (5.13). Since hτ = |τ |1/n, the homogeneity argument gives

osc(P ) = min
g∈(Sd−2

P )n

∑

τ∈P
h2τ‖f − g‖2L2(τ) �

∑

τ∈P
|τ |2δ|f |2Bα

q,q(τ)
(5.16)

for P ∈ conf(P0), where δ = (α+ 1)/n+ 1/2− 1/q � 1/n.

The rest of the proof follows that of Proposition 5.2 in [19]; we include it here for the sake

of completeness. Let

e(τ, P ) = |τ |2δ|u|2Bα
q,q(τ)

(5.17)

for τ ∈ P and P ∈ conf(P0). Then for any given ε > 0 we below specify a procedure to generate

a partition P ∈ conf(P0) satisfying

∑

τ∈P
e(τ, P ) � (#P )ε (5.18)

and

#P −#P0 � cε−1/(1+2s)|f |2/(1+2s)
Bα

q,q(Ω) , (5.19)

where s = (α+ 1)/n. Then for any given N > 0, choosing

ε = (c/N)1+2s|f |2Bα
q,q(Ω), (5.20)

we would be able to guarantee a partition P ∈ conf(P0) satisfying #P � #P0 +N and

osc(P ) �
∑

τ∈P
e(τ, P ) � N−2s|f |2Bα

q,q(Ω). (5.21)

Let ε > 0. We then recursively define Rk = {τ ∈ Pk : e(τ, Pk) > ε} and Pk+1 = refine(Pk, Rk)

for k = 0, 1, . . .. For all sufficiently large k we have Rk = ∅ since |f |Bα
q,q(τ)

� |f |Bα
q,q(Ω) and |τ |

is halved at each refinement. Let P = Pk, where k marks the first occurrence of Rk = ∅. Since

e(τ, Pk) � ε for τ ∈ Pk, (5.18) is immediate.

In order to get a bound on #P , we estimate the cardinality of R = R0 ∪R1 ∪ . . .∪Rk−1 and

use (2.3). Let Λj = {τ ∈ R : 2−j−1 � |τ | < 2−j} for j ∈ Z, and let mj = #Λj . Note that the

elements of Λj (for any fixed j) are disjoint since if any two elements intersect, then they must

come from different Rk’s since each Rk consists of disjoint elements and hence the ratio between

the measures of the two elements must lie outside (1/2, 2). This gives the trivial bound

mj � 2j+1|Ω|. (5.22)
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On the other hand, we have e(τ, Pk) > ε for τ ∈ Λj with some k, which means

ε < |τ |2δ|f |2Bα
q,q(τ)

< 2−2jδ|f |2Bα
q,q(τ)

. (5.23)

Summing over τ ∈ Λj , we get

mjε
q/2 � 2−jqδ

∑

τ∈Λj

|f |qBα
q,q(τ)

� 2−jqδ|f |qBα
q,q(Ω), (5.24)

where we used (5.10). Finally, summing over j, we find

#R �
∞∑

j=−∞
mj �

∞∑

j=−∞
min{2j , ε−q/22−jqδ′ |f |qBα

q,q(Ω)} � ε−q/(2+2qδ)|f |q/(1+qδ)
Bα

q,q(Ω) , (5.25)

which, in view of (2.3) and q/(1 + qδ) = 2/(1 + 2s), establishes the bound (5.19).

In light of Lemma 5.1, we immediately get the following corollary, which is one of our main

results mentioned in the Introduction.

Corollary 5.1. Let f ∈ Bα
q,q(Ω,R

n) for some 0 < q < ∞ and α � n/q − n/2 satisfying

0 < α < d− 1 + max{0, 1/q − 1}. Then (u, p) ∈ A s implies (u, p) ∈ A s∗ with s = (α+ 1)/n.

For sake of completeness we include the following result which establishes a (one-sided)

characterization of the standard approximation classes A s in terms of Besov spaces.

Theorem 5.2. We have (B1+ns
q,q (Ω,Rn) ∩ V )× (Bns

q,q(Ω) ∩Q) ↪→ A s as long as 0 < q < ∞,

s > 1/q − 1/2, and 0 < ns < d+max{0, 1/q − 1}.

Proof. Assume that the Besov space seminorms related to the velocity variable are defined

through ωd+1 and the seminorms related to the pressure variable are defined through ωd. For

P ∈ conf(P0), let ZP : V → VP be a Scott–Zhang quasiinterpolation operator preserving the

Dirichlet condition on ∂Ω. Let u ∈ B1+ns
q,q (Ω,Rn)∩V , and let P ∈ conf(P0). Then for any τ ∈ P

and v ∈ (Pd)
n

‖u− ZPu‖H1(τ) � ‖u− v‖H1(τ) + ‖ZP (u− v)‖H1(τ)

� |τ |−1/n‖u− v‖L2(τ̂) + |u− v|H1(τ̂), (5.26)

where τ̂ is the star around τ . Now, we shift to the reference situation where diam τ̂ = 1. By

the embedding B1+ns
q,q ↪→ H1, we can bound the last term as

|u− v|H1(τ̂) � ‖u− v‖Lq(τ̂) + |u− v|B1+ns
q,q (τ̂) = ‖u− v‖Lq(τ̂) + |u|B1+ns

q,q (τ̂). (5.27)

For the other term we have

‖u− v‖L2(τ̂) � ‖u− v‖Lq(τ̂) + |u|B1+ns
q,q (τ̂), (5.28)

this time using the embedding B1+ns
q,q ↪→ L2. Finally, the Whitney estimate gives

‖u− p‖Lq(τ̂) � ωd+1(u, τ̂)q � |u|B1+ns
q,q (τ̂). (5.29)
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Leaving the reference situation by homogeneity and combining the result, we have

‖u− ZPu‖2H1(Ω) �
∑

τ∈P
|τ |2δ|u|2

B1+ns
q,q (τ̂)

, (5.30)

with δ = s+ 1/2− 1/q > 0. Similarly, one can derive

‖p−ΠP p‖2L2(Ω) �
∑

τ∈P
|τ |2δ|p|2Bns

q,q(τ)
, p ∈ Bns

q,q(Ω) ∩Q, (5.31)

where ΠP : Q → QP is the L2-orthogonal projector. The rest of the proof can be completed in

the same way as that of Theorem 5.1.
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