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We extend gap functions to quasi-equilibrium problems by using the duality results. In

particular, we obtain new results for quasi-equilibrium problems known earlier for equi-

librium problems and mixed quasi-variational inequalities. Bibliography: 12 titles.

1 Introduction

Let K : Rn ⇒ R
n be a set-valued mapping, and let f : Rn × R

n → R be a bifunction such that

f(x, x) = 0 for all x ∈ R
n. The quasi-equilibrium problem consists in finding x ∈ K(x) such that

(QEP) f(x, y) � 0 ∀ y ∈ K(x).

IfK(x) = K for all x ∈ R
n, then Problem (QEP) becomes the classical equilibrium problem (EP)

introduced by Blum and Oettli [1]. In recent years, Problem (QEP) has attracted the attention

of authors who contribute to such areas as the existence results [2, 3], gap functions [4], and

development of algorithms [5]. Moreover, for f(x, y) = 〈F (x), y−x〉 with F : Rn → R
n Problem

(QEP) reduces to the quasi-variational inequality (QVI) (see [6]–[8]), where 〈·, ·〉 denotes the

Euclidean inner product.

Since Problems (QEP) and (QVI) allow us to unify problems such as optimization prob-

lems, Nash equilibrium problems, complementarity problems, fixed point problems, variational

inequalities, and generalized Nash equilibrium problems in an appropriate way, it is important

to study quasi-equilibrium problems from both theoretical and practical points of view.

Unlike the existing results dealing with gap functions for quasi-variational inequalities based

on duality [6], we consider quasi-equilibrium problems. The paper is organized as follows. In

Section 2, we recall definitions and duality results from [9]. In Section 3, we study gap functions

for quasi-equilibrium problems. As particular cases of the results of Section 3, we obtain the

existing results for equilibrium problems and mixed quasi-variational inequalities.

International Mathematical Schools 7. Mathematical Schools in Mongolia. In Honor of Academician T. Zhanlav

1072-3374/24/2796-0730 c© 2024 Springer Nature Switzerland AG

730

DOI 10.1007/s10958-024-07055-7



2 Preliminaries

For a nonempty set C ⊆ R
n we introduce the indicator function δC : Rn → R = R ∪ {±∞},

δC(x) =

{
0, x ∈ C,

+∞ otherwise.

For a function h : R
n → R, we denote by dom h = {x ∈ R

n | f(x) < +∞} its effective

domain. A function is said to be proper if dom h 
= ∅. The (Fenchel–Moreau) conjugate

function h∗ : Rn → R of h is defined by

h∗(p) = sup
x∈Rn

[〈p, x〉 − h(x)].

We consider the optimization problem

(P) inf
0∈F (x)

h(x),

where h : Rn → R is a given function and F : Rn ⇒ R
n is a set-valued mapping such that

dom h ∩ F−1(0) 
= ∅. The corresponding dual problem takes the form

(D) sup
p∈Rn

inf
x∈Rn

[h(x) + sF (x, p)],

where sF : Rn → R is the lower support function associated to F by

sF (x, p) = inf
y∈F (x)

〈p, y〉,

Proposition 2.1 ([9]). Let h : Rn → R be a proper convex function, and let F : Rn ⇒ R
n

be a convex set-valued mapping. If the constraint qualification

(CQ) ∃x ∈ ri (dom h) ∩ ri (dom F ), 0 ∈ ri (F (x)),

is fulfilled, then for (P) and (D) strong duality holds, i.e., there exists p ∈ R
n such that

inf
0∈F (x)

= sup
p∈Rn

inf
x∈Rn

[h(x) + sF (x, p)] = inf
x∈Rn

[h(x) + sF (x, p)],

where ri (C) is the relative interior of a given set C ⊆ R
n.

3 Gap Functions for Quasi-Equilibrium Problems

One of the approaches to solving the equilibrium problem is to reduce it to an optimization

problem by using a gap function. A function γ : Rn → R is called a gap function for Problem

(QEP) if

(i) γ(y) � 0 for all y ∈ K(x),

(ii) γ(x) = 0 if and only if x solves Problem (QEP).
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We recall the approach based on the conjugate duality [10] (see also [11]). For a fixed x ∈ R
n

Problem (QEP) can be reduced to the optimization problem

(PQEP; x) inf
y∈K(x)

f(x, y)

or, equivalently,

(PQEP; x) inf
0∈K(x)−y

f(x, y).

The corresponding dual problem takes the form

(DQEP; x) sup
p∈Rn

inf
y∈Rn

[f(x, y) + sK(x)−id(y, p)],

where id denotes the identity mapping. For x ∈ R
n we introduce the function

γQEP(x) := − sup
p∈Rn

inf
y∈Rn

[f(x, y) + sK(x)−id(y, p)],

where v(DQEP;x) denotes the optimal objective value of Problem (DQEP;x).

Lemma 3.1 ([6]). Let K : Rn ⇒ R
n be a set-valued mapping, and let p ∈ R

n be fixed. Then

for any x ∈ R
n

sK(x)−id(y, p) = sK(x, p)− 〈p, y〉.
By Lemma 3.1, γQEP can be written as

γQEP(x) = inf
p∈Rn

sup
y∈Rn

[−f(x, y) + sK(x, p)− 〈p, y〉]

= inf
p∈Rn

{sK(x, p) + sup
y∈Rn

[〈−p, y〉 − f(x, y)]} = inf
p∈Rn

{sK(x, p) + f∗
y (x;−p)},

where f∗
y (x;−p) := sup

y∈Rn
[〈−p, y〉 − f(x, y)].

Theorem 3.1. Let K : Rn ⇒ R
n be a set-valued mapping such that K(x) is a nonempty

closed convex set for each x ∈ R
n. If for each x ∈ R

n

(CQ;x) ∃x ∈ ri (dom K(x)), 0 ∈ ri (K(x)− x),

then γQEP is a gap function for Problem (QEP).

Proof. 1. Let x ∈ R
n be fixed. By the weak duality,

v(DQEP;x) � v(PQEP;x) � 0.

Consequently,

γQEP(x) = −v(DQEP;x) � 0.

2. Let γQEP(x) = 0. Then

0 = v(DQEP;x) � v(PQEP;x) � 0.

Consequently, v(PQEP;x) = 0, which means that x is a solution to Problem (QEP). Conversely,

if x is a solution to Problem (QEP), then v(PQEP;x) = 0. By Proposition 2.1, we have γQEP(x) =

−v(DQEP;x) = v(PQEP;x) = 0.
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Example 3.1. Let h : Rn → R
n be a vector-valued function, and let C ⊆ R

n be a closed

convex set. If K(x) = h(x) + C, then Problem (QEP) is reduced to a special case with moving

set (see [12]). In this case,

sK(x, p) = inf
y∈K(x)

〈p, y〉 = inf
y∈h(x)+C

〈p, y〉 = inf
y−h(x)∈C

〈p, y〉

= inf
z∈C

〈p, z + h(x)〉 = 〈p, h(x)〉+ inf
z∈C

〈p, z〉,

where z := y − h(x).

We consider Example 2.6 of [5]. For Problem (QEP) with the bifunction f(x, y) = x(y − x)

and moving set K(x) = [2x− 1, 2x] = [−1, 0] + 2x the function γQEP has the form

γQEP(x) = inf
p∈R

{2px+ inf
z∈[−1,0]

pz + sup
y∈R

[−py − xy + x2]}

= x2 + inf
p∈R

{2px+ inf
z∈[−1,0]

pz + sup
y∈R

[−(p+ x)y]}.

Taking into account that

sup
y∈R

[−(p+ x)y] =

⎧⎨
⎩0, p+ x = 0,

+∞ otherwise,

we have

γQEP(x) = x2 − 2x2 + inf
z∈[−1,0]

(−xz) =

⎧⎨
⎩x− x2, x < 0,

−x2, x � 0.

The associated Minty quasi-equilibrium problem (see [2]) of Problem (QEP) consists in

finding x ∈ K(x) such that

(DMEP) f(y, x) � 0 ∀ y ∈ K(x).

We denote by KQEP and KQMEP the sets of solutions to Problems (QEP) and (QMEP) respec-

tively and recall some definitions and facts.

Definition 3.1. A bifunction f : Rn × R
n → R is said to be

— monotone on a subset C ⊆ R
n if f(x, y) + f(y, x) � 0 for all x, y ∈ C,

— pseudomonotone on a subset C ⊆ R
n if f(x, y) � 0 implies f(y, x) � 0 for all x, y ∈ C.

Definition 3.2. We say that a bifunction f : Rn×R
n → R possesses the upper sign property

at x ∈ C ⊆ R
n if for all y ∈ C

[f((1− λ)x+ λy) � 0, ∀λ ∈ (0, 1)] ⇒ f(x, y) � 0.

Proposition 3.1 ([2]). (i) If f is pseudomonotone on K(x) for any x ∈ R
n, then

KQEP ⊆ KQMEP.

(ii) If f has the upper sign property on R
n and for any x ∈ R

n the set K(x) is convex, then

KQMEP ⊆ KQEP.
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Using Problem (QMEP) and arguing as above, we introduce a new gap function for Problem

(QEP). Let us note that x ∈ K(x) is a solution to Problem (QMEP), which is equivalent to that

x is a solution to the optimization problem

(PQMEP;x) inf
y∈K(x)

[−f(y, x)].

The corresponding dual problem of Problem (PQMEP;x) has the form

(DQMEP;x) sup
p∈Rn

inf
y∈Rn

[−f(y, x) + sK(x)−id(y, p)].

Let us define the function

γQEP
M (x) := −v(DQMEP;x) = − sup

p∈Rn
inf
y∈Rn

[−f(y, x) + sK(x)−id(y, p)]

= inf
p∈Rn

{sK(x, p) + sup
y∈Rn

[f(y, x)− 〈p, y〉]}.

Proposition 3.2. Let f be a monotone bifunction on R
n. Then

γQEP
M (x) � γQEP(x) ∀ x ∈ R

n.

Proof. Let x ∈ R
n. Since f is monotone, f(x, y)+f(y, x) � 0 implies f(y, x) � −f(x, y) for

all x, y ∈ R
n. Adding −〈p, y〉 to both sides and taking the supremum over all y ∈ R

n, we find

sup
y∈Rn

[f(y, x)− 〈p, y〉] � sup
y∈Rn

[−f(x, y)− 〈p, y〉].

We obtain the desired conclusion by adding sK(x, p) to both sides and taking the infimum over

p ∈ R
n.

Theorem 3.2. Let the assumptions of Theorem 3.1, Proposition 3.1 (ii), and Proposition

3.2 be fulfilled. Then γQEP
M is a gap function for Problem (QEP).

Proof. The property (i) of the definition of a gap function follows from the weak duality.

Let x be a solution to Problem (QEP). By Theorem 3.1, x is a solution to Problem (QEP)

if and only if γQEP(x) = 0. By Proposition 3.2,

0 � γQEP
M (x) � γQEP(x) = 0.

Hence γQEP
M (x) = 0. Conversely, let us assume that γQEP

M (x) = 0. By the weak duality,

0 = v(DQMEP;x) � v(PQMEP;x) � 0.

Hence v(PQMEP;x) = 0 which implies x ∈ KQMEP. By Proposition 3.1 (ii), x ∈ KQEP.
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4 Particular Cases

4.1. Equilibrium problem. Let K ⊆ R
n be a nonempty convex subset. Then the equilib-

rium problem consists in finding x ∈ K such that

(EP) f(x, y) � 0 ∀ y ∈ K,

where f : K ×K → R is a given function such that f(x, x) = 0 for all x ∈ K.

Since K(x) = K, we have sK(x, p) = −δ∗K(−p), where δK denotes the indicator function of

the set K. Consequently,

γEP (x) = − sup
p∈Rn

inf
y∈Rn

[f(x, y)− δ∗K(−p)− 〈p, y〉]

= inf
p∈Rn

{ sup
y∈Rn

[〈p, y〉 − f(x, y)] + δ∗K(−p)} = inf
p∈Rn

{f∗
y (x, p) + δ∗K(−p)},

which was studied in [10].

3.2. Mixed quasi-variational inequality. Let T : Rn → R
n be a continuous vector-

valued function, and let K : Rn ⇒ R
n be a set-valued mapping such that K(x) is a nonempty

closed convex set for each x ∈ R
n. Let ϕ : R

n → R be a given function. Then the mixed

quasi-variational inequality problem consists in finding a vector x ∈ K(x) such that

(MQVI) 〈T (x), y − x〉+ ϕ(y)− ϕ(x) � 0 ∀ y ∈ K(x).

Since f(x, y) = 〈T (x), y − x〉+ ϕ(y)− ϕ(x), we have

γMQVI(x) = − sup
p∈Rn

inf
y∈Rn

[〈T (x), y − x〉+ ϕ(y)− ϕ(x) + sK(x, p)− 〈p, y〉]

= 〈T (x), x〉+ ϕ(x) + inf
p∈Rn

{ sup
y∈Rn

[〈p− T (x), y〉 − ϕ(y)]− sK(x, p)}

= 〈T (x), x〉+ ϕ(x) + inf
p∈Rn

{ϕ∗(p− T (x))]− sK(x, p)}.

We note that the gap function γMQV I(x) = 〈T (x), x〉+ϕ(x)+ inf
p∈Rn

{ϕ∗(p−T (x))]−sK(x, p)}
was studied in [6].

4.3. Quasi-optimization problems. Let h : C → R, C ⊆ R
n, be a given real-valued

function, and let K : Rn ⇒ R
n be a set-valued mapping such that K(x) is a nonempty closed

convex set for each x ∈ R
n. The quasi-optimization problem is to find x ∈ K(x) such that

(QOP) min
y∈K(x)

h(y) = h(x).

The existence of a solution to Problem (QOP) was established in [3]. For f(x, y) = h(y)− h(x)

we have

γQOP(x) = − sup
p∈Rn

inf
y∈Rn

[h(y)− h(x) + sK(x, p)− 〈p, y〉]

= inf
p∈Rn

sup
y∈Rn

[−h(y) + h(x)− sK(x, p) + 〈p, y〉]

= h(x) + inf
p∈Rn

{ sup
y∈Rn

[〈p, y〉 − h(y)]− sK(x, p)} = h(x) + inf
p∈Rn

{h∗(p)− sK(x, p)}.
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Remark 4.1. If K(x) = K, then sK(x, p) = −δ∗K(−p). Consequently,

γQOP(x) = h(x) + inf
p∈Rn

{h∗(p) + δ∗K(−p)}.

Since γQOP(x) � 0, it follows that

inf
x∈K

h(x) � sup
p∈Rn

{−h∗(p)− δ∗K(−p)},

which can be interpreted as the weak duality in optimization.
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