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DYNAMICS OF FLEXIBLE ELEMENTS OF A DRIVE UNDER THE ACTION OF  
IMPULSIVE PERTURBATIONS  

A. I. Andrukhiv,1,2  N. M. Huzyk,3  B. I. Sokil,3  and  M. B. Sokil1
 UDC 621.8 

For flexible elements of drives characterized by a constant speed of longitudinal motion, we propose a 
method for the analytic investigation of vibrations caused by the action of a periodic system of impul-
sive perturbations.  On the basis of this method, we obtain analytic relations for the description of the 
determining parameters of nonlinear vibrations in the analyzed class of systems for both nonresonance 
and resonance cases.  It is shown that, in the resonance case, the value of the amplitude of transition 
through the resonance strongly depends on the speed of longitudinal motion of the flexible element.  

Keywords:  impulsive perturbation, flexible element, resonance phenomenon, amplitude, frequency. 

Introduction  

The process of trouble-free operation of drives with flexible elements (belt transmissions, rope pulls, etc.) is 
often affected by various disturbances.  They may have either periodic or random nature, act at specific points 
and at certain moments of time and may be caused by the interaction, e.g., with external objects from which or 
to which the motion is transferred.  The action of some of these objects upon flexible drives can be described by 
using periodic or random functions, whereas the action of the other objected can be simulated by the Dirac delta-
function  δ  [5].  These disturbances may affect the process of normal trouble-free operation of the considered 
elements of drives (and, hence, of the systems containing these elements as components) even if their magnitude 
is low.  A detailed analysis of the dynamic processes in these flexible elements can be carried out by using ade-
quate mathematical models characterized by the presence of the longitudinal component of the velocity of mo-
tion, which gives a qualitatively new character to the mathematical model, and the discrete character of disturb-
ances.  This means that it is necessary to generalize the existing methods used for the investigation of the sys-
tems characterized by a constant speed of motion [4, 6, 8–13] in order to take into account the discrete action of 
the disturbances of motion.  

This problem is partly solved in the present paper.  Its solution is based on the principle of single-frequency 
oscillations in nonlinear systems with many degrees of freedom and distributed parameters [2, 3]; on the gener-
alization of the main ideas of the asymptotic methods of nonlinear mechanics to dynamic systems characterized 
by a constant speed of motion [8], and on the basic statements of the theory of oscillating processes in systems 
with instantaneous disturbances [1, 3, 5].  The outlined procedure enables us to determine basic relations used to 
describe the determining parameters of vibration of the analyzed element of a flexible drive in the presence of 
periodic impulse disturbances in both resonance and nonresonance cases. 
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1.  Statement of the Problem 

The transverse vibration of flexible elements of drive systems characterized by a constant speed  V  of mo-
tion is described by a differential equation [6, 8] 

  utt + 2Vuxt − (α2 −V 2)uxx = ε f (u, ux , ut ), (1) 

where  u(x, t)  is a transverse displacement of the cross section of the flexible element with an Euler coordinate  
x   at any time  t,  an analytic function  f (u, ux , ut )   is an approximation of the entire set of nonlinear forces, and 
a small parameter  ε   reflects a low magnitude of nonlinear forces as compared with the magnitude of the tensile 

force  α2 = T
ρ

⎛
⎝⎜ ,  T   is a tensile force, and  ρ  is the linear mass density of the flexible element⎞⎠⎟ .  In the case 

where a low-magnitude periodic impulsive force with period  τ   is additionally applied to the element of a drive 
at a point with the coordinate  x0 ,  equation (1) can be transformed as follows:  

  utt + 2Vuxt − (α2 −V 2)uxx   

  =  ε f (u, ux , ut ) + εδ (x − x0 ) δ(t − (i −1)τ)gi (u, ux , ut )
i=1
∑ , (2) 

where  

  εgi(u(x0, (i −1)τ), ux(x0, (i −1)τ), ut (x0, (i −1)τ))  

is the magnitude of the impulsive force acting at the time  iτ,   i = 1, 2,…  and  δ( ⋅ )  is the Dirac delta-function. 
The boundary conditions for equation (2) are classical conditions of the first kind: 

  u(0, t) = u(ℓ, t) = 0 , (3) 

where   ℓ = const   is the length of the element.  The problem is to construct and analyze the solution of equation 
(2) with boundary conditions (3). 

Note that the analyzed boundary-value problem (1), (3) also describes the longitudinal vibration of a mov-

ing homogeneous elastic body if, in equation (1), we set  α2 = E
ρ

,  where  E   is the modulus of elasticity and  ρ  

is the linear mass density of the flexible element. 

2.  Procedure of Investigations  

As already indicated, the maximum value of the right-hand side of equation (2) is small as compared with 
the tensile force in the flexible element and, therefore, in order to construct the solution of the boundary-value 
problem (2), (3), we can use the general concepts of the theory of integration of boundary-value problems that 
describe oscillating processes in systems with distributed parameters.  Prior to adapting these concepts to the 
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analyzed problem, we slightly modify the right-hand side of equation (2); more precisely, its part, which takes 
into account the effect of impulsive disturbances on the flexible element.  It is easy to see that the complete 

normalized system of functions  
 
sin sπx
ℓ{ }  satisfies the conditions  

 
 
sin sπx
ℓ{ }

x=0, x=ℓ
= 0 ,  

which are, in a certain sense, related to the boundary conditions (3).  This enables us to represent the Dirac delta-
function  δ(x − x0 )  in the form of a series: 

 
 
δ(x − x0 ) = 2

ℓ
sin sπx0

ℓ
sin sπx
ℓs=1

∑ .   

As follows from the characteristics of the δ-function, the accuracy of the solution does not change if the 
function  δ(t − (i −1)τ)gi (u, ux , ut )i=1∑   is replaced by the function [7]:  

 δ(t − iτ)gi (u, ux , ut )
i=1
∑ = cos θ δ θ

µ
− 2(i −1)π

µ
⎛
⎝⎜

⎞
⎠⎟
gi (u, ux , ut )

i=1
∑ , (4) 

where   

  θ = µt ,    µ = 2π
τ

,    and     δ(t − (i −1)τ) = cos θδ θ
µ
− 2(i −1)π

µ
⎛
⎝⎜

⎞
⎠⎟

.  

Finally, the differential equation (2) takes the form:  

 utt + 2Vuxt − (α2 −V 2)uxx   

  = ε f (u, ux, ut ) + 
 
ε 2
ℓ
cos θ sin sπx0

ℓ
sin sπx
ℓs=1

∑ δ θ
µ

− 2(i −1)π
µ

⎛
⎝⎜

⎞
⎠⎟
gi (u, ux , ut )

i=1
∑ . (5) 

The second term on the right-hand side of equation (5) can be regarded as a periodic disturbance with cer-
tain frequency  Ω.  This serves as a basis for representing the first approximation to the single-frequency solu-
tion of equation (5) in the form  

 u(x, t) = au0(x,ϕ) + εU1(a, x,ϕ,θ), (6) 

where  au0(x,ϕ) = a(cos (κx −ϕ)− cos (χx +ϕ))  is the solution of the unperturbed  (ε = 0)  boundary-value 

problem [2, 3] in which  ϕ = ωt +ϕ0 ,  
 
κ = kπ

αℓ
(α +V ),  

 
χ = kπ

αℓ
(α −V ),  and  

  
ω = kπ

αℓ
(α2 −V 2),  while  a   and  
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ϕ0 are, respectively, the amplitude and initial phase of the unperturbed motion.  Since the function  U1(a, x,ϕ,θ)  
in equation (6) must take into account the influence of nonlinear forces and impulsive periodic disturbances, we 
conclude that  

  first, it must satisfy the boundary conditions, which follow from conditions (3): 

  U1(a, x,ϕ,θ) x=0 = U1(a, x,ϕ,θ) x=ℓ = 0 , (7) 

  second, it should not contain the terms proportional to the first modes of the oscillation phase  ϕ  in its 
expansions: 

 U1(a, x,ϕ,θ)
cosϕ

sinϕ
⎧
⎨
⎩

⎫
⎬
⎭0

2π

∫ dϕ = 0. (8) 

We consider the first approximation to the asymptotic solution in the form close to the first mode of vibra-
tions of the unperturbed motion, i.e., in the dependences for the wave numbers  κ  and  χ  and also for the fre-
quency of oscillations  ω ,  we assume that the parameter  k = 1.  In addition, if, for the unperturbed motion, the 
amplitude and frequency of oscillations are constant, then, for the disturbed motion they are variable.  The regu-
larities of their variations are determined not only by nonlinear forces and impulsive actions, but also by the re-
lationships between the frequency (period) of natural oscillations and the frequency (period) of impulsive dis-
turbances.  If the indicated quantities do not satisfy the relation  mω ≠ nΩ  (this case is called nonresonance), 
then the regularities of variation of the parameters  a   and  ϕ  for the first approximation are determined by the 
following ordinary differential equations:  

 da
dt

= εA1(a)      and      dϕ
dt

= ω + εB1(a). (9) 

We seek the unknown functions  A1(a)  and  B1(a)  on the right-hand sides of relations (9) in order to guar-
antee that the representation of the solution in the form (6) satisfies the original equation (5) with the required 
accuracy in the case where the functions  a  and  ϕ  in representation (6) are replaced by the functions of time 
expressed by using dependence (9).  Differentiating the asymptotic representation with respect to the independ-
ent variables, substituting the obtained expressions in equation (5), and then equating the coefficients of  ε   on 
the right- and left-hand sides of the obtained dependence, we can write  

 L(U1) = f1(a, x, ϕ)  

  + 
 

2
ℓ
cos θ sin sπx0

ℓ
sin sπx
ℓs=1

∑ δ θ
µ

− 2(i −1)π
µ

⎛
⎝⎜

⎞
⎠⎟
g1(a, x,ϕ)

i=1
∑   

  + ρ(x,ϕ)A1(a) + ah(x,ϕ)B1(a), (10) 

where 
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 L(U1) = ω2 ∂2U1
∂ϕ2 + µ2 ∂2U1

∂θ2 + 2µω ∂2U1
∂ϕ∂θ

  

  + 
 
2V ∂2U1

∂ϕ∂x
ω + ∂2U1

∂θ∂x
µ

⎛
⎝⎜

⎞
⎠⎟
− (α2 −V 2)

∂2U1
∂x2

,  

 ρ(x,ϕ) = 2 (ω + κV ) sin (κx +ϕ)+ (ω − χV ) sin (χx −ϕ)[ ],   

  h(x,ϕ) = 2[(ω + κV ) cos (κx +ϕ) − (ω − χV ) cos (χx −ϕ)],  

the functions  f1(a, x, ϕ)   and  g1(a, x,ϕ)   correspond to the values of the functions  f (u, ux, ut )   and  
g(u, ux , ut )   under the condition that  u(x, t)   and all its derivatives are determined according to the principal 
part in representation (6).  

Conditions (8) imposed on the function  U1(a, x,ϕ,θ)  enable us to deduce from equation (10) the following 
relations specifying the regularities of variations of the amplitude and frequency of the disturbed motion in the 
following form:  

 
  
A1(a) = ε

πℓ[(ω + κV )2 + (ω − χV )2 ]
f1(a, x,ϕ)

⎧
⎨
⎪

⎩⎪0

2π

∫
0

ℓ

∫   

  + 
 

1
πℓµ

cos θ sin sπx0
ℓ

sin sπx
ℓ

δ θ
µ
− 2(i −1)π

µ
⎛
⎝⎜

⎞
⎠⎟
gi (a, x,ϕ) dθ

s=1
∑

0

2π

∫
⎫
⎬
⎪

⎭⎪i=1
∑   

  × ρ(x) cosϕ + h (x) sinϕ[ ]dϕ dx ,  

   (11) 

 
 

B1(a) = ε
aπℓ (ω + κV )2 + (ω − χV )2⎡⎣ ⎤⎦

f1(a, x,ϕ)
⎧
⎨
⎪

⎩⎪0

2π

∫
0

ℓ

∫   

  + 
 

1
πℓµ

cos θ sin sπx0
ℓ

sin sπx
ℓ

δ θ
µ
− 2(i −1)π

µ
⎛
⎝⎜

⎞
⎠⎟
gi (a, x,ϕ) dθ

s=1
∑

0

2π

∫
⎫
⎬
⎪

⎭⎪i=1
∑   

  × ρ(x) sinϕ − h (x) cosϕ[ ]dϕ dx , 

where 

 ρ(x) = (ω + κV ) sin κx + (ω − χV ) sin χx ,   

 h (x) = (ω + κV ) cosκx − (ω − χV ) cos χx .  
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As a special case of the facts presented above, we can mention the results concerning the action of a period-
ic (with constant magnitude) force  Fi ,  i.e.,  gi (u, ux , ut ) ≡ Fi ,  upon a flexible element at a fixed point.  Thus, 
we get 

 
 

A1(a) = ε
πℓ (ω + κV )2 + (ω − χV )2⎡⎣ ⎤⎦

f1(a, x,ϕ)
0

2π

∫
0

ℓ

∫   

  × ρ(x) cosϕ + h (x) sinϕ[ ]dϕ dx ,  

   (12) 

  

B1(a) = ε
aπℓ (ω + κV )2 + (ω − χV )2⎡⎣ ⎤⎦

f1(a, x,ϕ)
0

2π

∫
0

ℓ

∫
  

  × ρ(x) sinϕ − h (x) cosϕ[ ]dϕ dx . 

It follows from relations (12) that, in the nonresonance case, periodic impulsive disturbances affect, in the 
first approximation, neither the amplitude of the process, nor its frequency.  The influence of periodic disturb-
ances manifests itself in partial changes in the form of the dynamic process, i.e., in the nonresonance case, peri-
odic disturbances affect the form of the function  U1(a, x,ϕ,θ).  In order to describe this effect, it is necessary to 
expand the right-hand side of equation (10) and the unknown function  U1,  in Fourier series and equate the coef-
ficients of the same harmonics.  

As already indicated, the resonance case where  mω ≈ nΩ  is much more difficult for investigation.  It is 
known [2, 3] that, in the nonlinear systems, the dynamic process strongly depends on the phase difference be-
tween the natural and forced oscillations, i.e., on the parameter   

 γ = ϕ − m
n
θ .   

Therefore, unlike the nonresonance case considered above, we assume that the regularities of variations of the 
basic parameters  a   and  γ   specifying the dynamic process in representation (6) have a somewhat more com-
plicated form than in the nonresonance case:  

 
 

da
dt

= εA1(a, γ ) + …       and      
 

dγ
dt

= ω − m
n
Ω + εB1(a, γ ) + … . (13) 

Thus, our aim is to find the functions  A1(a, γ )  and  B1(a, γ )  satisfying, together with the asymptotic repre-
sentation (6), the basic equation (2) with the required accuracy provided that, in this equation, we replace  a   and  
ϕ  by the functions of time specified by dependence (13).  By analogy with the nonresonance case, the differen-
tial equation of the first approximation, which relates the required quantities, takes the following form: 

 
 
L(U1) = f1(a, x,ϕ) + 2

ℓ
cos θ  
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  × 
 

sin sπx0
ℓ

sin sπx
ℓs=1

∑ δ θ
Ω

− 2(i −1)π
Ω

⎛
⎝

⎞
⎠ g1 a, x,ϕ( )

i=1
∑   

  + ρ(x,ϕ)A1(a, γ ) + ah(x,ϕ)B1(a, γ )   

  + 
 
℘(x,ϕ) ∂A1(a, γ )

∂γ
+ a!(x,ϕ) ∂B1(a, γ )

∂γ
⎡
⎣⎢

⎤
⎦⎥

ω − s
n
µ⎛

⎝
⎞
⎠ , (14) 

where  

  ℘(x,ϕ) = −[cos (κx +ϕ)− cos (χx −ϕ)],  

  !(x,ϕ) = sin (κx +ϕ) + sin (χx −ϕ) .  

Conditions (8) imposed on the function  U1 a, x,ϕ,θ( )  enable us to obtain the following system of equations 
for the unknown functions: 

 ρ(x)A1(a, γ ) + ah (x)B1(a, γ )  

   + 
 
℘ x( ) ∂A1(a, γ )

∂γ
+ a! x( ) ∂B1(a, γ )

∂γ
⎡
⎣⎢

⎤
⎦⎥

ω − s
n
µ⎛

⎝
⎞
⎠   

  =  
 

ε
2π2 exp (inqγ )

q
∑ f1(a, x,ϕ) +

2
ℓ
cos θ

⎧
⎨
⎩⎪0

2π

∫
0

2π

∫   

   × 
 

sin sπx0
ℓ

sin sπx
ℓs=1

∑ δ θ
µ
− 2(i −1)π

µ
⎛
⎝⎜

⎞
⎠⎟
g1(a, x,ϕ)

i=1
∑ ⎫

⎬
⎭⎪

  

   × exp −inq ϕ − s
n
θ⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ cosϕ dϕ dθ ,  

   – h (x)A1(a, γ ) + aρ(x)B1(a, γ )  

   + 
 
!(x) ∂A1(a, γ )

∂γ
− a℘(x) ∂B1(a, γ )

∂γ
⎡
⎣⎢

⎤
⎦⎥

ω − s
n
µ⎛

⎝
⎞
⎠   

  =  
 

ε
2π2 exp (inqγ )

q
∑ f1(a, x,ϕ) +

2
ℓ
cos θ{

0

2π

∫
0

2π

∫   
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   × 
 

sin sπx0
ℓ

sin sπx
ℓs=1

∑ δ θ
µ
− 2(i −1)π

µ
⎛
⎝⎜

⎞
⎠⎟
g1(a, x,ϕ)

i=1
∑ ⎫

⎬
⎭⎪

  

   × exp −inq ϕ − s
n
θ⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ cosϕ dϕ dθ. (15) 

As follows from equations (15), in the general case of periodic disturbances, it is impossible to find, in the 

closed form, the relations specifying  da
dt

  and  dϕ
dt

  in the first approximation.  However, the right-hand sides of 

the indicated relations are periodic functions of the phase difference  γ   and amplitude  a ,  i.e., they are sums of 
the form  

 
!fq (a)q∑ exp (inqγ ).  Therefore, the solution for the functions  A1(a, γ )  and  B1(a, γ )  should also be 

sought in the form of similar sums. All calculations performed to determine the functions  A1(a, γ )  and   
B1(a, γ )  in the indicated way are reduced to operations with trigonometric functions.  The obtained dependences 
make it possible to study the dynamic process both directly in the resonance region and on approaching this re-
gion. 

It is known [2, 3] that the dynamic process running in nonlinear systems eventually approaches either a 
steady-state process determined by the equations 

 A1(a, γ ) = 0       and      ω − m
n
µ + εB1(a, γ ) = 0, (16) 

or a periodic process. 
In the first case, the frequency of natural vibrations is in a simple rational relationship with the frequency of 

forced oscillations and, hence, this dynamic process corresponds to synchronous oscillations of the drive ele-
ment.  In the second case, the solution of equations  

 da
dt

= A1(a, γ )      and      dγ
dt

= ω − m
n
µ + εB1(a, γ ) (17) 

eventually approaches the periodic solution and the dynamic process in the flexible drive element is realized 
with its natural frequency of vibrations and in the form of vibrations with a frequency   

 Δω = ω − m
n
µ .   

 This case corresponds to asynchronous oscillations of the system.  Note that, at first sight, the equations 
used to describe the regularities of changes in the amplitude-frequency characteristics of the dynamic process in 
the system with regard for the action of nonlinear and periodic forces in the resonance case are quite cumber-
some.  However, for some specific values of the force, they become much simpler.  We now show this by ana-
lyzing an example of resonance vibration of a flexible element of the drive under the conditions of periodic ac-
tion at a fixed point of an impulsive disturbance whose frequency is close to the frequency of its natural vibra-
tions.  In this case, equation (17) takes the form 
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da
dt

= ε
πℓ (ω + κV )2 + (ω − χV )2⎡⎣ ⎤⎦

  

  × 
 

f1(a, x,ϕ) ρ(x) cosϕ + h (x) sinϕ[ ]dϕ dx
0

2π

∫
0

ℓ

∫
⎧
⎨
⎪

⎩⎪
  

  + 
 

1
πℓµ

Fi cos θ sin sπx0
ℓ

sin sπx
ℓ

δ θ
µ
− 2(i −1)π

µ
⎛
⎝⎜

⎞
⎠⎟s=1

∑⎡
⎣
⎢

⎤

⎦
⎥

0

2π

∫
0

ℓ

∫
i=1
∑   

  × ρ(x) cos (γ + θ)+ h (x) sin (γ + θ)[ ]dθ dx⎫⎬⎪
⎭⎪

,  

   (18) 

 
 

dγ
dt

= ω − µ + ε
πaℓ (ω + κV )2 + (ω − χV )2⎡⎣ ⎤⎦

  

  × 
  

f1(a, x,ϕ)[ρ(x) sinϕ − h (x) cosϕ]dϕ dx
0

2π

∫
0

ℓ

∫
⎧
⎨
⎪

⎩⎪
  

  + 
 

1
πℓµ

Fi cos θ sin sπx0
ℓ

sin sπx
ℓ

δ θ
µ
− 2(i −1)π

µ
⎛
⎝⎜

⎞
⎠⎟s=1

∑⎡
⎣
⎢

⎤

⎦
⎥

0

2π

∫
0

ℓ

∫
i=1
∑   

  × ρ(x) sin (γ + θ)− h (x) cos (γ + θ)[ ]dθ dx⎫⎬⎪
⎭⎪

. 

The properties of the delta-function and the periodicity of impulsive disturbances enable us to represent re-
lation (18) in the form 

 
  

da
dt

= ε
πℓ[(ω + κV )2 + (ω − χV )2 ]

A1(a)+
cos γ
πℓΩ

β1 cos γ +β 2 sin γ⎡
⎣⎢

⎤
⎦⎥
,  

   (19) 

 
  

dγ
dt

= ω − µ + ε
πaℓ[(ω + κV )2 + (ω − χV )2 ]

[B1(a)+β1 sin γ −β2 cos γ ], 

where 

 
 

β1 = 1
πℓµ

Fi sin sπx0
ℓ

ρ(x) sin sπx
ℓ

dx
0

ℓ

∫
s=1
∑

i=1
∑ ,  
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 (a) (b)  

Fig. 1.  Resonance values of the amplitude for various values of the parameters. 

   
 (a) (b)  

Fig. 2. Behavior of the amplitude of longitudinal vibration of the drive element in passing through the main resonance caused by the 
action of the periodic system of impulsive forces acting at the ends of the element. 

 
 

β2 = 1
πℓµ

Fi sin sπx0
ℓ

h (x) sin sπx
ℓ

dx
0

ℓ

∫
s=1
∑

i=1
∑ .  

In Fig. 1, by using dependences (19) for the case   

 f (u, ux , ut ) = −δut + k1(uxx )
3, 

we present the computed resonance values of the amplitude  a   for various values of the tensile force  α2   and 
various values of the speed  V   of motion of the flexible element. 

All calculations are performed for   m = 30  kg/m,  Fi = 200  Н,  E = 2 ⋅1011 H/m2,  and   A = 4 ⋅10−6  m2.   
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In Fig. 2, we display the behavior of the amplitude of longitudinal vibrations of an elastic element caused by 
the action of a periodic system of impulsive forces acting at its ends, in passing through the main resonance for 
different values of the amplitude a0  [m] of entering the resonance and the length of the flexible element   ℓ   [m]. 

CONCLUSIONS 

For flexible drive elements characterized by a constant speed of longitudinal motion, we propose a method 
for the analytic investigation of transverse vibrations caused by the action of a periodic system of impulsive dis-
turbances.  In mechanical systems, the resonance processes prove to be most dangerous because they are respon-
sible for significant dynamic loads acting upon on objects.  Therefore, our main attention in the present work is 
focused on the analysis of the influence of periodic impulsive disturbances. 

We construct the first asymptotic approximation for the corresponding boundary-value problems of per-
turbed motion and obtain analytic relations that describe the determining parameters of nonlinear vibrations in 
the analyzed class of systems for both nonresonance and resonance cases.  As a separate case, we consider the 
oscillations of flexible drive elements under the action of impulsive disturbances with constant magnitude.  It is 
shown that, in the nonresonance case, disturbances of this kind partly affect the shape of vibrations.  As for the 
resonance vibrations, which are of high theoretical and applied importance, we conclude that: 

 – for higher speeds of longitudinal motion of a flexible element of the drive system, the natural frequen-
cy of its vibrations decreases and, at the same time, the period of impulsive disturbance in which the 
resonance occurs increases;  

 – the resonance value of the amplitude first increases with the speed of longitudinal motion but then de-
creases; 

 – as the speeds of motion of flexible elements of the drive systems approaches the critical value, the 
resonance values of the amplitudes strongly depend on the initial value of the amplitude and the mag-
nitude of the harmonic disturbance. 

The results obtained in the present work may serve as a basis for choosing the operating parameters of sys-
tems containing flexible drive elements with an aim either to avoid resonance phenomena in these systems or to 
pass through the resonance with the lowest possible amplitude.  The method described in the present work can 
be applied for the investigation of systems whose mathematical models are similar to the considered models, in 
particular, in the case of heterogeneous boundary conditions. 

The algorithm used for the construction and investigation of the first asymptotic approximation for the ana-
lyzed problem can be extended to the second and subsequent asymptotic approximations.  It is clear that, in this 
case, the calculations become more cumbersome.  At the same time, it might be possible to discover some new 
features or effects. 

On behalf of all authors, the corresponding author states that there is no conflict of interest. 
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