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DIFFERENTIAL EQUATIONS IN BANACH SPACES
WITH AN NONINVERTIBLE OPERATOR IN THE PRINCIPAL PART
AND NONCLASSICAL INITIAL CONDITIONS

N. A. Sidorov and A. I. Dreglea UDC 518.517

Abstract. In this paper, we examine differential equations with nonclassical initial conditions and
noninvertible operators in their principal parts. We find necessary and sufficient conditions for the
existence of unbounded solutions with a pole of order p at points where the operator in the principal
part of the differential equation is noninvertible. Based on the alternative Lyapunov–Schmidt method
and Laurent expansions, we propose a two-stage method for constructing expansion coefficients of the
solution in a neighborhood of a pole. We develop the techniques of skeleton chains of linear operators
in Banach spaces and discuss its applications to the statement of initial conditions for differential
equations. The results obtained develop the theory of degenerate differential equations. Illustrative
examples are given.
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1. Introduction. The differential equation

B(t)
∂u

∂t
= A(t, u) (1)

with an noninvertible operator B(t) attracted the attention of many mathematicians. Equation (1),
which is a Sobolev-type equation (see [18]), has recently found many new applications in modern
mathematical physics, mathematical modeling in technology, energy industry, and economics. Impor-
tant general results were obtained in the case of an noninvertible stationary operator B : D ⊂ X → Y ,
where X and Y are Banach space. In [1–4, 6, 7, 9–11, 13–15, 17, 21], a wide range of methods from
the theory of differential operator equations, functional analysis, and asymptotic methods were used
for similar problems. Theorems of existence, convergence, and stability of solutions were proved, ap-
proximate methods were developed for solving initial boundary-value problems, including solutions
in neighborhoods of branch points. In the linear case, for some classes, an analytical technique for
constructing exact solutions was proposed. Nevertheless, at present, the problem of constructive de-
scription of the structure of a solution in a neighborhood of a point where the nonstationary operator
B(t) has no inverse remains unsolved. The results of numerical experiments in neighborhoods of such
points often turn out to be unstable.

We draw the reader’s attention to the fact that the equation B
∂u

∂t
= A(t, u) with a noninvertible

operator B and the Cauchy condition u(t0) = u0 requires a priori information A(t0, u0) in the range of
the operatorB. Analysis of analytical structures of collapsing solutions is especially difficult. Therefore,
the development of methods for asymptotic analysis in neighborhoods of singular points of the operator
B(t) and the statement of well-posed initial-valued problems in these neighborhoods is very important
from the theoretical and applied points of view. A promising approach here is a combination of
modification of subtle methods of the analytical theory of differential equations (e.g., the Fuchs–
Frobenius and Puiseux–Bruno expansions) with methods of the spectral theory of linear operators,
functional and group methods.
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In this paper, we give necessary and sufficient analytical conditions for the existence of collapsing
and bounded solutions in neighborhoods of points t0 at which the operator B(t0) is noninvertible
analyze the asymptotic behavior of solutions with nonclassical initial conditions.

The structure of the paper is as follows. In Sec. 2, we state the problem of constructing an unbounded
solution as a special limit initial-value problem in a certain class of functions. In Sec. 3, necessary
conditions for fulfilling the initial condition (3) of the problem are given. In Sec. 4, a theorem on the
existence of a unique solution of the initial-value problem is proved and examples are given. In Sec. 5,
we discuss skeletal chains of linear operators and some nonclassical initial-value problems for linear
degenerate differential equations.

2. Statement of the initial-value problem. Consider the linear equation

B(t)
∂u

∂t
= A(t)u+ f(t) (2)

with the initial condition

lim
t→t0

B(t)u(t) = y0, (3)

which is a generalization of the Cauchy initial condition u(t0) = y0. We assume that the Fredholm
operator u(t0) is noninvertible and the element y0 belongs to the range of the operator B(t0).

The condition (3) is called the limit initial condition. We need to obtain conditions of the existence
of an unbounded solution of the problem (2)–(3). Without loss of generality, we assume that t0 = 0.

Let the following conditions hold:

I. B(t) = B0+B1t+ . . . , A(t) = A0+A1t+ . . . , f(t) = f0+ f1t+ . . . for |t| < ρ, B0 : D ⊂ X → Y
is a Fredholm operator, D̄ = X, B1, B2, . . . , A0, A1, . . . are linear bounded operators from X
into Y , where X and Y are Banach spaces, and fi are elements of Y .

We search for a solution u(t) in the class Xp of X-valued functions defined for 0 < |t| < ρ and
having a pole of order p:

u(t) =
u−p

tp
+ · · ·+ u−1

t
+ u0 + u1t+ . . . . (4)

The class X0 corresponds to the case where the condition (3) turns into the condition B(0)u(0) = y0
used earlier in a number of works.

3. Necessary condition of the solvability of the problem (2)–(3) in the class Xp, p ≥ 1.

Introduce the vectors w =
(
u−p, u−p+1, . . . , u−1, u0

)T
and β =

(
0, . . . , 0, y0

)T
and the following block

operator of dimension (p+ 1)× (p + 1):

Φp =

⎡

⎢
⎢⎢
⎣

B0 0 0 . . . 0
B1 B0 0 . . . 0
...

...
...

. . .
...

Bp Bp−1 · · · B1 B0

⎤

⎥
⎥⎥
⎦
.

Lemma 1. If the problem (2)–(3) has a solution in the class Xp, p ∈ N, then the system

Φpw = β (5)

is solvable.

The proof is obvious: substituting the series (4) into the initial condition (3) and applying the
method of indefinite coefficients, we arrive at the system (5).

Introduce the following condition:
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II.
{
φ1, . . . , φn

}
is a basis in N(B0),

{
ψ1, . . . , ψn

}
is a basis in N(B∗

0), Biφ = 0, i = 1, p, for all
φ ∈ N(B0),

〈ψi, φj〉 =
{
0, i 	= j,

1, i = j.
, 〈ψi, zj〉 =

{
0, i 	= j,

1, i = j.
, 〈ψi, y0〉 = 0, i = 1, n.

Lemma 2. If the condition II is fulfilled, then the set of elements
⎧
⎪⎪⎨

⎪⎪⎩

uk = (ck, φ), k = −p,−p+ 1, . . . ,−1,

u0 = (c0, φ) +

(

B0 +
n∑

i=1

〈·, γi〉zi
)−1

y0,
(6)

where

(ck, φ) =
n∑

i=1

ckiφi

is a general solution of the system (5) and cki are arbitrary constants. Moreover, the corresponding
expansion (4) satisfies the initial condition (3) for all cki and u1, u2, . . . .

4. Sufficient conditions of the existence of a unique solution of the problem (2), (3) in the
class Xp, p ≥ 1. Assume that the conditions I and II are fulfilled and the coefficients u−p, . . . , u−1, u0
are defined by the formulas (6). Moreover, let the following conditions be fulfilled:

III. Aiφ = 0, i = 0, p − 1, for all φ ∈ N(B0).

Substituting the expansion (4) into Eq. (2) and applying the method of indefinite coefficients for
calculating the coefficients u1, u2, . . . , we arrive at the following recurrent sequence of equations:

B0u1 = (pBp+1 +Ap)u−p + f0 � L1(c−p), (7)

mB0um = ((p + 1−m)Bp+1 +Ap)um−p−1 −
∑

i+l=m

iBlui

+
∑

i+l=m−1

Alui + fm−1 � Lm(cm−p−1), m = 2, 3 . . . . (8)

Introduce the projector P and the invertible operator B̂0 as follows:

P =
n∑

j=1

〈·, γj〉φj , B̂0 = B0 +
n∑

j=1

〈·, γj〉zj .

Using the projector P , we can represent the coefficients um of the expansion (4) in the form

um = Pum + (I − P )um, m = −p, −p+ 1, . . . ,

or, in a more convenient notation, um = (cm, φ) + ûm, where cm ∈ R
n and φ = (φ1, . . . , φn)

T .
We find the vectors cm consecutively from the solvability conditions for the linear equations (7)

and (8): 〈
φi, Lm(cm−p−1)

〉
= 0, i = 1, n. (9)

Lemma 2 and Eqs. (7) and (8) imply that the projections ûm are defined by the rules

ûm =

⎧
⎪⎨

⎪⎩

0 for m = −p, −p+ 1, . . . , −1,

B̂−1
0 y0 for m = 0, if 〈ψi, y0〉 = 0, i = 1, n,

1
j B̂

−1
0 Lm(Cm−p−1) for m = 1, 2,

where Cm−p−1 satisfies the system of linear algebraic equations (SLAE) (9).
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Indeed, the orthogonality conditions (9) are the solvability conditions for Eqs. (7) and (8); they
allow constructing the systems of equations for calculating c−p, c−p+1, . . . . The element y0 in the
initial condition belong to the range of the operator B0.

To solve the system (9), we introduce the pencil Mm of square (n× n)-matrices by the formula

Mm = D + (p + 1−m)B̄, m = 1, 2, . . . ,

where
D �

[〈ψi, Apφj〉
]
i,j=1,n

, B̄ �
[〈ψi, Bp+1φj〉

]
i,j=1,n

.

Then the condition (9) can be represented as the following sequence of systems of linear algebraic
equations:

MmC−p+m−1 + β−p+m−1 = 0, m = 1, 2, . . . , (10)

where the vector βm−p−1 ∈ R
n depends for each m on the projections of the coefficients of the series (4)

calculated earlier.
To provide the uniqueness of coefficients of the projections Pum (i.e., the solutions of the sys-

tem (10)), we impose the following condition:

IV detMm 	= 0 for m ∈ N.

Remark 1. If det B̄ 	= 0 and detMm 	= 0 for m = 1, 2, . . . , N , where N = max{p+2, ‖B̄−1D‖}, then
the condition IV holds for all m due to the theorem on inverse operators.

Thus, we arrive at the following assertion.

Theorem 1. Let B0 be a Fredholm operator and let the conditions I–IV be fulfilled. Then the coef-
ficients of the Laurent expansion (4) of a solution of the initial-value problem (2), (3) are defined
uniquely. Namely, the coefficients Cj of the projections Puj, j = −p,−p + 1, are defined from the
regular systems of linear algebraic equations (10). The projections (I − P )uj are calculated by the
formula

(I − p)uj =

⎧
⎪⎨

⎪⎩

0 for j = −p, −p+ 1, . . . , −1,

B̂−1
0 y0 for j = 0,

1
j B̂

−1
0 Lj(C

�
−p+j−1) for j = 1, 2, . . . .

Using the majorant method, it is possible to estimate the radius of convergence of the regular part
of the Laurent series (4) in the analytical case.

If the input data are sufficiently smooth and the operator B(t) is invertible in a punctured neigh-
borhood 0 < |t| < p, one can proof an analog of Theorem 1 in the nonanalytic case.

Remark 2. The order of the pole of a solution of the initial-value problem (2)–(3) depends on the
function f(t). If 〈ψ, f(0)〉 = 0 for all ψ ∈ N(B(0)), then u−p = 0. In particular, under the conditions
of the theorem, the point t = 0 becomes a removable singular point for p = 1. Therefore, the set of
points t0 at which the operator B(t) has no bounded inverse operator can be classified as the set of
quasi-movable singular points of the initial-value problem (2)–(3).

Example 1. Consider the integro-differential equation

(
∂2

∂x2
+ 1

)
∂u(x, t)

∂t
+

π∫

0

B(x, s, t)
∂u(s, t)

∂t
ds =

π∫

0

A(x, s, t)u(s, t)ds + f(x, t) (11)

with the boundary conditions
u|x=0 = 0, u|x=π = 0 (12)

and the initial condition

lim
t→0

⎛

⎝∂2u(x, t)

∂x2
+ u(x, t) +

π∫

0

B(x, s, t)u(s, t)ds

⎞

⎠ = y0(x). (13)
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Let
π∫

0

y0(x) sin x dx = 0

and the following expansions are fulfilled for |t| < ρ:

B(x, s, t) =

∞∑

i=1

Bi(x, s)t
i, A(x, s, t) =

∞∑

i=0

Ai(x, s)t
i, f(x, t) =

∞∑

i=0

fi(x)t
i

where Bi(x, s), Ai(x, s), and fi(x) are continuous functions.
In this example, X = Y = C[0,π], the operator B0 = ∂2/∂x2 + 1 satisfying the conditions (2) is a

Fredholm operator, and φ(x) = ψ(x) = sinx. Moreover, let

π∫

0

Bi(x, s) sin s ds = 0, i = 1, p,

π∫

0

Ai(x, s) sin s ds = 0, i = 0, p − 1,

π∫

0

π∫

0

Bp+1(x, s) sin x sin s dx ds = β 	= 0,

π∫

0

π∫

0

Ap(x, s) sin x sin s dx ds = d 	= 0.

Due to the condition IV, we introduce the algebraic equation (p + 1 − m)β + d = 0 for m. If it has
no natural solutions, then all conditions of Theorem 1 are fulfilled and the problem (11)–(3) has a
solution of the form (4) with a pole at the point t = 0 of order ≤p. If

π∫

0

f(x, 0) sinx dx 	= 0,

then t = 0 is a pole of order p, i.e.,

u(x, t) ∼ sinx

tp
c

in a punctured neighborhood 0 < |t| < p for

c = − (pβ + d)−1

π∫

0

f(x, 0) sin x dx.

The following example shows that different components of the vector u can have poles of different
orders.

Example 2. Consider a system of the form (2) consisting of two ordinary differential equations with

B(t) =

[
1 + t+ 2t2 3t2

t+ 4t2 5t2

]
, A(t) =

[
1 + t 0
t+ 2t t

]
, f(t) =

[−1
2

]

Here X = Y = R
2 and φ = ψ = [0, 1]T . Introduce the initial condition

lim
t→0

B(t)u(t) =

[−2
0

]
.

Obviously, the vector’ [−2, 0]T lies in the range of the matrix B0. In this example,

B1 =

[
1 0
1 0

]
, B2 =

[−2 3
4 5

]
, A0 =

[
1 0
1 0

]
, A1 =

[
1 0
2 1

]
,

B1φ = A0φ = 0, (B2φ, φ) = 5, (A1φ, φ) = 1.
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In the representation (4) of the solution we set p = 1. Since 1+ (2−m)5 	= 0 for m ∈ N, all conditions
of Theorem 1 are fulfilled and we can construct a solution in the form (4) for p = 1. Following the
algorithm described in the theorem, we obtain the following solution:

u1(t) ∼ 2 + t+ t2 +
t3

12
+

15

24
t4 + . . . , u2(t) ∼ − 2

3t
− 4− 3

4
t− 25

36
t2 + . . . ;

here the component u2(t) has a pole of the first order.

Using the method described, it is possible to construct collapsing solutions of

B(t)
du

dt
= A(t)u+ F (u, t),

where ‖F (u, t)‖ = O(1) for all u ∈ Xp and t ∈ (−p, ρ), with the initial condition (3). The initial condi-
tion (3) is a generalization of the Showalter–Sidorov conditions (see [3, 19]); it allows one to construct
collapsing solutions in Sobolev-type models by using two-stage iterative procedures developed in [1–4,
6, 6, 8–13, 15, 17, 21] and the present paper.

5. Skeletal chains of linear operators and their applications to nonclassical initial-valued
problems. Let B ∈ L(E → E) and B = A1A2, where A2 ∈ L(E → E1), A1 ∈ L(E1 → E), and
E1 and E be linear normed spaces. The representation B = A1A2 is called the skeletal decomposition
of the operator B. Introduce the linear operator B1 = A2A1. Obviously, B1 ∈ L(E1 → E1). If the
operator B1 has a bounded inverse operator or B1 is the zero operator from E1 into E1, then we
say that B generates a skeletal chain {B1} of length 1; in this case, the operator B1 is called the
skeletal adjoint operator for the operator B. A skeletal chain is said to be degenerate if B1 = 0 and
nondegenerate if B1 is an invertible operator. If B1 is a noninvertible nonzero operator, we similarly
admit the skeletal decomposition B1 = A3A4, where A4 ∈ L(E1 → E2), A3 ∈ L(E2 → E1), and
E2 is another linear normed space. Obviously, A2A1 = A3A4, and we can introduce the operator
B2 = A4A3 ∈ L(E2 → E2). If B2 has a bounded inverse operator or B2 = 0, then we say that the
operator B has the skeletal chain {B1,B2} of length 2. The chain {B1,B2} is said to be degenerate if
B2 = 0 and nondegenerate if B2 is an invertible operator. In the third case whereB2 is a noninvertible
nonzero operator, the length of the chain is greater than 2 and one can continue the construction.

This process can be continued for some classes of linear operators. For this purpose, we need to
introduce linear normed spaces Ei, i = 1, . . . , p, and to construct bounded operators A2i ∈ L(Ei−1 →
Ei) and A2i−1 ∈ L(Ei → Ei−1) satisfying the equalities

A2iA2i−1 = A2i+1A2i+2, i = 1, 2, . . . , p − 1. (14)

According to (14), consider the sequence of linear operators {B1, . . . ,Bp} defined by the formulas

Bi = A2iA2i−1, i = 1, 2, . . . , p. (15)

Obviously, Bi ∈ L(Ei → Ei). Here we assume that the last operator Bp either has a bounded inverse
operator or Bp is the zero operator from Ep into Ep. We introduce the following notion related to this
construction.

Definition 1. Let B = A1A2 and the operators {Ai}2pi=1 satisfy Eqs. (14). Assume that the operators
{B1, . . . ,Bp} are defined by the formulas (15), the nonzero operators {B1, . . . ,Bp−1} are noninvert-
ible, and the operator Bp either has a bounded inverse operator or is the zero operator from Ep

into Ep. Then we say that the operator B generates the skeletal chain {B1, . . . ,Bp} of linear oper-
ators of length p; this skeletal chain is said to be nondegenerate if the operator Bp 	= 0 is invertible
and degenerate if Bp = 0. The operators {B1, . . . ,Bp} are called the skeletal adjoint operators for
the operator B.

We give examples of linear operators that generate skeletal chains of finite length.
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Example 3. Let E = R
m. Obviously, a degenerate square matrix B : Rm → R

m has a skeletal chain
consisting of a finite number of degenerate square matrices of decreasing dimensions. Moreover, the
last matrix of the chain is either nondegenerate or zero.

Example 4. Let E be an infinite-dimensional normed space. Similarly to Example 3, the finite-
dimensional operator

B =

n∑

i=1

〈·, γi〉zi,

where {zi} ∈ E and γi ∈ E∗, has a skeletal chain of finite length consisting of matrices {B1, . . . ,Bp}
of decreasing dimensions. Moreover, B1 =

∥
∥〈zi, γj〉

∥
∥n
i,j=1

is the first skeletal adjoint element of the

chain.

In Example 4, according to Definition 1, the length of the chain is p = 1 if det
[〈zi, γj〉

]n
i,j=1

	= 0

or 〈zi, γj〉 = 0, i, j = 1, 2, . . . , n. In the general case, as in Example 3, the chain consists of a finite
number of matrices of decreasing dimensions.

Taking into account the formulas (14) and (15) and Definition 1, we arrive at the following result.

Lemma 3. If an operator B has a skeletal chain of length p, then its powers Bn, n = 2, 3, . . . , p+ 1,
can be represented as follows:

Bn = A1A3 . . .A2n−1Bn−1A2n−2A2n−4 . . .A2; (16)

here B1,B2, . . . ,Bp are the elements of the skeletal chain of the operator B.

Corollary 1. If an operator B has a degenerate skeletal chain of length p, then B is a nilpotent
operator of index p+ 1.

To prove the Corollary, it suffices to set n = p + 1 in the formula (16) and to verify that Bp+1 is
the zero operator since the representation of Bp+1 contains the zero operator Bp due to the fact that
the skeletal chain is degenerate.

Based on the notion of skeletal chains, it is possible to reduce an irregular systems to a sequence of
regular problems. This was shown in [5, 16] by examples of classical equations of the form

BL(t)u = L1(t)u+ f(t),

where B is a continuous operator and L(t) and L1(t) are partial differential operators.
Below we discuss applications of skeletal chains to the analysis of the simplest irregular differential

equation

B
du(t)

dt
= u(t) + f(t), (17)

where f(t) : [0,∞) → E and B ∈ L(E → E) is a Fredholm operator. Let {B1, . . . ,Bp} be the skeletal
chain of the operator B, Bi = A2iA2i−1, i = 1, . . . , p.

Theorem 2. Let {B1, . . . ,Bp} be the regular skeletal chain of the operator B and let the function
f(t) be differentiable p− 1 times. Then Eq. (17) with the initial condition

p∏

j=1

A2ju(t)
∣∣
t=0

= c0, c0 ∈ Ep (18)

has a unique classical solution

u(t, c0) = −f(t) +A1
du1
dt

, (19)

where the function u1(t, c0) is defined uniquely.

We describe the scheme of constructing the function u1(t, c0) in the solution (19) based on the
definition of the skeletal chain of the operator B:
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(1) if p = 1, then u1(t, c0) satisfies the regular Cauchy problem
⎧
⎨

⎩
B1

du1
dt

= u1 +A2f(t),

u1(0) = c0;

(2) if p ≥ 2, then u1(t, c0) can be constructed recursively as follows:
⎧
⎪⎪⎨

⎪⎪⎩

Bp
dup
dt

= up +

p∏

j=1

A2jf(t),

up(0) = c0,

ui(t, c0) = A2i+1
dui+1(t, c0)

dt
−

i∏

j=1

A2jf(t), i = p− 1, p− 2, . . . , 1.

Theorem 3. Let {B1, . . . ,Bp−1, 0} be the singular chain of length p ≥ 1 and 0 be the zero operator
acting from Ep into Ep. Then B is a nilpotent operator and the homogeneous equation

B
du

dt
= u

has only trivial solution. Moreover, if the function f(t) is differentiable p times, then the inhomogeneous
equation (17) has a unique classical solution, which can be constructed iteratively :

un(t) = −f(t) +B
d

dt
un−1(t)

for u0(t) = −f(t), n = 1, 2, . . . , p.

Thus, under the conditions of Theorem 3, the iteration up(t) is a unique classical solution of the
inhomogeneous equation (17).

To illustrate Theorems 2 and 3, we consider two simple examples in the space E = R
3.

Example 5. Let

B =

⎡

⎣
0 2 2
0 1 1
0 0 0

⎤

⎦ ,
f(t) =

(
f1(t), f2(t), f3(t)

)T
,

u(t) =
(
u1(t), u2(t), u3(t)

)T

in Eq. (17). Obviously, B = A1A2, where A1 = [2, 1, 0]T and A2 = (a, ·) (scalar product), a =
[0, 1, 1]T . Therefore, B1 = A2A1 = 1, and the matrix B generates a regular skeletal chain of length
p = 1. Using Theorem 2, introduce the following system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dv

dt
= v + f2(t) + f3(t),

v(0) = 0,

u(t) = −f(t) +A1
dv

dt
,

where v = A2u = u2(t) + u3(t). The initial condition u2(0) + u3(0) = 0 follows from the condition
v(0) = 0. Let fi(t) be continuous functions. Then

v(t) =

t∫

0

et−s
(
f2(s)− f3(s)

)
ds

and the system (17) with the matrix B and the initial condition u2(0) + u3(0) = 0 has a unique
classical solution

u(t) = −f(t) +
(
2v(t) + 2f2(t) + 2f3(t), v(t) + f2(t) + f3(t), 0

)T
.
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Example 6. As in Example 5, let B = A1A2 but

B =

⎡

⎣
0 2 −2
0 1 −1
0 1 −1

⎤

⎦ , A1 =

⎡

⎣
2
1
1

⎤

⎦ , a =

⎡

⎣
0
1

−1

⎤

⎦ ,

A2 = (a, ·), and B be a nilpotent matrix. Then B1 = A2A1 = 0. Thus, in Example 6, {B1} is a
singular skeletal chain of length p = 1 corresponding to the nilpotent matrix B. Therefore, due to
Theorem 3, we can construct a unique solution of the system (17) with the matrix B by the iterations

un(t) = −f(t) +B
d

dt
un−1(t), n = 1, 2, . . . p, u0(t) = −f(t).

Since p = 1, the unique solution of the inhomogeneous system (17) has the form

u(t) = −f(t) +
(
2
(
f2(t)− f3(t)

)′
,
(
f2(t)− f3(t)

)′
,
(
f2(t)− f3(t)

)′)T
.

If f(t) is a differentiable vector-valued function, then we obtain a classical solution. If fi(t), i = 2, 3,
are piecewise, absolutely continuous functions with discontinuity points of first kind and piecewise
continuous derivatives, then we obtain a solution on the space of distributions K ′. Thus, the method
proposed allows also constructing generated solutions of singular ordinary differential equations.

REFERENCES

1. A. I. Dreglea and N. A. Sidorov, “Integral equations in identification of external force and heat
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