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FIXED-POINT METHODS IN OPTIMIZATION PROBLEMS
FOR CONTROL SYSTEMS

A. S. Buldaev UDC 517.977

Abstract. In this paper, we consider a new approach to optimization of nonlinear control systems
based on the representation of optimality conditions and improvement of the control in the form of
special fixed-point problems for control operators. We propose algorithms for approximate solution of
optimal control problems based on iterative methods for finding fixed points. The effectiveness of the
optimization methods proposed is illustrated by model and test problems.
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The methods proposed generalize nonlocal methods for improving and optimizing controls originally
developed in the classes of dynamical systems that are linear (see [6]) or polynomial (see [1]) with
respect to the state.

1. Fixed-point problems. We illustrate the fixed point approach considered below within the
framework of the following class of optimal control problems:

Φ(σ) = ϕ(x(t1), ω) +

∫

T

F (x(t), u(t), ω, t)dt → inf
σ∈Ω

, (1)

ẋ(t) = f
(
x(t), u(t), ω, t

)
, x(t0) = a, u(t) ∈ U,ω ∈ W, a ∈ A, t ∈ T = [t0, t1], (2)

where x(t) = (x1(t), . . . , xn(t)) is the state vector, u(t) = (u1(t), . . . , um(t)) is the vector of control
functions, and ω = (ω1, . . . , ωl) and a = (a1, . . . , an) are the vectors of control parameters. We assume
that the following conditions are fulfilled. The sets U ⊆ R

m, W ⊆ R
l, and A ⊆ R

n are closed and
convex. The interval T is fixed. The set V of admissible control functions consists of U -valued functions
that are piecewise continuous on T . Let σ = (u, ω, a) be an admissible control with values in the set
Ω = V × W × A. The function ϕ(x, ω) is continuously differentiable on R

n × W and the functions
F (x, u, ω, t) and f(x, u, ω, t) and their partial derivatives with respect to x, u, and ω are continuous
on the set R

n × U × W × T . The function f(x, u, ω, t) satisfies the Lipschitz condition with respect
to x in R

n × U ×W × T with a constant L > 0:∥∥f(x, u, ω, t)− f(y, u, ω, t)
∥∥ ≤ L‖x− y‖.

These conditions guarantee the existence and uniqueness of a solution x(t, σ), t ∈ T , of the system (2)
for any admissible control σ ∈ Ω.

The Pontryagin function with the adjoint variable ψ ∈ R
n and the standard adjoint system have

the form

H(ψ, x, u, ω, t) =
〈
ψ, f(x, u, ω, t)

〉 − F (x, u, ω, t),

ψ̇(t) = −Hx

(
ψ(t), x(t), u(t), ω, t

)
, t ∈ T, ψ(t1) = −ϕx(x(t1), ω). (3)

For an admissible control σ ∈ Ω, we denote by ψ(t, σ), t ∈ T , a solution of the standard adjoint
system (3) for x(t) = x(t, σ) and the arguments u and ω corresponding to the components of the
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control σ. We denote the partial increment of an arbitrary vector-valued function g(y1, . . . , yl) with
respect to the variables ys1 , ys2 as follows:

Δys1+Δys1 ,ys2+Δys2
g(y1, . . . , yl) = g

(
y1, . . . , ys1 +Δys1, . . . , ys2 +Δys2 , . . . , yl

)
− g(y1, . . . , yl).

In addition, introduce the notation

Δx(t) = x(t, σ)− x(t, σI), Δu(t) = u(t)− uI(t), Δω = ω − ωI, Δa = a− aI.

Let PY be the projector onto the set Y ⊂ R
k in the Euclidean norm:

PY (z) = argmin
y∈Y

(‖y − z‖), z ∈ R
k.

In [2], necessary optimality conditions for the problem (1), (2) were obtained in the form of the
maximum principle:

uI(t) = argmax
ũ∈U

H
(
ψ(t, σI), x(t, σI), ũ, ωI, t

)
, t ∈ T, (4)

ωI = argmax
ω̃∈W

〈
−ϕω

(
x(t1, σ

I), ωI
)
+

∫

T

Hω

(
ψ(t, σI), x(t, σI), uI(t), ωI, t

)
dt, ω̃

〉
, (5)

aI = argmax
ã∈A

〈
ψ(t0, σ

I), ã
〉
. (6)

The conditions (4)–(6) imply the weakened necessary conditions in the form of the differential
maximum principle:

uI(t) = argmax
ũ∈U

〈
Hu

(
ψ(t, σI), x(t, σI), uI(t), ωI, t

)
, ũ

〉
, t ∈ T,

ωI = argmax
ω̃∈W

〈
−ϕω

(
x(t1, σ

I), ωI
)
+

∫

T

Hω

(
ψ(t, σI), x(t, σI), uI(t), ωI, t

)
dt, ω̃

〉
,

aI = argmax
ã∈A

〈
ψ(t0, σ

I), ã
〉
,

which can be represented in the projection form with a parameter α > 0:

uI(t) = PU

(
uI(t) + αHu

(
ψ(t, σI), x(t, σI), uI(t), ωI, t

))
, t ∈ T, (7)

ωI = PW

(
ωI + α

(
− ϕω

(
x(t1, σ

I), ωI
)
+

∫

T

Hω

(
ψ(t, σI), x(t, σI), uI(t), ωI, t

)
dt
))

, (8)

aI = PA

(
aI + αψ(t0, σ

I)
)
. (9)

We consider the following general statement of the problem of improving a control: for a given
control σI ∈ Ω, find a control σ ∈ Ω satisfying the condition

ΔσΦ(σ
I) = Φ(σ)− Φ(σI) ≤ 0.

Consider the modified differential algebraic adjoint system

ṗ(t) = −Hx

(
p(t), x(t), u(t), ω, t

) − r(t), (10)〈
Hx

(
p(t), x(t), u(t), ω, t

)
+ r(t), y(t)− x(t)

〉
= Δy(t)H

(
p(t), x(t), u(t), ω, t

)
(11)

with the boundary condition

p(t1) = −ϕx

(
x(t1), ω

)− q, (12)〈
ϕx

(
x(t1), ω

)
+ q, y(t1)− x(t1)

〉
= Δy(t1)ϕ(x(t1), ω); (13)
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by definition, we set here r(t) = 0 and q = 0 in the case where the functions ϕ, F , and f are linear with
respect to x (the state-linear problem (1)), (2)) and also in the case where y(t) = x(t) for corresponding
t ∈ T .

In the state-linear problem (1), (2), the modified adjoint system (10)–(13) coincides with the stan-
dard adjoint system (3) by definition.

In state-nonlinear problems (1), (2), the algebraic equations (11) and (13) can be solved with respect
to r(t) and q (perhaps, not uniquely). Thus, the differential algebraic adjoint system (10)–(13) can
be reduced (perhaps, not uniquely) to the differential adjoint system in which r(t) and q are defined
uniquely.

For admissible controls σ ∈ Ω and σI ∈ Ω, we denote by p(t, σI, σ), t ∈ T , a solution of the modified
adjoint system (10)–(13) for x(t) = x(t, σI), y(t) = x(t, σ), u(t) = uI(t), and ω = ωI. From the
definition, we obtain the following obvious equality:

p(t, σ, σ) = ψ(t, σ), t ∈ T.

It was proved in [3] that to solve the problem of improving a given control σI ∈ Ω, it suffices to
solve the following system with respect to σ = (u, ω, a) for α > 0:

u(t) = PU

(
uI(t) + α

(
Hu

(
p
(
t, σI, σ

)
, x(t, σ), uI(t), ωI, t

)
+ su(t)

))
, t ∈ T, (14)

Δu(t)H
(
p
(
t, σI, σ

)
, x(t, σ), uI(t), ωI, t

)

=
〈
Hu

(
p
(
t, σI, σ

)
, x(t, σ), uI(t), ωI, t

)
+ su(t), u(t)− uI(t)

〉
, (15)

ω = PW (ωI + α(−ϕω(x(t1, σ), ω
I) +

∫

T

Hω(p(t, σ
I, σ), x(t, σ), u(t), ωI , t)dt+ sω)), (16)

Δω

⎧⎨
⎩−ϕ

(
x(t1, σ), ω

I
)
+

∫

T

H
(
p(t, σI, σ), x(t, σ), u(t), ωI , t

)
dt

⎫⎬
⎭

=

〈
−ϕω

(
x(t1, σ), ω

I
)
+

∫

T

Hω

(
p
(
t, σI, σ

)
, x(t, σ), u(t), ωI , t

)
dt+ sω, ω − ωI

〉
, (17)

a = PA

(
aI + αp(t0, σI, σ)

)
. (18)

In the case where the functions F and f are linear with respect to u (the problem (1), (2) is said to
be linear in the control function u) and in the case where u(t) = uI(t) for corresponding t ∈ T , we
set su(t) = 0 in Eq. (15) by definition. Similarly, we set sω = 0 in Eq. (17) by definition in the case
where the functions F and f are linear with respect to ω (the problem (1), (2) is said to be linear in
the parameter ω) and in the case where ω = ωI.

In the problem (1), (2) that is nonlinear with respect to the control function u and the parameter ω,
Eqs. (15) and (17) can be solved with respect to su(t) and sω (perhaps, not uniquely). Thus, the system
(14)–(18) can always be reduced (perhaps, not uniquely) to a system with the functions su(t) and sω

defined uniquely.
Let the system of conditions (14)–(18) have a solution σII = (uII, ωII, aII) (perhaps, not unique) and

let the control uII be piecewise continuous. Then the following estimate for the improved functional
holds:

ΔσIIΦ(σI) ≤ − 1

α

∫

T

∥∥uII(t)− uI(t)
∥∥2dt− 1

α

∥∥ωII − ωI
∥∥2 − 1

α

∥∥aII − aI
∥∥2.
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The structure of the conditions for optimality and improvement of control constructed above and the
notation system for solutions of the phase and adjoint systems in the form of an explicit dependence
on control allows us to interpret the systems (4)–(6), (7)–(9), and (14)–(18) as fixed-point problems
for special control operators. This allows us to apply the theory developed and fixed-point methods
(FPM) to the effective search for extremal and improving controls.

2. Iteration algorithms. In the class of problems (1), (2), the methods proposed can be illustrated
by the following two optimization algorithms.

1. For numerical solution of the fixed-point problem (14)–(18) on improving a given control σI, we
apply the following iteration process with k ≥ 0:

uk+1(t) = PU

(
uI(t) + α

(
Hu

(
p(t, σI, σk), x(t, σk), uI(t), ωI, t

)
+ su(t)

))
, t ∈ T,

Δuk(t)H
(
p
(
t, σI, σk

)
, x(t, σk), uI(t), ωI, t

)

=
〈
Hu

(
p
(
t, σI, σk

)
, x(t, σk), uI(t), ωI, t

)
+ su(t), uk(t)− uI(t)

〉
,

ωk+1 = PW

(
ωI + α

(
− ϕω

(
x(t1, σ

k), ωI
)
+

∫

T

Hω

(
p
(
t, σI, σk

)
, x(t, σk), uk(t), ωI, t

)
dt+ sω

))
,

Δωk

{
− ϕ

(
x(t1, σ

k), ωI
)
+

∫

T

H
(
p
(
t, σI, σk

)
, x(t, σk), uk(t), ωI, t

)
dt
}

=

〈
−ϕω

(
x(t1, σ

k), ωI
)
+

∫

T

Hω

(
p
(
t, σI, σk

)
, x(t, σk), uk(t), ωI, t

)
dt+ sω, ωk − ωI

〉
,

ak+1 = PA

(
aI + αp(t0, σ

I, σk)
)
.

An initial approximation σ0 ∈ Ω of the iteration process is given for k = 0.
Computations for the fixed-point problem (14)–(18) are performed until the initial control σI im-

proves. Then one must construct a new improvement problem for the control σII and continue com-
putations. One performs iteration until the following condition holds:∣∣Φ(σII)− Φ(σI)

∣∣ ≤ ε
∣∣Φ(σI)

∣∣,
where ε > 0 is the given accuracy.

2. The fixed-point problem (7)–(9) for the differential maximum principle can also be solved by the
following iteration process with the initial control σ0 ∈ Ω for k ≥ 0:

uk+1(t) = PU

(
uk(t) + αHu

(
ψ
(
t, σk

)
, x(t, σk), uk(t), ωk, t

))
, t ∈ T,

ωk+1 = PW

(
ωk + α

(
− ϕω

(
x(t1, σ

k), ωk
)
+

∫

T

Hω

(
ψ(t, σk), x(t, σk), uk(t), ωk, t

)
dt
))

,

ak+1 = PA

(
ak + αψ(t0, σ

k)
)
.

Iterations are performed until the following condition holds:∣∣Φ(σk+1)− Φ(σk)
∣∣ ≤ ε

∣∣Φ(σk)
∣∣,

where ε > 0 is the given accuracy.
To analyze the convergence of these iteration processes to the solutions of the fixed-point problems

for sufficiently small values of the projection parameter α > 0, one can use the well-known contraction
mapping principle (see [1, 2, 5]).
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The fixed-point projection methods constructed above are characterized by the fact that improving
and extremal controls are determined by solutions of the corresponding fixed-point problems for any
value of the projection parameter α > 0; in particular, sufficiently small values of α > 0 ensure the
convergence of the iteration processes to solutions of fixed-point problems.

The effectiveness of the algorithms proposed is demonstrated and analyzed by model and test
simulations.

3. Examples. Many optimal control problems with restrictions, including problems with nonfixed
time can be reduced to problems of the form (1), (2). We demonstrate the fixed-point approach by
two well-known examples.

Example 1. In [4], the time-optimal problem (Zermelo’s problem) was reduced to the following
optimal-control problem with nonfixed time by the penalty method:⎧⎪⎨

⎪⎩
ẋ1(t) = cos x3(t), x1(0) = 0,

ẋ2(t) = sinx3(t), x2(0) = 0,

ẋ3(t) = u(t), x3(0) = 0,

t ∈ [0, t1],
∣∣u(t)∣∣ ≤ 0.5,

G(u, t1) = t1 + 1000
((

x1(t1)− 4
)2

+
(
x2(t1)− 3

)2) → min .

Using the substitution of time

t(τ) = t0 +
(
t1 − t0

)
τ = ωτ, τ ∈ [0, 1], ω = t1 ≥ 0,

v(τ) = u
(
t(τ)

)
, y(τ) = x

(
t(τ)

)
, σ = (v,w),

one can further reduce this problem to the following problem with fixed time:⎧⎪⎨
⎪⎩
ẏ1(τ) = ω cos y3(τ), y1(0) = 0,

ẏ2(τ) = ω sin y3(τ), y2(0) = 0,

ẏ3(τ) = ωv(τ), y3(0) = 0,

Φ(σ) = ω + 1000
((

y1(1) − 4
)2

+
(
y2(1)− 3

)2) → min,

T = [0, 1], U =
{
u : |u| ≤ 0.5

}
, W =

{
ω : ω ≥ 0

}
.

The Pontryagin function with derivatives and the standard adjoint system for this problem are as
follows:

H
(
ψ, y, v, ω, τ

)
= ω

(
ψ1 cos y3 + ψ2 sin y3 + ψ3v

)
,⎧⎪⎪⎨

⎪⎪⎩

ψ̇1(τ) = 0, ψ1(1) = −2000(y1(1) − 4),

ψ̇2(τ) = 0, ψ2(1) = −2000(y2(1) − 3),

ψ̇3(τ) = ωψ1 sin y3(τ)− ωψ2 cos y3(τ), ψ3(1) = 0.

For an admissible control σ = (v, ω) ∈ Ω, we denote by ψ(τ, σ), τ ∈ [0, 1], the solution of the adjoint
system for y(τ) = y(τ, σ) and the components of v and ω corresponding to σ.

The problem obtained is a problem with fixed time; its linearity with respect tov and ω substantially
simplifies the structure of the fixed-point problem. In particular, due to the formulas (7)–(9), the
fixed-point problem for the differential maximum principle in the projection form with respect to the
extremal control σ = (v, ω) ∈ Ω is as follows:

v(τ) = PU

(
v(τ) + αωψ3(τ, σ)

)
, τ ∈ [0, 1],
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Table 1.

Method Φ∗ N

1 5.85 100010

2 5.26 100125

3 5.13 100002

4 5.18 100019

5 5.26 100036

6 6.41 100008

7 5.33 100015

8 5.11 100012

FPM 5.117 70619

Table 2.

α v0 ω0 Φ∗ N

10−5 0.5 5 5.117 70619

> 10−5 0.5 5 does not converge —

10−6 0.5 5 5.117 > 200000

10−5 0 5 5.117 103999

> 10−5 0 5 does not converge —

10−6 0 5 5.117 > 200000

10−5 −0.5 5 5.117 141853

> 10−5 −0.5 5 does not converge —

10−6 −0.5 5 7.00 200001

10−5 0.5 10 5.117 > 200000

> 10−5 0.5 10 does not converge —

10−6 0.5 10 5.117 > 200000

10−5 0 10 5.117 > 200000

> 10−5 0 10 does not converge —

10−6 0 10 7.00 7715

10−5 −0.5 10 does not converge —

> 10−5 −0.5 10 does not converge —

10−5 0.5 1 5.117 > 200000

> 10−5 0.5 1 does not converge —

10−6 0.5 1 5.117 > 200000

10−5 0 1 does not converge

> 10−5 0 1 does not converge —

10−6 0 1 5.117 > 200000

10−5 −0.5 1 does not converge —

>10−5 −0.5 1 does not converge —

ω = PW

(
ω + α

(
− 1 +

1∫

0

(
ψ1(τ, σ) cos y3(τ, σ)

+ ψ2(τ, σ) sin y3(τ, σ) + ψ3(τ, σ)v(τ)
)
dτ

))
, α > 0.

To solve this fixed-point problem, consider the following explicit iteration process for k ≥ 0 with a
given initial approximation σ0 = (v0, ω0) ∈ Ω:

vk+1(τ) = PU

(
vk(τ) + αωψ3

(
τ, σk

))
, τ ∈ [0, 1],

ωk+1 = PW

(
ωk + α

(
− 1 +

1∫

0

(
ψ1

(
τ, σk

)
cos y3

(
τ, σk

)
+ ψ2

(
τ, σk

)
sin y3

(
τ, σk

)
+ ψ3

(
τ, σk

)
vk(τ)

)
dτ

))
, α > 0.
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Fig. 1. Computed optimal
trajectory x(t) .

Fig. 2. Computed optimal control u(t).

The numerical solution of the phase and adjoint Cauchy problems was performed by the Runge–
Kutta–Werner method of the fifth or sixth order using the IMSL library of Fortran PowerStation 4.0
language. The values of the control, phase, and adjoint variables were stored at the nodes of a fixed
uniform grid Th with a sampling step h = 10−3. On the intervals between neighboring grid nodes
Th, the value of the control function was taken constant and equal to the value at the left node. The
computations were performed until the following condition was fulfilled:∣∣∣Φ(σk+1)− Φ(σk

)∣∣∣ ≤
∣∣∣Φ(σk)

∣∣∣ · ε,
where ε > 0 is the given accuracy. As ε > 0, the value of “computer epsilon” (see [7]) was taken; for
double precision computations, it is equal to 10−16.

Table 1 shows the comparative results of computing the Zermelo problem using the proposed fixed-
point method with the methods from [4] denoted by the numbers from 1 to 8. The table shows the
computed values of the functional Φ∗ and the number N of phase and adjoint Cauchy problems.

Table 2 shows the results of simulation by the fixed-point algorithm for various values of the pro-
jection parameter α > 0 and the admissible initial approximation σ0 = (v0, ω0) ∈ Ω.

Computations show that for α > 10−5 the algorithm does not converge. For α < 10−5, the con-
vergence of the algorithm slows down significantly and the number of the Cauchy problems increases.
The computational efficiency of the algorithm estimated by the number of the Cauchy problems sig-
nificantly depends on the choice of the initial approximation.

Figures 1 and 2 show the computed optimal trajectories of the phase variables and the computed
optimal control strategy.

The projection fixed-points method for simulation of the model Zermelo problem is characterized by
relatively high computational efficiency, a fairly wide range of convergence of the iteration algorithm
in the initial approximation, and ease of adjustment of the projection parameter, which determines
the rate of convergence of the iteration process.

Example 2. Consider the time-optimal problem on the orientation of an aircraft, which can be re-
duced to the following problem by the method of penalty functionals (see [4]):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1(t) = x3(t), x1(0) = 10,

ẋ2(t) = x4(t), x2(0) = 0,

ẋ3(t) = −x4(t) + u1(t) sin u2(t), x3(0) = 0,

ẋ4(t) = x3(t) + u1(t) cos u2(t), x4(0) = 0,

t ∈ [0, t1], 0 ≤ u1(t) ≤ 1, −π ≤ u2(t) ≤ π, u = (u1, u2),

G(u, t1) = t1 + 1000
(
x21(t1) + x22(t1) + x23(t1) + x24(t1)

)
→ min .
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Using the substitution of time

t(τ) = t0 + (t1 − t0)τ = ωτ, t0 = 0, τ ∈ [0, 1], ω = t1 ≥ 0,

v(τ) = u
(
t(τ)

)
, y(τ) = x

(
t(τ)

)
, σ =

(
v, ω

)
one can reduce this problem to the following problem with fixed time and mixed control functions and
parameters, which is nonlinear with respect to the control:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ẏ1(τ) = ωy3(τ), y1(0) = 10,

ẏ2(τ) = ωy4(τ), y2(0) = 0,

ẏ3(τ) = −ωy4(τ) + ωv1(τ) sin v2(τ), y3(0) = 0,

ẏ4(τ) = ωy3(τ) + ωv1(τ) cos v2(τ), y4(0) = 0,

Φ(σ) = ω + 1000
(
y21(1) + y22(1) + y23(1) + y24(1)

)
→ min,

T = [0, 1], U =
{
u = (u1, u2) : 0 ≤ u1 ≤ 1, −π ≤ u2 ≤ π

}
, W =

{
ω : ω ≥ 0

}
.

The Pontryagin function for this problem is

H
(
p, y, v, ω, τ

)
= ω

(
(p1 + p4)y3 + (p2 − p3)y4 +

(
p3 sin v2 + p4 cos v2

)
v1

)
.

Due to the linearity of the Pontryagin function with respect to the variable y(τ), according to (10)–
(13), the modified differential algebraic adjoint system takes the following form:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ṗ1(τ) = 0, p1(1) = −2000y1(1) − q1,

ṗ2(τ) = 0, p2(1) = −2000y2(1) − q2,

ṗ3(τ) = −ω
(
p1(τ) + p4(τ)

)
, p3(1) = −2000y3(1) − q3,

ṗ4(τ) = −ω
(
p2(τ)− p3(τ)

)
, p4(1) = −2000y4(1) − q4,

where q =
(
q1, q2, q3, q4

)
is defined by the equation

1000
(
z21(1)− y21(1) + z22(1) − y22(1) + z23(1)− y23(1) + z24(1)− y24(1)

)

=
(
2000y1(1) + q1

)(
z1(1)− y1(1)

)
+

(
2000y2(1) + q2

)(
z2(1)− y2(1)

)
+

(
2000y3(1) + q3

)(
z3(1) − y3(1)

)
+

(
2000y4(1) + q4

)(
z4(1) − y4(1)

)
.

We choose q = (q1, q2, q3, q4) as follows:

1. If z1(1) 
= y1(1), then q2 = 0, q3 = 0, q4 = 0, and

q1 =
1000

(
z21(1)− y21(1) + z22(1)− y22(1) + z23(1)− y23(1) + z24(1)− y24(1)

)

z1(1)− y1(1)

− 2000y2(1)(z2(1)− y2(1))

z1(1)− y1(1)
− 2000y3(1)(z3(1)− y3(1))

z1(1)− y1(1)
− 2000y4(1)(z4(1)− y4(1))

z1(1)− y1(1)

− 2000y1(1);

2. If z1(1) = y1(1), then:
2.1. If z2(1) 
= y2(1), then q1 = 0, q3 = 0, q4 = 0, and

q2 =
1000

(
z21(1)− y21(1) + z22(1) − y22(1) + z23(1)− y23(1) + z24(1) − y24(1)

)

z2(1)− y2(1)

− 2000y3(1)(z3(1)− y3(1))

z2(1)− y2(1)
− 2000y4(1)(z4(1)− y4(1))

z2(1)− y2(1)
− 2000y2(1);

2.2. If z2(1) = y2(1), then:
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2.2.1. If z3(1) 
= y3(1), then q1 = 0, q2 = 0, q4 = 0, and

q3 =
1000

(
z21(1)− y21(1) + z22(1) − y22(1) + z23(1)− y23(1) + z24(1) − y24(1)

)

z3(1)− y3(1)

− 2000y4(1)(z4(1)− y4(1))

z3(1)− y3(1)
− 2000y3(1);

2.2.2. If z3(1) = y3(1), then:
2.2.2.1. If z4(1) 
= y4(1), then q1 = 0, q2 = 0, q3 = 0, and

q4 =
1000

(
z21(1)− y21(1) + z22(1) − y22(1) + z23(1)− y23(1) + z24(1) − y24(1)

)

z4(1)− y4(1)

− 2000y4(1);

2.2.2.2. If z4(1) = y4(1), then q1 = 0, q2 = 0, q3 = 0, and q4 = 0.

For admissible controls σ ∈ Ω and σI ∈ Ω, we denote by p(τ, σI, σ), τ ∈ [0, 1], the solution of the
modified adjoint system for y(τ) = y(τ, σI), z(τ) = y(τ, σ), v(τ) = vI(τ), and ω = ωI.

Due to (14)–(18), the system of conditions for improvement of an admissible control σI ∈ Ω for
α > 0 in the form of a fixed-point problem is a follows:

(
v1(τ), v2(τ)

)
= PU

(
vI1(τ) + α

(
ωI
(
p3
(
τ, σI, σ

)
sin vI2(τ) + p4

(
τ, σI, σ

)
cos vI2(τ)

)
+ s1(τ)

)
,

vI2(τ) + α
(
ωIvI1(τ)

(
p3
(
τ, σI, σ

)
cos vI2(τ)− p4

(
τ, σI, σ

)
sin vI2(τ)

)
+ s2(τ)

))
τ ∈ [0, 1],

ω = PW

(
ωI + α

(
− 1 +

∫

T

((
p1
(
τ, σI, σ

)
+ p4

(
τ, σI, σ

))
y3(τ, σ)

+
(
p2
(
τ, σI, σ

) − p3
(
τ, σI, σ

))
y4(τ, σ)

+ v1(τ)
(
p3
(
τ, σI, σ

)
sin v2(τ) + p4

(
τ, σI, σ

)
cos v2(τ)

))
dτ

))
;

here s(τ) =
(
s1(τ), s2(τ)

)
is defined by the algebraic equation

ωIv1(τ)
(
p3
(
τ, σI, σ

)
sin v2(τ) + p4

(
τ, σI, σ

)
cos v2(τ)

)

− ωIvI1(τ)
(
p3
(
τ, σI, σ

)
sin vI2(τ) + p4

(
τ, σI, σ

)
cos vI2(τ)

)

=
(
ωI
(
p3
(
τ, σI, σ

)
sin vI2(τ) + p4

(
τ, σI, σ

)
cos vI2(τ)

)
+ s1(τ)

)(
v1(τ)− vI1(τ)

)

+
(
ωIvI1(τ)

(
p3
(
τ, σI, σ

)
cos vI2(τ)− p4

(
τ, σI, σ

)
sin vI2(τ)

)
+ s2(τ)

)(
v2(τ)− vI2(τ)

)
.

We use the following method of searching for the value s(τ) = (s1(τ), s2(τ)) from the algebraic
equation:
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1. If v1(τ) 
= vI1(τ), then s2(τ) = 0 and

s1(τ) =
ωIv1(τ)

(
p3
(
τ, σI, σ

)
sin v2(τ) + p4

(
τ, σI, σ

)
cos v2(τ)

)

v1(τ)− vI1(τ)

−
ωIvI1(τ)

(
p3
(
τ, σI, σ

)
sin vI2(τ) + p4

(
τ, σI, σ

)
cos vI2(τ)

)

v1(τ)− vI1(τ)

−
ωIvI1(τ)

(
p3
(
τ, σI, σ

)
cos vI2(τ)− p4

(
τ, σI, σ

)
sin vI2(τ)

)(
v2(τ)− vI2(τ)

)
v1(τ)− vI1(τ)

− ωI
(
p3
(
τ, σI, σ

)
sin vI2(τ) + p4

(
τ, σI, σ

)
cos vI2(τ)

)
;

2. If v1(τ) = vI1(τ), then
2.1. If v2(τ) 
= vI2(τ), then s1(τ) = 0 and

s2(τ) =
ωIv1(τ)

(
p3
(
τ, σI, σ

)
sin v2(τ) + p4

(
τ, σI, σ

)
cos v2(τ)

)

v2(τ)− vI2(τ)

−
ωIvI1(τ)

(
p3
(
τ, σI, σ

)
sin vI2(τ) + p4

(
τ, σI, σ

)
cos vI2(τ)

)

v2(τ)− vI2(τ)

− ωIvI1(τ)
(
p3
(
τ, σI, σ

)
cos vI2(τ)− p4

(
τ, σI, σ

)
sin vI2(τ)

)
;

2.2. If v2(τ) = vI2(τ), then s1(τ) = 0 and s2(τ) = 0.

This fixed-point problem can be used by the explicit iterative algorithm:

(
vk+1
1 (τ), vk+1

2 (τ)
)
= PU

(
vI1(τ) + α

(
ωI
(
p3
(
τ, σI, σk

)
sin vI2(τ) + p4

(
τ, σI, σk

)
cos vI2(τ)) + sk1(τ)

)
,

vI2(τ) + α
(
ωIvI1(τ)

(
p3
(
τ, σI, σk

)
cos vI2(τ)− p4

(
τ, σI, σk

)
sin vI2(τ)

)
+ sk2(τ)

))
, τ ∈ [0, 1],

ωk+1 = PW

(
ωI + α

(
− 1 +

∫

T

((
p1
(
τ, σI, σk

)
+ p4

(
τ, σI, σk

))
y3
(
τ, σk

)

+
(
p2
(
τ, σI, σk

)− p3
(
τ, σI, σk

))
y4
(
τ, σk

)

+ vk1 (τ)
(
p3
(
τ, σI, σk

)
sin vk2 (τ) + p4

(
τ, σI, σk

)
cos vk2 (τ)

))
dτ

))
,

where sk(τ) = (sk1(τ), s
k
2(τ)) is defined by the corresponding algebraic equation

ωIvk1 (τ)
(
p3
(
τ, σI, σk

)
sin vk2 (τ) + p4

(
τ, σI, σk

)
cos vk2 (τ)

)

− ωIvI1(τ)
(
p3
(
τ, σI, σk

)
sin vI2(τ) + p4

(
τ, σI, σk

)
cos vI2(τ)

)

=
(
ωI
(
p3
(
τ, σI, σk

)
sin vI2(τ) + p4

(
τ, σI, σk

)
cos vI2(τ)

)
+ sk1(τ)

)(
vk1 (τ)− vI1(τ)

)

+
(
ωIvI1(τ)

(
p3
(
τ, σI, σk

)
cos vI2(τ)− p4

(
τ, σI, σk

)
sin vI2(τ)

)
+ sk2(τ)

)(
vk2 (τ)− vI2(τ)

)
,
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which is similar to the rule for s(τ) indicated above. The projector PU (z) onto the set U =
{
u =

(u1, u2) : 0 ≤ u1 ≤ 1, −π ≤ u2 ≤ π
}
is implemented analytically in the form of a simple conditional

formula.
If in the solution of the fixed-point problem, the condition of the first improvement of the control

σI ∈ Ω is fulfilled,

Φ(σk+1) + ε1 < Φ(σI),

where ε1 ≥ 0 is a given accuracy of the improvement of the control, then one constructs a subsequent
fixed-point problem for improving the control obtained and repeats the iterative algorithm.

If an improvement does not occur, then one repeats the numerical solution of the fixed-point problem
until the following condition was fulfilled:∥∥σk+1 − σk

∥∥
Th

≤ ε2,

where ε2 > 0 is a given accuracy for the fixed-point problem. This completes the process of construction
and computation of consecutive problems for control improvement.

For comparing the results of computing the original problem using the fixed-point approach proposed
with the methods used [4], similar computation conditions were chosen: h = 10−2, ε1 = 10−7, ε2 =
10−10, ∥∥σk+1 − σk

∥∥
Th

= max
{∣∣ωk+1 − ωk

∣∣, ∣∣vk+1(t)− vk(t)
∣∣, t ∈ Th

}
.

In Table 3, we compare results obtained by approaches based on the fixed-point algorithm with
multi-method iterative technologies developed in [4].

in Table 3, we use the notation ΔΦ∗ =
∣∣Φ∗ − 10.285456

∣∣, where Φ∗ is the computed value of the
functional and N is the number of phase and adjoint Cauchy problems.

Table 4 shows the results obtained by the fixed-point method for α = 10−6 and various initial
approximations. At N ≥ 400000, the computation is stopped.

Analysis of the proposed fixed-point algorithm demonstrates patterns similar to the first model
example depending on the convergence of the algorithm on the projection parameter α > 0 and initial
approximations.

Experiments on model time-optimal problems show that the computational and qualitative efficiency
of the proposed fixed-point approach is acceptable for practice in comparison with known methods
(see [4]). The developed nonlocal approach to searching for approximate optimal solutions has a fairly
wide range of convergence in the initial approximation and is characterized by the convenience and
simplicity of experimental adjustment of the scalar projection parameter, which regulates the quality
and rate of convergence of the iterative process considered. Approximate optimal solutions to time-
optimal problems obtained by using the approach proposed can be considered as acceptable initial
approximations for further iterative refinement by other methods.

4. Conclusion. The developed fixed-point algorithms for searching for extremal controls do not
guarantee relaxation with respect to the objective functional, unlike gradient methods, but compensate
for this property by the nonlocality of successive control approximations due to the fixedness of
the parameter; absence of the operation of varying the control in a neighborhood of the current
approximation. The constructed fixed-point algorithms for improving control in the considered class
of optimization problems possess the nonlocality property and the absence of a procedure for varying
the improving control in a sufficiently small neighborhood of the control being improved, characteristic
of standard gradient methods, as well as the possibility of strictly improving nonoptimal extremal
controls. This possibility appears in the case of nonunique solution to the fixed-point problem. Gradient
methods do not have this capability.

In general, optimization of controls based on the calculation of constructed fixed-point problems
by using the iterative methods of successive approximations is reduced to the alternating solution of
Cauchy problems for phase and adjoint variables.
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Table 3.

Method ΔΦ∗ N

1 7.0− 1 100002

2 7.1− 1 103191

3 2.4− 2 100146

4 5.3 + 1 100069

5 6.7− 1 100159

6 6.8 + 2 4978

7 6.6− 1 100003

8 does not converge —

Table 4.

ω0 v01 v02 ΔΦ∗ N

1 1 1 does not converge —

5 1 1 1.4− 1 12181

10 1 1 3.9− 3 11805

11 1 1 7.0− 1 125925

15 1 1 4.7 137377

1 0.5 −1 1.4− 1 12713

5 0.5 −1 1.4− 1 12201

10 0.5 −1 3.9− 3 11583

11 0.5 −1 6.7− 1 206623

15 0.5 −1 4.5 400000

1 0.5 1 does not converge —

5 0.5 1 1.4− 1 12207

10 0.5 1 5.1− 3 11117

11 0.5 1 7.0− 1 177871

15 0.5 1 4.5 400000

1 0.5 0.5 does not converge —

5 0.5 0.5 1.4− 1 12183

10 0.5 0.5 1.1− 2 8907

11 0.5 0.5 6.5− 1 260473

15 0.5 0.5 4.5 400000

1 0.5 −0.5 1.4− 1 12713

5 0.5 −0.5 1.4− 1 12197

10 0.5 −0.5 3.9− 3 11727

11 0.5 −0.5 7.1− 1 87367

15 0.5 −0.5 4.5 400000

The indicated properties of the fixed-point methods proposed are important factors in increasing
the computational and qualitative efficiency of solving optimal control problems; they determine the
promising direction of development of optimization methods for nonlinear dynamic systems.
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