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THE TWO-DIMENSIONAL BOOLE-TYPE TRANSFORM AND ITS ERGODICITY

A. K. Prykarpatski>?> and A. A. Balinsky> UDC 517.9

Dedicated to the commemoration of untimely passed away
outstanding Ukrainian mathematician Prof. A. M. Samoilenko

Based on the Schweiger’s smooth fibered approach and the related Bernoulli shift transformation scheme,
we prove the ergodicity of the two-dimensional Boole-type transformations. New multidimensional
Boole-type transformations invariant with respect to the Lebesgue measure and their ergodicity properties
are also discussed.

1. Introduction

With its origins going back for several centuries, the discrete analysis now becomes an increasingly central
methodology for many mathematical problems related to discrete dynamical systems and algorithms widely ap-
plied in modern science. Our theme related to the study of topological and measure-theoretical ergodicity aspects
of Boole-type discrete dynamical systems [1-12] is of great interest in numerous branches of modern science and
technology [11-25], especially in the statistical mechanics, discrete mathematics, numerical analysis, chaos theory,
statistics, and probability theory, as well as in the electric and electronic engineering. From this viewpoint, the in-
vestigated topic belongs to a much more general realm of mathematics, namely, to calculus, differential equations,
and differential geometry due to the remarkable analogy of the subject, especially for these branches of mathe-
matics. Nevertheless, although the topic is discrete, our approach to treating topological and measure-theoretical
ergodicity and the related arithmetic properties of generalized Boole-type discrete dynamical systems is completely
analytic, which results in the proof of ergodicity of the two-dimensional Boole-type transformation.

2. Ergodicity and Bernoulli-Type Transformations

We consider a class of mappings called [5, 12, 23, 26, 27] smooth fibered multidimensional mappings ¢: X —
X if the following conditions are satisfied:

(a) there is an invariant Lebesgue equivalent probability measure p: B — R4 for which there exist positive
constants ¢, cp € R4 such that

IA(E) < W(E) = c2A(E)
for every Borel set £ C X;

(b) there is a family of finite or countable infinite digit sets D;, j = 1, N;
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(¢) thereis a mapping k: X — D, where D := D; x Dj X ... X Dy, such that the sets
X;i=kYWil={xeX:k(x) =i}, ieD,

are measurable and form a partition of the space X, i.e., the sets U;ep X; = X;

(d) the restrictions ¢|x,: X; — X, i € D, are injective and smooth maps.

It is easy to see that the mapping ¢: X — X is equivalent to the Bernoulli shifts mapping 7;,: D*° — D°,
where

T(pi(kl,kz,kg,,...,kn,...)—)(kz,kg,,...,kn,...) (2.1)
with respect to the isomorphism ¥: X 3> x — (k2,k3,...,kn,...) € D, and
X(kl,kz,k3,...,kn;x) <~ (kl,kz,k3,...,kn,...), (2.2)

determined for the rank-n cylinder sets X, (k1,k2,k3,...,.ky) C X,n € N :
Xnlki, ko ks, ... ky) = mj:ﬁij- (2.3)
The sequence (k1,k2,k3,...,k,) € D" is called admissible if there exists a point x € X such that

Xn(kl,kz,k3,...,kn;x)cm] Xk], I’IGN.

=Ln

In numerous concrete cases, the ergodicity of a mapping ¢: X — X can be formulated more efficiently by
using standard-measure theoretical calculations. In particular, based on the construction presented above, we can
propose a slightly alternative to [12, 28, 29] approach to proving ergodicity by using the following two lemmas
from the classical measure theory [30, 31]:

Lemma 2.1 (Hahn—Caratheodory—Kolmogorov extension theorem). Let A be an algebra of subsets of X and
let B(A) denote the o-algebra generated by A. Suppose that a mapping u: A — [0, 1] satisfies the conditions:

(a) n(@)=0;

(b) if Ay € A, n € N, are pairwise disjoint and if U,eN Ay € A, then

u(Unen An) = ) u(An).

neN

Then there is a unique probability measure 1. B(A) — [0, 1], which is an extension of the mapping n: A — [0, 1].

Lemma 2.2. Let (X, B, 1) be a probability space and let A C B be an algebra that generates B, i.e.,
B = B(A). Suppose that there exists C > 0 such that, for a fixed B € B, the inequality

n(B)yu(l) < Cu(BNI) 2.4

holds for all I € A. Then the measure (B)u(B€) = 0, where B¢ := X\ B € B denotes the complement of the
set B € B.
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Owing to the special properties of smooth fibered multidimensional mappings ¢: X — X equivalent to the
Bernoulli shifts [27, 28, 32] mapping (2.1), we can formulate the following important theorem:

Theorem 2.1. Let the cylinder sets of a smooth fibered multidimensional mapping ¢ X — X satisfy the
conditions of Lemma 2.2 with respect to the Lebesgue measure A on X absolute continuous to the invariant measure
non X. Then the mapping ¢: X — X is ergodic with respect to its invariant probability measure (. on X.

Example 2.1. A simple example is given by the following doubling mapping:
@:[0,1) > x — {2x} €0, 1), (2.5)

where k:[0,1) > x — |2x]| € {0, 1} := D.

It is ergodic [28, 29] with respect to the finite Lebesgue measure dA(x) = dx, x € [0,1), and admits a
generating partition

§={Xo=1[0.1/2). X, =[1/2. 1)}, XouX;=[0.1) =X.

As for the ergodicity of the doubling mapping (2.5), it can be easily demonstrated if we represent any number
x € [0, 1) in the form of a binary expansion

X = (-XoX1X2...Xp...) = Z XjZ_(j-H), (2.6)
JEZL+

where x € {0, 1} = D. For convenience, we denote the set of all expansions of this kind by
Y = {(-Xox1X2...%n...):xj € {0, 1}} ~ {0, 1)+,
It is easy to see that mapping (2.5) is equivalent to the left Bernoulli-type shift
Ty(-xox1X2 ... Xp...) = (X1X2...Xp...) 2.7)

for any element (-xgx1X2...X,...) € Y. We can now introduce the so-called dyadic intervals or cylinder sets as
the sets

I(ko.ki,....kn—1) ={x €[0.1):xj =kj, j =1L,n—1}, (2.8)

where, for instance, 1(0) = [0,1/2), I(1) = [1/2,1), 1(0,0) = [0,1/4), 1(0,1) = [1.4,1/2), etc. If A denotes
the algebra of finite unions of cylinders of this kind, then it is easy to see that it generates the ordinary Borel o-
algebra B of the interval [0, 1). Moreover, if we take two separate points x 7# y € [0, 1), then their expansions are
different at a certain place n € Z of the 2-expansions, which means that these numbers belong to different disjoint
cylinders. We now define the following mappings inverse to (2.5): 09:[0, 1) — [0,1/2) and 07:[0, 1) — [1/2, 1),
where

oo(x):{x/z, it xel0,1/2),
(2.9)
al(x)={(1+x)/2, it xe[l/2,1),
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where, in turn, ¢ 0 6j(x) = x, j = 0, 1, for any x € [0, 1), whose actions upon the elements of the set Y are the
corresponding right shifts:

00(...x0xX1X2...%Xp...) = (...0x0X1X2...Xp...),

(2.10)
01(. .. x0xX1X2...Xp...) = (... 1xox1X2 ... X ...).
Based on the definitions of the cylinder sets (2.8) and actions (2.10), we observe that
Iy = I(ko.k1,...,kpn) = 0k, 00k, 00k, ©...00%,([0, 1)) (2.11a)
whose Lebesgue measure can be easily found as follows:
A(Ip) =2704D N 07/ = 7" (2.12)

JEZ +

for any n € N.
We are now in the position to apply Lemmas 2.1 and 2.2. Assume that a measurable set B C [0, 1) is invariant:
B = ¢ 'B = ¢ "B, n € N. The Lebesgue measure is calculated as follows:

MBI, = / 2B, (x) dx = / 5@ a1, () dx = / 1B (x)dx

[0,1) [0,1) In

= / xB(Oky © Ok, © 0k, ©...0 0k, (x))d (0k, © Ok, © Ok, ©...0 0, (x))
[0’1)

= / X3 B (Oky © Ok, © Ok, © ... 00k, (x)) d (0ky © Ok, © 0, © ... 00, (x))
[0,1)

= / XB (g?)” O Ok, © Ok, © Ok, © ...ookn(x))d (Uko 00k, 00k, O... ookn(x))
[0.1)

= / xB(x)d (Uko 00k, ©0, 0 ...00k, (x))
[0,1)

= / XB(X)0y 0p 0%, - 0p (X)dx = 27"A(B) = A(In)A(B). (2.13)
[0,1)
This means that
AI)A(B) = A(BN 1) < CA(B N Ip),

where C = 1. Thus, either the Lebesgue measure A(B) = 1 or A(B) = 0, which means that the doubling mapping
is ergodic (2.5).
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Example 2.2. A very interesting example is given by the classical continued-fraction expansion via the Gauss
ergodic mapping

:[0,1) > x — {1/x} €[0,1) (2.14)

whose fibering is defined by the mapping k :[0,1) > x — |1/x] € N := D and the generating partition is given
by thesets X; = (1/(i +1),1/i],i e N, X = UjenX;.

The invariant measure is the well-known Gauss measure dp(x) = dA(x)/[(1 + x) In2], where dA(x) := dx,
x € [0, 1). The ergodicity of mapping (2.14) can be easily stated by reducing it [29] via the continuum-fraction
expansion to a Bernoulli shifting and applying Lemmas 2.1 and 2.2.

Namely, we take a number x € [0, 1) and denote by [x¢, X1, ..., Xz, ...] its continuous-fraction expansion:

1 1 1
X = , (2.15)
Xo+ X2+ ... x5+ ...

where x; € Z for all indices i € Z . Observe that the induced continuous-fraction mapping acts by left shifting
as Ty[xo, X1,...,Xn,...] =[x1,...,Xpu,...] for any expansion (2.15). This expansion [x¢, X1,...,Xp,...] can be
reduced to the nth order by introducing, for every ¢ € [0, 1), a rational ¢-fraction

Py(x0,X1,...,Xn—1:t
[X0. X1, .. Xn_1 +1] 1= n(Xo. X1 n1:f) (2.16)
On(x0,X1,...,Xpn—1:1)
where, by definition,
Pn(xo’-xla~"axn—l;t)
and
Qn(XOaXL ... 7xn—1;t)
are coprime polynomials in the variables x¢, X1,...,Xs—1 € Z+ and t € [0, 1) for all n € N. If we define the nth
order polynomials P, = P,(x¢,X1,...,Xn—1) := Py(x0,X1,...,Xp—1;0) and Q, = QOn(x0,X1,...,Xn-1) :=
On(x0,x1,...,xn—1;0), then we can easily observe that the following iterative expressions hold:
Py(x0,x1,...,Xp—151) = Py +1Py_1,
Qn(x()?xl’ .. ,xn—l,l) — Qn + lQl’l—l:
Pn(Xvah ... 7xn—1) = Ql’l—l(xlv .. ,xn—l), (217)

Pn+1(x07x1»~~r»xn—lsxn;t) = ann + Pn—l + tPI’l?

Qn—i—l(xO,xl»---»xn—l,xn;l) = ann + Qn—l + tha

for any ¢t € [0,1) and arbitrary n € N. By using (2.17) and setting the parameter ¢ = 0, we also derive the
following important iterative relationships for all n € N:

Ppi1 = xn Py + Py—1, On+1 =x,0n + On—1 (2.18)
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with the initial conditions Py = 0, P; = 1l and Q¢ = 1, Q1 = x¢ € Z+. In particular, the following invariant
condition Q, Py—1 — P, OQn—1 = (—1)" and the inequality Q,—1 < Q, readily follow from (2.18) for all n € N.
Now let the indices k¢, k1,...,kn—1 € N for any n € N. We define cylindrical intervals I, C [0,1) as the
corresponding collection of rational ¢-fractions:

I, = In(ko, k1, ..., kn—1) := {[ko,kl,...,kn_l +t]:t €0, 1)} (2.19)

If, in addition, we define the inverse mappings

0.0)5x — ——ehkclon, kel

+ X

then we can easily show that the composition
Oky ©O0ky ©...00k,_;: [0,1) = I,(ko,k1,...,kn—1) C[0,1) (2.20)

for every n € N. Moreover, the condition ¢” ooy, 00k, 0...00%, ,(x) = x holds forevery x € [0,1) andn € N.
We now take any ¢ € [0, 1), indicate that

Py + 1P,
Oky © 0k, ©...00k,_,(t) = [ko. k1,... . kn—1 + 1] = Qn+—thl1’ (2.21)
n n—
and estimate the Lebesgue measure of the interval (2.19):
A(In) = / XL, ()dt = /dl‘ = / J0k000k1°~~~°0kn,1 (Z)‘ dt
[0,1) I [0,1)
:/ i(Pn—i-tPn_l)'dt:/‘ dt e|: 1 L] (2.22)
0.1 dt Qn+th—1 [0.1) |Qn+th—1|2 4Q%,Q% ’ ‘
, 0,1

where we have taken into account that 0 < 0,1 < O, foralln € N.
We are now in the position to estimate the Lebesgue measure A(B N I) of the intersection B N I, of an
invariant set B = ¢~ !B = ¢™" B C [0, 1) with an arbitrary cylindrical interval I, C [0,1),n € N :

ABNIy) = [ xp(x)dx
/

= / XB (O’ko 00k, ©...0 akn_l(x)) dx
[0,1)

Jokoocrkl 0...00%, _, (x)| dx

— [ X(P_nB (o‘ko OO‘k1 0...007](”,1()6))
[0,1)
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= / xB (¢" 00, 00k, ©...00k,  X)
[051)

J0k0°(7k1 0...00%, _; (x)|dx

dt
[0,1) [0,1)
> 4Qn)L(B) > —A(I )A(B), (2.23)

which completely fits the conditions of Lemma 2.2 with constant C = 4. Thus, as a consequence of estimation
(2.23), we conclude that either the measure A(B) = 1 or A(B) = 0, which proves the ergodicity both of the
Lebesgue measure dA(x), x € [0, 1), and the invariant Gauss measure

dx
)= — 1
d(x) (I1+x)In2’ x €[0.1.

on the unit interval [0, 1).

3. One-Dimensional Boole-Type Mappings and Invariant Ergodic Measures

The classical one-dimensional Boole [4] mapping is defined as follows:
e:R\{0} >5x > x—1/x e R. 3.

As shown by Adler and Weiss in [33], the Boole mapping (3.1) is ergodic with respect to the invariant o-finite
Lebesgue measure dA(x) := dx, x € R := X. Their proof of ergodicity was strongly based on the measure-
theoretic reduction of mapping (3.1) to the corresponding induced [28, 29, 32] transformation ¢g4:[—1,1] €
[—1,1] C R followed by the proof of its ergodicity. The ¢-invariance of the Lebesgue measure dA(x) := dx,
x € R, can be easily checked by using the Perron—-Frobenius condition: For the preimages u+ := ui(x) € R,
x € R, where p(u1(x)) = x, u+ + u— = x, u_u4+ = —1, we can directly verify that the preimage measure

dx dx
Zdui(X) Z dx = §—|J¢(ui)| = é:_(l Fu?

dui

_Z B (ui+2+u3)dx :(u++2+u )dx
(1+”ﬂ:) l+(u+u_)2+uﬁ_+u3 2+u++u3

=dx (3.2)

exactly coincides with the Lebesgue measure on the axis R.

In what follows, we present a modified proof of ergodicity of the Boole transformation (3.1). Namely, the
approach discussed above and applied to the Boole transformation (3.1) proves to be successful and allows one to
obtain a new proof of the Adler—Weiss [33] result on the ergodicity of this Boole transformation.

Theorem 3.1. The one-dimensional Boole transformation (3.1) is ergodic with respect to the invariant
Lebesgue measure A on R.
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Proof. As already indicated, the proof can be reduced to Theorem 2.1, by applying its relation (3.4) mentioned
above to the doubling mapping 7,:[0,1) > s — {2s} € [0, 1). Moreover, as shown in [12, 23, 34], the Boole
transformation (3.1) can be related to the doubling mapping 7,:[0,1) > s — {25} € [0, 1) via the commutative
diagram

01 “% g & R

It 1d L w7 eot™!, (3.3)
T, —l(ro

01 < p1 [0, 1)

where a~1:[0,1) — [0, 1) is a diffeomorphism defined by the expression a(s) = w~ ! arccot(rs/2), s € [0, 1),
related to mapping (3.1) as follows:

@ =cotmo alo Ty (n_l o cot_l) . 3.4)
Now let @:[0,1) — [0, 1), @ := a1 o T}, be the mapping equivalent to (3.4), where
@(s) = n~ " cot™ ! (p(cot(s)))

for any s € [0, 1). Since every number a € [0, 1) has a binary expansion

a:= (kokika...ky..)= Y kj27UTD, (3.5)

JEL+
we can define the so-called proper [12, 34] cylindrical sets I, := I, (ko.k1,,...,ky) C[0,1),n € Z, as follows:
I, = {(Gkn_1 owa)o (0, ,oa)o...o(o, oa)t):t €0, 1)} , (3.6)

where 0g(s) = s/2if s € [0,1/2) and 01 (s) = (1 +5)/2if s € [1/2,1). We also note that ¢ o (0x; o) (s) = s
forevery s € [0,1), kj € {0,1}, j = 0,n — 1. The Lebesgue measure of interval (3.6) can be easily estimated as
follows: By definition, we get

Alp) = /dx = /Xln(x)dx = / ’J(aknoa)O(akn_loa)O...O(Ukooa))(Z))dl
I R x=cot(wt) [0,1)
. ( ’ / / / / d
= Ok, & (th—1) Of, o (th=1)) ... akocx/(t) t, 3.7
[0,1)
where the derivatives Ul’c], = 1/2 and &/(1j) = 2/[1 + 3sin2(ntj)], where t; 1= 0}, o o...0 0, oa(t),

j=0,n—-1,t€]0,1). In view of the fact that

1
Moo 0 a)([0. D)) = 5 = A(o1 © ([0, 1]),
(3.8)

Ok, oao...00x, 0a([0,1)) C [1/27F1,1/27)
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for any j = 0,n — 1, by the classical mean-value theorem applied to (3.8), we can easily obtain that
o (ij)) =277/ [3sin® (i) + 1], (3.9a)

where the numbers 7; € (1/2/%1,1/27) C [0,1) for all j € 0,n. Further, by using the evident inequalities
2t <sin(wt) <t forallz € [0, 1/2), we derive the following two-sided estimations:
277 277 277
— = . =<
exp3(7277)2 7 3sin?(7277) + 1 3sin2(ntj) +1

27/ 277
<
3sin? (72-U+D) + 1 =~ 3(27U+D)2 41

IA

(3.10)

for any j = 0,n. Thus, by using expressions (3.7) and (3.10), we immediately arrive at the needed Renyi-type
[12, 28, 29, 31, 32] estimations:

exp(=37%) _ exp[r?(-4+47")] )
€

on(n+1)/2 — on(n+1)/2 Xp 3( - ])]2 _)L(In)

J=0

) ﬁ 2—i _ r—n(n+1)/2 B y—n(n+1)/2 - 4/7
< —G+2 = n _(: - 14— (n+1) — +1)/2
i—o 32-0G+D)2 41 ijo 32 (1+1))2+1 2 — 4—(m+1) — on(r+1)/

(3.11)

for all n € Z4. In particular, from (3.11), we conclude that lim, o A(I;) = 0, which means that the family
of these cylindrical sets generates [23, 30, 34] the Borel o-algebra B on the interval [0, 1). Thus, we arrive at
the position allowing us to apply Lemmas 2.1 and 2.2. Hence, let a measurable set B C [0, 1) be invariant:
B = ¢ 'B = ¢7"B, n € N. We compute the following Lebesgue measure:

AB N Iy) = / xBor, (D)dt = / 5O 11, ()di = f 15 (0)di

[051) [091) I"L

= /ﬁXB(@Wnoa)owhﬁlOa)OH-OQWOOWXQ)

[0,1)

x d((0%,, © @) 0 (0k,_, ©@) ... 0 (0%, 0 @)(x))

- / Yo15((0%, ©@) 0 (0%, 0@) 0.0 (0g, 0 @)(x))
[0,1)

x d((0k,, © @) 0 (0k,_, ©@) ... 0 (0%, 0 @)(x))

- / 18 (7" 0 0k, 0 @) 0 (0%, 0a)o... 0 (0g, 0@)(1))
[0,1)
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x d((ok, oa)o (0, , oa)o...o(0k, oa)(r)). (3.12)

Since the composition ¢ o (0, o) = Id forany j = 0, n, it follows from (3.12) that

AMB NI, = / xp(x)d ((Okn owa)o (0, ,oa)o...o (0, oa)(x))
[0,1)

_ / ! ! ! ! / / /
= / )(B(x)akna Ok, X Ok, O ...0p (x)dx
[0,1)

exp(—372)

= W/ZA(I,,)A(I")MB) = dox

7
Texp(3r2) A(In)A(B),
i.e., the Lebesgue measure A(I,)A(B) < CA(B N I,) for all n € Z4, where the constant C = 4exp (3712)/7.
Thus, owing to Lemma 2.2, either the Lebesgue measure A(B) = 1 or A(B) = 0, which simultaneously means
that the Boole mapping (3.1) is ergodic with respect to the same invariant Lebesgue measure A on R, which proves
the next theorem.

It is worth mentioning here that the well-known [1, 11, 28, 32, 35, 36] doubling mapping (2.5) is isomorphic
to the following one-dimensional Boole-type transformation:

p:Rax —> (x—1/x)/2 € R, (3.13)

which is invariant with respect to the probability measure du(x) = dx/[7(1 + x?)], x € R. The Boole mapping
(3.1) was generalized as follows:

N
R\{bj:j:1,N}9x—><p(x):=cx+a—zﬂ—jbeR, (3.14)
X —b:
j=1 /
where a and b; € R, j = 1, N, are some real values and v, B; € Ry, j = 1, N. This mapping was analyzed in
[1,2,9, 37, 38]. In the case where ¢ = 1 and a = 0, a similar ergodicity result was proved in [2, 39-41] by using
a specially devised inner-function method. The related spectral aspects of mapping (3.14) were partly studied

also in [1, 2]. Despite these results, the case o # 1 still persists to be challenging as the only related result [1, 2]
concerning the following special case of (3.14):

p
x—>b

Rax —>o¢(x):=cx+a— eR (3.15)

for 0 < ¢ < 1 and arbitrary a,b € R and 8 € R.. The invariant measures and ergodicity related to mappings
(3.15) were analyzed in [9, 35-37] due to their equivalence

[0,1) 3 51— Ty(s) =2smod1 € [0, 1) (3.16)

that follows from the commutative diagram
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0.1 2% [0.1)
£l L (3.17)
R % R

for which the following condition holds: f o T, = ¢ o f, where f(s) := (2B) Y2 cotms + 2a,s € [0,1). Itis
also important to mention here that, within the framework of the theory of inner functions, in [1, 39—41], it was
stated that there exists an invariant measure du(x), x € R, on the axis R such that the generalized Boole-type
transformation (3.14) is ergodic forany N > 1,¢ = 1,anda = 0.

If « = 1 and a # 0, then transformation (3.14) appears to be not ergodic being totally dissipative, i.e., the
wandering set D(¢p) := UW(¢) = R, where W(¢) C R are subsets such that all sets ¢="* (W), n € Z, are
disjoint. A similar statement can be also formulated [1] for the generalized Boole-type transformation:

dv(s)

S—X

R>x — ¢(x) :=ozx—|—a+/ e R, (3.18)

R

where a € R, ¢ € R4, and a measure dv(s), s € R, on R (not necessary absolutely continuous with respect to
the Lebesgue measure) has a compact support supp v C R and satisfies the following natural conditions:

/ dv(s) =a, /dv(s) < 00, (3.19)
R

1+ s2
R

ensuring the boundedness of its topological characteristics.

4. Two-Dimensional Boole-Type Transformations and Their Ergodicity

Multidimensional endomorphisms of measurable spaces are of great interest [12, 32] in mathematics from
many points of view, including number-theoretical aspects, numerical theory, theory of dynamical systems, and
diverse physical applications. We especially mention the works [12, 42, 43], where the author reviewed numerous
very interesting measure-preserving and ergodic multidimensional mappings. Relatively recently, in [9, 35, 37, 38],
the authors also proposed a set of new multidimensional Boole-type transformations ¢s: R” — R”, where

Yo (X1,X2,...,Xp) := (X1 = 1/x5q), X2 £ 1/X52). .-, Xn £ 1/X6n)) 4.1)

for any n € N and arbitrary permutations o € S, (the signs “+£” are chosen from the nondegeneracy condition

Jo(x) # 0. x € R"\{0}).
For the case n = 2, (x,y) € R2\{0,0}, we obtain the following nontrivial two-dimensional Boole-type

mapping:
p(x,y) = (x—=1/y.y + 1/x). 42)

At the same time, in the case n = 3, (x, ¥, z) € R3\{0, 0, 0}, we obtain the following nontrivial three-dimensional
Boole-type mapping:

¢+(x,y,2) 1= (x = 1/y,y + 1/2,2 + 1/x),
4.3)

(p_(x,y,z) = (X—l/y,y—l/Z,Z—l/X).
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We observe that the infinitesimal Lebesgue measure dA(x,y) := dxdy, (x,y) € R? in the plane R? is
invariant under mapping (4.2), which can be easily checked by using the Perron—Frobenius condition: For the
corresponding preimages

(s, v1) == (U (x, ), va(x, y))€R?,

where uju_ = xy L vgve = —yx L ug +u_ =2y 4+ x, v oo =y —2x", and p(ut,ve) =

(x,y) € R?, it is possible to check that the measure

D dusdvi(x,y) =) [Jupwi)(x, y)| dxdy
+ +

B dxdy dxdy
=2 2 (I + (uxve)?)

oz &

(wxv)?dx  [2qviu—v-)? + w-v-)* + (u4v4)?] dxdy
— (I + (uxv)?) [ evo)? + (v + (g vpu—vo)?]

_ [(u_v_)2 + (ugpvy)? + 2] dxdy
T Rt @)+ o2 dxdy. 4

exactly coincides with the Lebesgue measure dA(x, y) := dxdy, (x,y) € R2.

As far as the ergodicity of the Lebesgue measure-preserving mapping (4.2) is concerned, the approach based
on Theorem 2.1 subject to smooth fibered multidimensional mappings failed to be efficient. In view of the fact that
the ergodicity result of [33] subject to the one-dimensional Boole mapping (3.1) is strongly based on the induced
Kakutani transformation technique, one can expect that it can be also employed for the case of the two-dimensional
Boole mapping (4.1).

We now proceed to the notion of induced transformation [28, 29, 32] for a measure-preserving mapping
¢: X — X, which was efficiently used by Adler and Weiss [33], when proving the ergodicity of the one-
dimensional Boole transformation (3.1) being, in part, closely related to the classical Poincaré recurrence theorem
[15, 28]. Namely, let (X; B, i, ¢) be a measure-preserving discrete system and let A C X be a measurable set
with u(A) > 0 for which the following covering condition is true:

Uneng "A=X 4.5)
modulo a set of measure zero.

Remark 4.1. 1t is worth noting [15, 28, 29, 32] that if a measure-preserving system (X; B, u, ¢), u(X) =1,
satisfies the covering condition (4.5) for any chosen measurable A C X, u(A) > 0, then the mapping ¢: X — X
is ergodic. Indeed, if the measure-preserving mapping ¢: X — X is ergodic, then, for any measurable set B C X
satisfying the condition u(BAT~!B) = 0, we have either ;(B) = 1 or u(B) = 0. Now let A C X be a
measurable set with 1(A4) > 0. We construct a set B 1= U,en¢ "A. Since ¢"'B C B, we conclude that
u(go_lB) = wu(B), which gives rise to the equality u(BAT‘lB) = 0, i.e., either u(B) = 1 or u(B) = 0.
Moreover, since ¢ ' A C B, we conclude that either y(B) > j(A) or u(B) = 1. The latter evidently means that
B = Upen9g™A = X modulo a set of measure zero.
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Thus, owing to condition (4.5), the first return time t4 € N can be defined by the condition that
t4(x) := inf {n:¢"(x) € A, x € A} (4.6)
neN

exists almost everywhere and is finite.

Definition 4.1. Assume that a measure-preserving system (X;B, i, @) satisfies condition (4.5). Then a
mapping p4: A — A defined as

pa(x) 1= 9™ (x) 4.7)

for almost all x € A is called the transformation induced by the measure preserving mapping ¢: X — X on the
set A C X.

The induced mapping constructed above is characterized by the following important theorems [28, 29, 32]:

Theorem 4.1 (M. Kac’s theorem). Let a mapping ¢: X — X be ergodic and let a measurable set A C X be
chosen such that 0 < u(A) < oo. Then the average return time is proportional to the measure (A), i.e.,

fm@MMﬂ=MM) 4.8)
A

Theorem 4.2. The induced transformation (4.7) is a measure-preserving mapping in the space

(A, Bla, pa = p(A) " pla. 0a),

where Blga :={B N A: B € B} and 0 < u(A) < 0o. Moreover, if a mapping ¢: X — X is ergodic with respect to
a measure L, then the induced transformation g4: A — A is ergodic with respect to the measure jLq := |1/ (A)
induced on the set A.

As already indicated, just this theorem was used in [33] to prove the ergodicity of the Boole mapping (3.1).
As shown above, there also exists an efficient second essentially analytic approach that can be used to prove
ergodicity. It would be also useful to present two proofs, if any, of the ergodicity property of the two-dimensional
Boole type mapping (4.2).

Concerning the approach based on Theorem 4.2, its main technical ingredients are strongly related to the
construction of a special generating partition of the measured space X suggested by Kakutani and Rokhlin [44, 45]
for the corresponding induced mapping ¢4: A — A introduced above. In particular, let a mapping ¢: X — X be
ergodic. For a measurable set A C X satisfying the condition 0 < p(A) < oo, we consider its induced mapping
p4: A — A. As condition (4.5) is a priori satisfied [15, 28, 29, 32, 33], one can construct the following disjoint
measurable first return iteration subsets:

Xp={xeX:ig"(x) €A, ¢'(x)¢ A j=Tn—1}, 4.9)
where Uyen Xy = X, X, N Xy = O, m # n € N, satisfying the iterative expression

Xpr1 =@ X, nplac (4.10)
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Based on the sets (4.9), we construct, for all n € N, the sets
Ap = X, N A, B, = X, N A°, 4.11)
satisfying the following important properties of disjoint sum:
¢ !By = Bp1 UAnt1,  UpendAn = A, UnenBa = A°. (4.12)

We now consider an arbitrary measurable subset £ C A and note that

91 'E = Upen (¢7"E N 4y), (4.13)
implies the equality
1 (@7 E) = p (Unen (0 T"ENAn)) =Y (9™ E N Ay). (4.14)
neN

Further, on the basis of representation (4.12), in view of the invariance of measure, we can easily establish the
equalities

WE)=p(p  'E) =pu(e "EN(B1UA))
=u(p "ENBy)+u(p 'ENA,
((Bn) = (@7 Bn) = pt (Bpy1 U Any2) = (Bny1) + pu(An2),
pl@ T ENB) =pu(p™ (¢T'ENB)) = pu(p > ENg ' B) (4.15)

=u(p?EN(BaUAy) =p(e P ENBy) + (9 2ENBy),

wlo™ENBy) = (9" VE N Bagr) + 1 (07 HVE N Apa )

which are true for all n € N. As a simple consequence of equalities (4.15), we can also derive the equalities
o0 o0
(@ ™ENBy)= Y u(@ENAn). puB)= Y. wuldy), (4.16)

k=n+1 k=n+1

which are reduced to the following two expressions:
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pn(e™ENB,)+ Z p(e™"ENA,) = Z p(e™"E N Ap) = ng.
k=1,n neN

4.17)
p(A) = u(4n),  p(Br) =) n(An),
k=1

k=2

which simply means the invariance of the positive quantity n4 € R4 with respect to n € N and the boundedness
of the measure p(B1) < u(A), since the measure

u(A) = /'L( UneN An) <

is bounded by assumption. By using the first equality in (4.15), we immediately conclude that ng = u(4) > 0, i.e.,

(@ ™ENBy)+ > u(p™"EN Ay) = w(E). (4.18)
k=1,n

We now recall equality (4.14). Thus, by using (4.18) and (4.17), we obtain

(@]

(@ E)—n(B)| = tim [ > p(¢En )| +p(e™"ENBy)
k=n+1
o0
<2 lim [ Y pu(dp) | =0 (4.19)
k=n+1

due to the convergence condition (4.10) for the measure p(A) < oco. Thus, we conclude that M((pZIE ) = u(E)
for any measurable set £ C A. This means that the measure g = u/u(A) suitably induced on the set A C X is
also invariant under the induced mapping ¢4: A — A.

We now assume that the induced mapping ¢4: A — A is ergodic and take a set D C X, u(D N A) > 0, since
either u(D N A) > O or M(D N Ac) > 0, which is invariant under the mapping ¢: X — X, thatis ¢~ 'D = D.
It follows from expansion (4.13) that

(P,Zl(D N A) = UpeN ((p_n(D nA)nN An) = UpeN (D N (p_nA N An)
=D N (Unen (¢ "ANA,))=DNglA=DNA, (4.20)

since the initial assumption U,en¢ " A = X assures that go;lA = A modulo a set of measure zero. As
the induced mapping is assumed to be ergodic, it follows from (4.20) and the condition u(D N A) > O that
D N A = A. Thus, based once again on the initial assumption U,eng@ " A = X, we can simply obtain that

X = UneNgo_n(D N A) = UpeN ((p_nD N (p_nA)

=Upen (DN¢™"A4) = DN (Upenyp "4)=DNX =D, 4.21)
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which means that the mapping ¢: X — X is also ergodic.
Similarly, we state that the converse statement is also true. Indeed, if a mapping ¢: X — X is ergodic and a
set E C A, u(E) > 0, is g4-invariant, then

91 E =Upen (p"ENAy) = E. (4.22)

By using the invariance condition (4.22), we construct a set F := E U UueN (Bnﬂgo_”E) and compute its
@-mapping inverse:

¢ 'F =97 E U Upen (so‘an N w‘(”“)E)
= ¢ 'EUUyen ((Bn+1 UAp41) N <P_(n+1)E))
=9 'EU <|—|neN <Bn+1 N 90_(”“)E))
Je E U (Unert (Ans1 N9~V E))
= (4N 'EUB N 'E)U (uneN (B,,+1 N (p_(”'H)E))
JAine ' EuBing E) U (u,,eN (A,,H N (p—("“)E))

= ('—'neN (Bn N ‘p_nE)) U ('—'neN (An N (/)_nE))
= (Unen (BaN@"E))UE = F, (4.23)

that is ¢! F = F, which means its invariance under the mapping ¢: X — X. Thus, in view of its ergodicity,
we find that F = X modulo a null subset of X. If we now take into account that, by construction, the subset
UpeN (Bn Ne™E ) C A€, then we conclude that the set A € E modulo a null subset of X. Since, by assumption,
E C A, we finally get A = E, which means, respectively, that the induced mapping ¢4: A — A is also ergodic.

If we now try to apply the measure-theoretic construction proposed in [33] in order to prove the ergodicity
of the two-dimensional Boole mapping (4.2), then we soon arrive at very cumbersome technical complications,
which are quite difficult to overcome. Thus, it is reasonable to apply to this ergodicity problem the analytic
approach based on Theorem 2.1 if we take into account the fact that the two-dimensional Boole mapping (4.2) is
related to the following two-dimensional transformation:

T,:[0, )% 3 (s, 1) — ({25}, {2t}) € [0, 1)?
on the square ¥ = [0, 1) C R? owing to the following commutative diagram:

cot(o)

[0,1)2 = R2 R?
S| } cot™ ! x, (4.24)

Tw (o) a~!

0,12 S [0,1)2 — [0, 1)?
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where ¢~ 1:[0, 1)2 — R? stands for the mapping

_ _ 2cot{m(s + 1)}
7 lcot™!
s ayl(s, t)) (1 + sin{m (s — 1)}/ sin{z (s + t)})
ol = = (4.25)
4 @y (s,1) 1 o1 2cot{m(s —1)}
TN A\ T Fsin{n(s + 1))/ sinfr(s — 1)}

due to the change of variables x = cot(s), y = cot(xt), (s,t) € [0,1)2, (x,y) € R2, subject to the new
coordinates (s,?) € [0, 1)? and the transformation

STL0, )2 3 (s,0)—=>({s + 1}, {s —1}) € [0, 1)2.

This approach was proved to be successful and made it possible to obtain a proof of the ergodicity theorem for the
two-dimensional Boole transformation (4.1) announced earlier in [35-37].

Theorem 4.3. The two-dimensional Boole transformation (4.1) is ergodic with respect to the invariant
Lebesgue measure A on RZ.

Proof. We can now construct the proper cylindrical sets I, := In(ko.k1,,....kn—1:lo.l1,,....ln—1) C
[0,1)2,neZy:
—
I, = 1_[ (s~1 00k, o) (u,v) € [0, 1)? (4.26)
j=0,n—1

for the diffeomorphically equivalent ¢-mapping ¢ = ((,51,<Z)2)T:[0, 1)2 — [0,1), where, by definition,
Tpoor, , = 1d : [0.1)* = [0.1)%, 0y, 1, := (0x;.01,)" " kj.lj € {0.1}, j = 0.n—1, 0p(s) = s/2 if
s €[0,1/2),01(s) = (1 +s)/2ifs € [1/2,1), and

(@1, §2)T =cot H (mo)a o Ty oS, (4.27)

satisfy the following obvious conditions:

-1

@10 (S_1 o leot™! OOk, © 01 O cot(no)) (u,v) =u,

@z 0 (S_1 o Leot™! OOk, © 01 O cot(no)) (u,v) =v

for every (u,v) € [0,1)%, kj,l; € 0,1, j € 0,n — 1. The Lebesgue measure of the cylindrical interval (4.26) can
be now easily estimated as follows: By the definition of the Lebesgue measure of an interval, we get

A1) =/dudv = / x1, w,v)dudv
I, [0,1)2

B / ‘J(S_lwkn—lln—l°°‘)°(S_l°‘7kn—2~ln—2°“)°"'°(s_l°‘7k0~10°0‘)(u’v) dudy
[0,1)2
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= / l—[ |JS_1|JUkj,]_/- |Ja(u],vj)‘dudv
[0,1)2 j=0,n—1

:4i/ TT |Jatj, v)| dudv, (4.28)

[0,1)2 j=0,n—1

where, by definition, S™! o Ok;.1; ©a(uj,vj) = (Uj41,Vj+1) € [2-0+D 2772, PUjr1.v541) = (uj,vj),
j =0,n—1,and (ug, vo) := (u,v) € [0,1)2. In view of the fact that

(S_l O0k;_1,0j—1 ° Ot) ° (S_1 ©O0kp_,0p— ° Ot)

o (ST ooy, 0@) ([0, D)) C [1/27111/27) (4.29)

and 2t < sinnwt < mwt,2s <sinms < ms forall s,¢ € [0, 1/2], the Jacobian product in the integrand of (4.28) can
be represented as

1_[ Ja(uj, vj)

j=0,n—1

l—[ [coszn(uj +vj) + sin? U cosznvj] [coszn(uj —vj) + sinzm)j cos? nuj]
2

(1 — sin? TUj — sinznvj + 25sin® U sin” ;)

. 1—[ [1 — sinznvj + sin? U sinznvj — 1/2sin? 2muj sin27rvj]

2 2o 2 2
muj — sin® wv; + 2sin® wu; sin® wvj)

(1 — sin

x [ [t -sin®mu; + sin® u; sin®

j=0,n—1

mv; + 1/2sin? 27u; sin27vj ] (4.30)

One can easily obtain its estimation as follows:

37r2+1 . w2 3+1 Z 1—712+2(1—714)

—t = - — — =+ —)ex : :

4 T 4 2T @) 47 167
+

-1

n? N\ 272 +6 1
< ]_[ Ja(uj,vj)§|:1—7+<§):| exp Z(4j+l +16f+1) . 4.31)

Jj=0,n—1 JEZL 4

Thus, by using estimations (4.30), we get the following inequalities for the measure (4.28):

c C
4—,1 < A(Iy) < 4—5 (4.32)
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for any n € Z 4, where the bounded constants are given by the formulas

3n2 1 Tz 3 1 1—72 2(1—n%
= (2 1) (B -2 - — |
! (4 T )(4 2+42)eXp Z( ITRERINETS )

+

(4.33)

2 41! 22 4+6 1
T b/ b/
C2 = |:1—7+(§) i| exp Z ( 4j+1 + 16j+1)

JEZ+

Estimation (4.32) means that we can apply Lemmas 2.1 and 2.2. Thus, we assume that a measurable set
B C [0, 1)? is invariant:

B=¢ 'B=¢™"B, neN,

and find the following Lebesgue measure:

AMBNI,) = / xBnI, (u, v)dudv
[0,1)2

= / )(B(u,v))(ln(u,v)dudv=/)(B(u,v)dudv
[0,1)2 In

= / XAB < (S_l °© Ukn—laln—l ° Ol) °© (S_l °© O—kn—29ln—2 o 0()
[0,1)2

..o (S_1 0 Okl © a) (t))d/\( (S_1 © Ok, 10—y © (x)

0 (ST 00k, 1,5 0@) 0.0 (ST 00Ky 1y 0 @) (1, v))

= / to-r8((S™ 0 0,1,y 0@) 0 (ST 0 0%, 1, 0 )
0.1

..o (S_1 0 Oy lo oa))(u, v)d/\((S_1 © Ok, 10,1 O Q)

o(S7 ook, 51, ,00)0...0(ST ook, o)), v))

-1
° Gkn—Zaln—Z ° O[)

- / XB (¢n 0 (S_l 0 Gkn—lJn—l ° a) ° (S
[0,1)

..0 (S_1 0 Okl © a) (u, v))d)t( (S_1 OO0k, |.1y_s © oz)
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o(S7 ook, 51, ,00)0...0(ST ook, 0 ) )(u, v))

— / XB (M, U) ‘J(S_logkn—ljn—l °‘¥)°(S_loakn_z.ln_zoa)o-no(S_lOUkO,looa) (M, U) dudv
[0,1)?

_ / 150v) ] Vsl Jo,, [Jatuy.v))| dudv
[0,1)2 j=0,n—1

1
:47/ [ Jo(uj.vj)dudv. (4.34)
B

j=0,n—1

where we have used the property that the composition ¢ o (S 1o Ok;.1; © a) = Id forany j = 0,n — 1. Further,
it follows from (4.32) that

1
MBNI,)=— f xB(u,v) ]_[ Ja(uj, vj)

411
[0,1)2 j=0,n—1
.G A(In)A(B) > C1C5 ' A(In)A(B)
_4n/\(1n) n — L14y n s

i.e., the Lebesgue measure A(I,)A(B) < CA(B N I) for all n € Z 4, where the constant C := CzCl_l. Thus,
by virtue of Lemma 2.2, either the Lebesgue measure A(B) = 1 or A(B) = 0, which simultaneously means the
ergodicity of the two-dimensional Boole mapping (4.1) with respect to the same invariant Lebesgue measure A on
R2, which completes the proof.

As mentioned above, the Lebesgue measure on R3 is also invariant under the three-dimensional Boole-type
transformations (4.3), which are also plausibly ergodic. However, the proofs of this statement are still under search.

5. Conclusions

It is shown that Schweiger’s smooth fibered approach based on the Bernoulli-type shift transformations
technique is an efficient tool for proving the ergodicity of discrete measure-invariant dynamical systems. In
particular, we prove that the one- and two-dimensional Boole-type transformations are ergodic due to the infinite
Lebesgue measures.
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