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SOLUTION OF THE PROBLEM OF STRESSED STATE FOR A CLOSED  
ELASTOPLASTIC CYLINDRICAL SHELL CONTAINING A CRACK  
IN THE COMPLEX FORM 

І. S. Kostenko,1  Т. М. Nykolyshyn,1,2  and  М. Yo. Rostun1 UDC 539.375 

To study the stressed state and limit equilibrium of a closed elastoplastic cylindrical shell containing a 
plane longitudinal internal crack of any configuration, we use an analog of the δc -model and represent 

the resolving system of equations of the problem in the complex form.  The obtained system of equa-
tions is reduced to a system of nonlinear singular integral equations whose solution is constructed by the 
method of mechanical quadratures with regard for the conditions of plasticity of thin shells, the condi-
tions of boundedness of stresses, and the conditions of uniqueness of displacements.  We also perform 
the numerical analysis of the dependences of the crack opening displacements and the sizes of plastic 
zones on the boundary conditions imposed on the shell edges, on the configuration of the crack, and on 
the geometric and mechanical parameters. 

Keywords: stressed state, closed elastoplastic cylindrical shell, δc -model, complex form of equations, 
parabolic crack, fracture criterion. 

Introduction 

The analysis of the available literature shows that the stressed state and limit equilibrium of the shells con-
taining cracks are usually investigated on the basis of equations of the theory of thin shells in displacements.  At 
the same time, it proves to be more reasonable to construct the solutions of a series of problems of the linear 
theory of shells by the complex method proposed by Novozhilov [13] and developed by Chernykh in [18].  The-
se equations are more compact than the equations of the theory of shells in forces and moments or displace-
ments.  Moreover, a twofold decrease in the order of resolving equations as a result of the complex transfor-
mation significantly simplifies the procedure of construction of analytic solutions of the problems and reduces 
the time required for the numerical analyses of specific problems.  This, in particular, was demonstrated in [1, 
2, 12].  

 By analyzing the works dealing with the theory of shells with cracks, it is possible to conclude that the ac-
cumulated results on the stressed state and limit equilibrium of shells were, as a rule, obtained for the case of 
infinite shells.  As an exception, we can mention the works [16, 19] in which closed shells were investigated in 
the elastic and elastoplastic statements.   

In the present work, we study the limit equilibrium of an isotropic elastoplastic closed shell. 
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Fig. 1 

1.  Formulation of the Problem 

Consider a closed elastoplastic cylindrical shell with a thickness  2h  and a length   2ℓ 0.    
The shell is referred to a triorthogonal coordinate system  Oαβγ .   Assume that the shell is weakened by a 

longitudinal internal crack of length   2ℓ   located in the cross section  β = 0  and bounded by continuous curves  
d1(α)  and  d2(α)  (see Fig. 1) that establish the distance from the crack boundary to the outer and inner surfaces 
of the shell.  It is assumed that the shell and the crack faces are loaded solely by forces and moments symmetric 
about the crack plane.  In the process of deformation, the crack faces do not contact.  We restrict ourselves to the 
case of sufficiently deep cracks:  d3 = d1 + d2 ≤ 0.6h.   The crack sizes, the level of external loading, and the 
properties of the material are assumed to be such that, in the vicinity of the crack, plastic deformations develop 
within a narrow band over the entire thickness of the shell.  Thus, according to an analog of the δc-model [3, 4, 
20], we replace the zones of plastic strains by the surfaces of discontinuity of elastic displacements and the an-
gles of rotation.  Moreover, the response of the material of the plastic zone to the elastic one is replaced by the 
corresponding forces and moments.  

We also assume that constant stresses   σ
0 = (σB +σT )/2 ,  where  σB   and  σT   are, respectively, the ulti-

mate strength and the yield strength of the material, act on the continuation of the crack in depth toward the out-
er and inner surfaces of the shell, i.e., in the region  α∈(− α0,α0 ),    α0 = ℓ1/R,    γ ∈[−h, −h + 2d1]∪[h − 2d2, h]   

(R  is the radius of the middle surface of the shell).  Further, suppose that unknown normal forces  N (i)  and 
bending moments  M (i),  i = 1, 2,  act in the plastic zones on the continuation of the crack along its length, i.e., 
in the domains  γ ∈[−h, h],  

 
α ∈(−αp, −α0 )∪ (α0,α

p )  (here,  
  
αp = ℓp/R ,    α

p = ℓp/R ,  and  
 
ℓp   and   ℓp  are 

the lengths of the plastic zones located to the left and to the right of the crack) and that, for perfectly elasto-
plastic materials, these forces and moments satisfy one of the Tresca plasticity conditions: 

  either the condition of plasticity of the surface layer 

 N
2hσT

+ 3 M
2h2σT

= 1, (1) 

  or the condition of plastic hinge [6, 7] 

 N
2hσT

⎛
⎝⎜

⎞
⎠⎟
2

+ M
h2σT

= 1. (2) 
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Thus, within the framework of the accepted analog of the δc-model, the three-dimensional elastoplastic 
problem for an internal crack of length   2ℓ   is replaced by a two-dimensional elastic problem for a fictitious 
through crack of unknown length   2ℓ1  

 
(2ℓ1 = 2ℓ + ℓp + ℓ p )  with the following conditions imposed on its faces:   

 
 

N2(α) =
N2

(1) − N ℓ − N2
0, α < α0,

N − N2
0,  −α0 < α < −  α1,

⎧
⎨
⎪

⎩⎪
  

   (3) 

 
 

M2(α) =
M2

(1) −M ℓ −M2
0, α < α0,

M −M2
0,  −α0 < α < − α1.

⎧
⎨
⎪

⎩⎪
 

Here,   N ℓ   and   M ℓ   are the normal force and bending moment, which describe the response of the material to 
breaking of the internal bonds over and under the crack.  According to the accepted assumptions about stresses 
acting in these zones, these characteristics are determined by the formulas 

  N
ℓ = 2d3σ

0 ,       M
ℓ = 2σ0(h − d3)(d2 − d1),  

where   N2
(1)  and  M2

(1)  are, respectively, the forces and moments applied to the crack faces and  N2
0  and  M2

0   
are the same parameters for the main stressed state (the shell without cracks). 

2.  Main Relations for the Cylindrical Shell Weakened by a Crack in the Complex Form 

To present the basic relations of the linear theory of thin cylindrical shells that take into account the pres-
ence of cracks, we use the concept of complex static-geometric analogy [13, 14, 18] and consider the following 
complex forces and moments:  

  
!N1 = N1 − iD0cχ22

s ,       
!M1 = M1 + iD0cε22

s ,  

  
!N2 = N2 − iD0cχ11

s ,       
!M2 = M2 + iD0cε11

s ,  (4) 

  
!S = S + iD0cχ12

s ,      
 
!H = H − iD0c

ε12
s

2
, 

where  D0 = 2Eh ,   c = h/ 3(1− ν2) ,  i = −1,  and  εij
s ,  χij

s ,  i, j = 1, 2 ,  are the components of elastic strains.  
Multiplying the equations of continuity of strains by −iD0c  and adding them to the equilibrium equations, 

we arrive at the balance equations for a thin cylindrical shell in complex forces and moments: 

 
 
Li !N2, !N1, !S, !M2, !M1, !H{ } = !qi,    i = 1, 2, 3. (5) 

Here, 
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!qℓ = −Rqℓ + iD0cLℓ χ11

0 ,…, ε12
0 /2{ },     ℓ = 1, 2 ,  

   (6) 

 
  
!q3 = Rq3 + iD0cL3 χ11

0 ,…, ε12
0 /2{ }, 

εij
0   and  χij

0   are the components of stress-free strains [15] such that the components of small strains are given by 

the formulas  εij = εij
s + εij

0   and  χij = χij
s + χij

0 .  
It follows from the first three relations in (4) that  

   Nℓ = Re !Nℓ,     ℓ = 1, 2 ,       S = Re !S ,  
   (7) 

 
 
χii
s = − 1

D0
Im !N j ,    i ≠ j = 1, 2,      

 
χ12
s = − 1

D0
Im !S. 

By using expressions (7) and the relations of Hooke's law 

 
 
εii
s = 1

D0
[Ni − νN j ],      

 
χii
s = 3

D1
[Mi − νM j ],    i ≠ j = 2 ,  

   (8) 

 ε12
s = 2(1+ ν)

D0
S,      χ12

s = 3(1+ ν)
D1

H , 

we arrive at the following equations: 

 
  
Mi = −c Im [ !N j + ν !Ni ],      

  
εii
s = 1

D0
Re [ !Ni − ν !N j ],    i ≠ j = 1, 2,  

   (9) 

   H = c(1− ν Im !S),      
 
ε12
s = 1+ ν

D0
Re !S . 

Substituting (9) in the last three equations in (4), we find  

 
 
!M1 = ic !N2 − ν !N1⎡

⎣
⎤
⎦,       

!M2 = ic !N1 − ν !N2⎡
⎣

⎤
⎦ ,      

 
!H = − ic !S − ν !S⎡

⎣
⎤
⎦. (10) 

Here and in what follows, the overbar above the tilde denotes the operation of conjugation of the corresponding 
complex quantities.  

Thus, replacing the complex moments in Eqs. (5) by their expressions from (10), we get the following sys-
tem of equations in complex forces: 

 
  
Lℓ !N2, !N1, !S, ic !N1 − ν !N2⎡

⎣
⎤
⎦ , ic

!N2 − ν !N1⎡
⎣

⎤
⎦ , − ic

!S2 + ν !S1⎡⎣ ⎤⎦{ } = !qℓ,     ℓ = 1, 2, 3. (11) 
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Equations (11) are regarded as “exact” because the "real" equations of the theory of thin shells are exact.  
As a disadvantage, we can mention the presence of the operation of conjugation.  However, it is possible to 
show that the terms appearing in equations with the sign of conjugation are small and, hence, can be neglected. 
The other possibility is to somewhat modify the introduced complex quantities.  

We now introduce the Novozhilov complex function   
!N = !N1 + !N2 .   Then, after necessary transformations, 

relations (10) can be rewritten in the form 

 
 

∂ !N1
∂α

+ ∂ !S
∂β

= !q1,  

 
 

∂ !N2
∂β

+ ∂ !S
∂α

+ ic
R

!N
∂β

= !q2 ,  (12) 

 
 
!N2 − ic

R
Δ !N = !q30, 

where   

 
 
!q30 = !q3 −

ic(1− ν)
R

∂
∂α
!q1 +

∂
∂β
!q2

⎡
⎣⎢

⎤
⎦⎥
,      Δ = ∂1

2+ ∂2
2 ,      ∂1 =

∂
∂α

,      ∂2 = ∂
∂β

 . 

Eliminating the unknown   !S   from the balance equations, we get  

 
 
Δ !N2 = ∂2 !N

∂α2 + ic
R
∂2 !N
∂β2

= ∂ !q2
∂β

− ∂ !q1
∂α

,  

   (13) 

 
 
!N2 − ic

R
Δ !N = !q30. 

Substituting   
!N2   from the second equation in (13) in the first equation, we get the differential equation of 

the fourth order with one unknown complex function   !N   for a cylindrical shell subjected to the action of a field 
of distortions 

 
 
ΔΔ + ∂2

2+ 2ib2 ∂1
2( ) !N   =  D0 L11ε11

0 + L12ε12
0 + L22ε22

0 + P11χ11
0 + P12χ12

0 + P22χ22
0{ }, (14) 

where 

 
 
L11 = −∂2

2(Δ +1+ Δµ),      L22 = −Δ∂1
2,      

 
L12 = −∂1∂2(Δ +1+ Δµ),  

 P11 = −R∂1
2 + µRΔ∂2

2 ,      P22 = −R∂1
2 + µRΔ∂1

2,    P12 = 2µΔ∂1∂2 ,  
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 µ = i(1− ν)
2b2 ,      2b2 = R

c
.  

The complex forces   
!N1  and   

!N2   are expressed via the main complex function   !N   by the formulas 

 
 
!N2 = i

2b2
Δ !N + i

2b2
D0 C11ε11

0 +C12ε12
0{   

  +  C22ε22
0 + D11χ11

0 + D12χ12
0 + D22χ22

0 },  

   (15) 
  

!N1 = !N − !N2 . 

Here, 

 C11 = ∂2
2(1+ µ),      C12 = ∂1∂2(1−µ),      C22 = ∂1

2 ,  
   (16) 

  D11 = R(1+ µ∂22),      D12 = 2µR∂1∂2 ,      D22 = −Rµ∂1
2. 

The system of complex equations (12) and the main key equation (14) are written for the case of the general 
moment theory of shells.  Within the framework of the technical theory [8], the underlined terms in the system 
of equations (12) are omitted. 

Since the shell is subjected to the action of external loads symmetric about the crack surface and the forces 
and moments with the same magnitude but opposite directions are applied to the opposite crack faces, in view of 
the fact that, in passing through the crack, the forces and moments remain continuous functions, whereas the 
displacements  v   and angles of rotation of the normal  θ  have discontinuities of the first kind, i.e., are general-
ized functions, they can be represented in the form  

 ε22
0 = [v(α)]δ(β)

R
,      χ22

0 = [θ2(α)]δ(β)
R

− [ω(α)]δ(β)
R2 , (17) 

where   

 [v(α)] = v+ (α)− v− (α),    [θ(α)] = θ+ (α)− θ− (α),    and    [ω(α)] = ω+ (α)−ω− (α).  

We restrict ourselves to the investigation of the perturbed stressed state of a cylindrical shell under the ac-
tion of symmetric forces within the framework of the technical theory of thin shells.  As the source system, we 
use the system of balance equations in the complex form.  Reducing this system to as single key equation for the 
complex function   !Φ   related to the Novozhilov function by the formula 

   
!N = −Δ !Φ + iD0c(χ220 + χ0),      χ0 = − Rχ22

0

R + ic
, (18) 

we get the following key equation: 
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LT !Φ = D0

iR
2b2

(∂22+ ν∂1
2)χ220 + ∂1

2ε22
0{ }. (19) 

Here, the operator  LT = ∂1
4+ 2∂1

2∂2
2+ ∂2

4+ 2ib2 ∂1
2.  

Assume that, the following homogeneous boundary conditions are specified on the end faces of the shell  

  α0 = ± ℓ 0/R:  

  Pi (
!Φ) = 0 ,     i = 1,…, 4 , (20) 

where restrictions accepted in the theory of thin shells [13, 14, 17] are imposed on the operators  Pi .  
We construct the solution of Eq. (19) in the form of the sum of the general solution of the homogeneous 

equation and a partial solution of the inhomogeneous equation.  The indicated partial solution is represented in 
the following form: 

 
  

!Φpt (α,β) = D0
1
R
∂1
2[v(ξ)] − i

2b2 (ν∂2
2+ ∂1

2)[θ2(ξ)]{ }
−α0

α0

∫  k
π

Φn (α − ξ) cos nβ
n=0

∞

∑ dξ, (21) 

where  Φn (α − ξ)  is the fundamental solution of Eq. (19). 
We seek the solution of the homogeneous equation (19) with regard for the conditions of cyclic symmetry 

in the form 

 
 

!Φ0(α,β) = Φn
0(α) cos nβ

n=0

∞

∑ , (22) 

where  
  
Φn

0(α) = !Cjn coshℓ jnαj=0
2∑ ,  

 
ℓ jn = x jn − iy jn ,  

 
!Cjn   are arbitrary complex variables    (

!C1n  = C1n + iC2n   

and    
!C2n = C3n + iC4n),  and the values  x jn   and  iy jn ,  j = 1, 2 ,  are the real and imaginary parts of the roots of 

the characteristic equation, respectively,  

  λ
4 + 2λ2(n2 − ib2) + n4 = 0.  

Thus, in view of (21) and (22), we can write 

  
!Ni = !Ni

pt + !Ni
0,    i = 1, 2,       

!S = !Spt + !S0, (23) 

where  

  
!N1
pt = −∂2

2 !Φpt + iD0cχ22
0 ,       

!N2
pt = −∂1

2 !Φpt ,       
!Spt = ∂1∂2 !Φ

pt + iD0cχ12
0 , (24) 

  
!N1
0 = −∂2

2 !Φ0 ,       
!N2
0 = −∂1

2 !Φ0 ,       
!S0 = ∂1∂2 !Φ

0 . (25) 
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By using relations (23)–(25) and satisfying the boundary conditions (20), for the determination of the un-
known constants  Cjn ,   j = 1,…, 4 ,  we obtain a system of algebraic equations of the form  

 An ⋅Cn = Bn ,     n = 1, 2,… , (26) 

where  An   is the matrix of coefficients,  Bn   is the column vector of free terms, and  Cn  is the column vector 
of unknowns  Cjn .  

Substituting the obtained constants  Cjn ,   j = 1,…, 4 ,  in (22), and using relations (23)–(25), we obtain the 
distributions of forces and moments at any point of the shell.  Satisfying the boundary conditions on the crack 
faces, we reduce the problem of determination of the stressed state of a closed cylindrical shell with the bounda-
ry conditions (20) imposed on the end faces to a system of singular integral equations. 

As an example, we consider the following condition of fastening of the shell:   

 v = 0 ,      w = 0,      dw
dα

= 0 ,      N1 = 0       for    α = ±α1,       α1 = ℓ 0/R , (27) 

where  u ,  v ,  and  w  are the displacements of the middle surface of the shell and  N1  is a normal axial force. 
Conditions (27) correspond to the reinforcement of the shell on the end faces by rigid frames freely moving 

in the axial direction.  It is known [5, 10] that these frames are used in the course of operation of the main pipe-
lines with an aim to suppress the process of crack growth. 

To determine the unknown constants  Cjn ,   j = 1,…, 4 ,  it is necessary to satisfy the boundary condi-
tions (27).  For this purpose, we use the representation of displacements via the forces and moments  

 
  
u = R

D0
Re [ !N1 − ν !N2 ]dβ∫ + C ,  

 
  
v = − w dβ∫ + R

D0
Re [ !N2 − ν !N1]dβ∫ + C3,  (28) 

 
 
w = 2b2R

D0
Im !N2 dα dβ∫∫ + C1α + C2. 

It follows from the given boundary conditions (27) that, in relations (28), the constants  C1 = C2 = C3 = 0  
and the displacement  u   determines the state of the shell with an accuracy to within the unknown constant  C ,  
which corresponds to the rigid displacements of the shell. 

By using (28) and (23)–(25) and satisfying the boundary conditions (27), for the evaluation of the unknown 
constants  Cjn ,   j = 1,…, 4 ,  we arrive at the following system of algebraic equations: 

 An ⋅Cn = Bn,     n = 1, 2,… . (29) 

Here,  An   is the matrix of the coefficients 
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 An =

u1n u2n u3n u4n
z1n z2n z3n z4n
v1n v2n v3n v4n
w1n w2n w3n w4n

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

, (30) 

Cn  is the column vector of the unknowns  Cjn ,   j = 1,…, 4 ,  and  Bn   is the column vector of free terms 

 Bn = D0k
π

1
R

d
dξ

[v(ξ)]

vn
ε (α − ξ)

wn
ε (α − ξ)

θn
ε (α − ξ)

N1n
ε (α − ξ)

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

+ c d
dξ

[θ(ξ)]

vn
χ(α − ξ)

wn
χ(α − ξ)

θn
χ(α − ξ)

N1n
χ (α − ξ)

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

−α0

α0

∫ dξ . (31) 

Thus, by using relations (22)–(25), we can determine the stressed state of a cylindrical shell with boundary 
conditions imposed on the end faces, which is induced by an arbitrary distribution of the jumps of displacements 
and the angles of rotation along a fictitious crack.  If we now satisfy the boundary conditions (3) on the faces of 
the fictitious crack, then we get a system of singular integral equations of the problem.  Thus, in the case of free 
crack faces, under a load symmetric about the crack surface, the corresponding system takes the form 

 
  

Fi (u)
ami
u − s

+ α0Kmi
0 [α0(s − u)]{ }

−α1

α1

∫
i=1,2
∑ du = π fm0(s),      s <1,    m = 1, 2. (32) 

Its solution satisfies the conditions 

 Fi (u) du
−α1

α1

∫ = 0,    i = 1, 2 , (33) 

where 

 F1(u) = 1
R

d
du

[v(u)],      F2(u) = −c d
du

[θ2(u)],  

 f10(s) = Ns (α),      f20(s) = Ms (α),     s = α/α0 .  

The kernels of the system of singular integral equations (32) have the form 

  K11 = K11
0 − K11

1 ,       K12 = K12
0 − K12

1 ,       K21 = K12
0 − K21

1 ,       K22 = K22
0 − K22

1 .  

The values of   Kmi
0 ,  i,m = 1, 2 ,  were presented in [11] and the components of regular kernels   Kmi

1   charac-
terizing the influence of boundary conditions imposed on the end faces of the shell were presented in [10].  The 
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kernels of the obtained system of singular integral equations are continuous for the entire collection of the real 
values of  s   and  u .    

In the system of singular integral equations, the limits of integration  α1  are unknown because we do not 

know the lengths of the plastic zones  
 
ℓ p  and   ℓp.  Moreover, the right-hand sides  fm (α)  are discontinuous 

functions, which contain the unknown forces  Ni  and moments  Mi .   This is why the system of integral equa-
tions should be supplemented by one of the Tresca plasticity conditions [(1) or (2)] and the conditions of bound-
edness of the forces and moments near the tips of fictitious crack.  To do this, it suffices to assume that the in-
tensity factors of the normal force  KN   and of the bending moment  KM   are equal to zero: 

 KN (−α0 −αp ) = KN (α0 +α
p ) = KM (−α0 −αp ) = KM (α0 +α

p ) = 0 . (34) 

As a result, we get the complete system of equations for the evaluation of the jumps of displacements and 
the angle of rotation, the lengths of the plastic zones, and the forces and moments acting in these zones.  

Integrating the obtained solution, we determine the crack opening displacements  δ(γ ,α)  at any point of the 
crack by the formula  

  δ(γ ,α) = [v(α/α1)] + γ[γ (α/α1)],      α < α1,    γ = h . (35) 

Equating the right-hand side of relation (35) to the critical value  δcr  of the crack-front opening displace-
ment for the investigated material, we obtain a criterial relation connecting the ultimate load with the admissible 
crack sizes. 

3.  Numerical Results 

An algorithm for the numerical solution of the analyzed nonlinear systems together with the additional con-
ditions (1) or (2), conditions of uniqueness of displacements (33), and conditions (34) was presented in [11].  
We perform the numerical analysis of the considered problem for a shell made of perfectly elastoplastic material  
σB = σT( ),  fixed at both ends according to conditions (27), and weakened by an internal parabolic crack 

 
 
d1(α) = 1

τ0
2 (h − ′d1 − ′d2)α2 − h + ′d1,  

   (36) 

 
 
d2(α) = 1

τ0
2 (h − ′d1 − ′d2)α2 + h − ′d2, 

where  ′d1  and  ′d2   are the distances from the vertex of the corresponding parabola to the inner and outer surfac-

es of the shell,    τ0 = ℓ 0/ℓ1,   ′d1/h = 0.15,  and   ′d2/h = 0.25.   Clearly, in this case,  
 
ℓ p = ℓ

p  and, hence,  

N1 = N 2  and  M1 = M 2 .    

In view (36), we determine the force  N1(α)  and the moment  M1(α)  as follows:  
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 N1(α) = στ (d1 + d2 ) + στ (h − d1 − d2 )
α2

(τ0 )2
= F1

1 + k1
1 α2

(τ0 )2
,  

 M1(α) = στ
2

(h − d1 − d2 )(d1 − d2 ) 1− α2

(τ0 )2
⎛
⎝⎜

⎞
⎠⎟
= F3

1 + k3
1 α2

(τ0 )2
,  

where 

 F1
1 = N1 = στ (d1 + d2 ) ,       F3

1 = M1 = στ (h − d1 − d2 )(d1 − d2 )/2,  

 k1
1 = στ (h − d1 − d2 ),      k3

1 = −M1.  
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In the numerical calculations aimed at the investigation of the behavior of the crack opening displacements 
and the lengths of the plastic zones on the length of the parabolic crack, the sizes of the shell, and various physi-
cal and geometric parameters, we choose the following values:   R = 0.15  m,  h = 0.15 ⋅10−2  m,  ν = 0.3,  and  

 ℓ 0 = 0.15  m. 

In Fig. 2, we present the plots of dependences of the relative crack opening displacement δ∗ =  
δ(0, ℓ/R)E/(ℓσT )  on the relative length of the actual crack    ℓ 0/R   and the parameters of the parabolic crack  
′d1  and  ′d2 .   The dashed curve corresponds to the case of an infinite shell and curves 1–3 correspond to the val-

ues  ′d1 = 0.15, 0.20, 0.30.  
In Fig. 3, we show the plots of dependence of the relative length of plastic zones    ℓ1/ℓ   on the same         

parameters.  It is easy to see that first the relative crack opening displacements  δ∗  in the closed shell       
(curves  1–3) behave as in the case of an infinite shell (dashed line).  However, as the parameter    τ0 = ℓ 0 / ℓ1  

increases,  they tend to zero. The same picture is observed in the case of variations of the length of plastic  
zones. 

CONCLUSIONS 

If the criterion of critical crack opening displacement is used as a fracture criterion, then, for the chosen pa-
rameters, the fracture process in the bounded shell containing an internal parabolic crack starts at the point  А,  
i.e., at the point closest to the outer surface (see Fig. 1).  In the case where the internal crack has the form of a 
rectangle with inscribed parabolic crack, its opening displacement is also maximum at the point  А  but its value 
is 8–10 times higher. 

On behalf of all authors, the corresponding author states that there is no conflict of interest. 
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