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EVALUATION OF TWO-DIMENSIONAL STRESSES NEAR RIGID INCLUSIONS  
IN ANISOTROPIC MEDIA ACCORDING TO THE SHERMAN INTEGRAL  
EQUATIONS AND GREEN’S SOLUTIONS 

М. О. Maksymovych,1  H. Т. Sulym,2  and  Т. Ya. Solyar2,3 UDC 539.3 

We construct regularized Sherman-type integral equations for the plane anisotropic problem of the theo-
ry of elasticity with displacements given on the boundaries of the holes.  The integral representation of 
the general solution is obtained in terms of the Lekhnitskii complex potentials by using the Cauchy theo-
rem and, in the case of a half plane and a strip, with additional application of Green’s solutions.  The 
properties of the constructed solution are established.  According to the Sherman approach, we add 
regularizing components, which enable us to find a single-valued solution by numerical methods.  The 
developed approach is used to determine elastic stresses in the strip under the conditions of stretching 
through rigid patches.  We also study the distributions of stresses near rigid cylindrical inclusions in iso-
tropic materials and a mass of aleurolite rocks and analyze the mutual influence of inclusions on the 
stress distribution. 

Keywords:  anisotropic strip, inclusions, stress state, Green’s solutions, method of integral equations. 

Introduction 

The method of boundary integral equation (MBIE) is extensively used for the investigation of the stress-
strain state (SSS) of isotropic and anisotropic multiply connected plates.  In the available literature, the first 
basic problem in which forces are specified on the boundaries of the holes is studied most comprehensively [13–
15].  The problems of determination of the SSS of anisotropic plates with given displacements on the boundaries 
of the holes (in particular, with rigid inclusions) are studied much less completely.  In [2], for the solution of 
problems of this kind, the author used the method of series in combination with the method of conformal maps.  
The realization of this approach becomes much more complicated for domains of complex shape in the case 
where it is necessary to keep a large number of terms in the series representation of the mapping function.  The 
Lekhnitskii method and, in particular, its combination with the method of integral equations was used in [3, 7, 9, 
10]. 

As a result of direct application of the Somigliana representation to problems of elasticity with given dis-
placements on the boundaries of the holes, we obtain integral equations with logarithmic singularity in the ker-
nels [13].  The numerical analysis of these equations may lead to significant errors in domains of complex 
shapes for which it is necessary to introduce a large number of nodal points.  Singular integral equations       
were constructed on the basis of the Lekhnitskii potentials and the Cauchy theorem in [4, 12].  These equations 
are especially efficient in analyzing the problems with rigid inclusions.  For more difficult problems, the cor-
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responding equations contain singular integrals, which complicates the implementation of the analyzed ap-
proach. 

In the investigation of stresses for the second basic plane problem of the theory of elasticity, it is customary 
to use simpler Sherman-type integral equations [8].  In the present work, we construct equations of this kind for 
anisotropic media.  The procedure of regularization of the obtained equations is performed by introducing addi-
tional components in the same way as this was done in [8].  The boundary-value problems for a half plane and a 
strip containing inclusions are considered on the basis of Green's solution.  The problem is solved numerically 
by the method of mechanical quadratures. 

Rock masses often have anisotropic mechanical characteristics.  The investigations of stresses formed in 
these masses were carried out only in a few works [7, 15].  In the present work, we study the stresses acting near 
rigidly reinforced cylindrical cavities and their systems with isotropic and transversely isotropic mechanical 
characteristics. 

1. Statement of the Problem 

Consider an infinite anisotropic elastic medium occupying a domain  D  with holes bounded by contours  
Lj,   j = 1,…, J .  We denote the domains occupied by the holes by Dj .  Their centers of weight are denoted by 
Cj .  We also assume that displacements  (uD , vD )   are specified on the boundaries of the holes and the medium 
is loaded by concentrated forces and uniformly loaded at infinity.  The principal vector  (X j ,Yj )  and the princi-
pal moment  M j   (relative to the points  Cj)  of all forces applied to the boundary contours  Lj ,   j = 1,…, J ,  are 
regarded as known. 

The solution of the problem of elasticity theory is expressed via the Lekhnitskii potentials  Φ(z1)  and  
Ψ(z2 ),  where  zm = x + smy .  Here,  sm ,  m = 1, 2,  are the roots of the characteristic equation [3] 

 α11s
4 − 2α16s

3 + (2α12 +α66 )s
2 − 2α26s + α22 = 0 , 

with positive imaginary part and the coefficients  αij ,  i, j = 1, 2, 6 ,  are elastic constants of the material in the 
plane stressed state.  In analyzing the plane strained state, these coefficients are determined via the elastic con-
stants by the relations presented in [3]. 

To find potentials, it is necessary to satisfy the conditions imposed on the boundaries of the holes [3, 11] 

 2 Re p1ΦL (z1) ′z1 + p2ΨL (z2 ) ′z2[ ] = UD, 
   (1) 
  2 Re[q1ΦL (z1) ′z1 + q2ΨL (z2 ) ′z2 ] = VD , 

where  

 ′zi = dzi
ds

,      UD = duD
ds

,      VD = dvD
ds

, 

 pi = α11si
2 − α16si + α12,      qi = α12si − α26 + α22

si
,    i = 1, 2. 
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Here and in what follows, the arc coordinate  s   increases in the course of motion along the boundary in the 
direction for which the domain  D  remains on the left side; moreover, integration is carried out in the same di-
rection. 

In the case where displacements are given on the boundaries of the holes in isotropic materials, Sherman-
type integral equations proved to be quite efficient [8].  We now construct equations of this kind for anisotropic 
plates.  To do this, we introduce bounded plates occupying the domains  Dj ,   j = 1,…, J .  Assume that the dis-

placements  uD (x, y)  and  vD (x, y),  (x, y)∈Lj   are specified on their boundaries  Lj.  By  (u− , v− )  we denote 

the displacements formed in this case in the domains  Dj   and by  (X− ,Y − )  we denote the corresponding vector 
of stresses on the boundary contour.  

On the contours  Lj ,  the vector of displacements is continuous, whereas the stress vectors have jumps  

P = XD − X−  and  Q = YD −Y −. 
Consider a domain, which is either internal or external relative to an arbitrary closed contour  Γ .  Denote by  

(u, v)  and   (XΓ ,YΓ)  the boundary values of the vectors of displacements and stresses on the contour  Γ   for this 
domain, respectively. 

Then the following relations are true on the contour  Γ  [12]: 

 Φ(z1) = − ′v + s1 ′u + p1XΓ + q1YΓ
Δ1 ′z1

,      Ψ(z2 ) = − ′v + s2 ′u + p2XΓ + q2YΓ
Δ2 ′z2

, 

where   ′u = du/ds ,   ′v = dv/ds , 

 Δ1 = α11(s1 − s2 )(s1 − s1)(s1 − s2 ),      Δ2 = α11(s2 − s1)(s2 − s1)(s2 − s2 ). 

This implies that the Lekhnitskii potentials have a jump on the contours  Lj,   j = 1,…, J ,  namely, 

 Φ+ − Φ− = p1P + q1Q
Δ1 ′z1

      and      Ψ+ − Ψ− = p2P + q2Q
Δ2 ′z2

, 

where the boundary values of potentials on the contour in the domain  D  are marked by the superscript  “+”,  
whereas on the contour in the domain  Dj ,  the values of potentials are marked by the superscript  “–”,  and  P  
and  Q   are unknown functions. 

Thus, by virtue of the Cauchy theorem, as in [12], we obtain the following  Sherman-type integral represen-
tations for the Lekhnitskii potentials: 

 Φ(z1) = ΦL (z1) + ΦD (z1), 

   (2) 
 Ψ(z2 ) = ΨL (z2 ) + ΨD (z2 ), 

where 
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 ΦL (z1) = Φ3(z1,T )P(s)+Φ4 (z1,T )Q(s)[ ]ds
L
∫ , 

 ΨL (z2 ) = Ψ3(z2,T )P(s)+Ψ4 (z2,T )Q(s)[ ]ds
L
∫ , 

 ds = (dξ)2 + (dη)2 ,  T   is the point with respect to which we perform integration,  T (ξ, η)∈L ,  and  

 L = L1 +…+ LJ ,  

 Φk (z1,T ) = − Ak
z1 − t1

,      Ψk (z2,T ) = − Bk
z2 − t2

,    k = 3, 4,    t1,2 = ξ+ s1,2η, 

   (3) 

 A3 = − ip1
2πΔ1

,      A4 = − iq1
2πΔ1

,      B3 = − ip2
2πΔ2

,      B4 = − iq2
2πΔ2

. 

The potentials  ΦD  and  ΨD   give the solution of the problem of elasticity theory for a solid plane loaded 
by concentrated forces and forces applied at infinity. 

2. Properties of Solution (2) 

І.  We now find the resultant of forces applied to the contour  Lj  and corresponding to potentials (2).  For 
this purpose, we draw a closed contour  Γ   in the domain  D  around the boundaries  Lj,   j = 1,…, J .  The vec-
tor of stresses on this contour is determined by the following formulas [3]: 

 YΓ = −2 Re ΦL (z1) ′z1 +ΨL (z2 ) ′z2[ ], 
   (4) 
 XΓ = 2 Re s1ΦL (z1) ′z1 + s2ΨL (z2 ) ′z2[ ],    (x, y)∈Γ . 

The resultant of forces  (Px , Py )  corresponding to the vector of stresses  (XΓ ,YΓ )  is given by the following 
formulas: 

 Px = 2 Re s1 ΦL (z1) ′z1 dsΓ
Γ
∫ + s2 ΨL (z2 ) ′z2 dsΓ

Γ
∫

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, 

 Py = −2 Re ΦL (z1) ′z1 dsΓ
Γ
∫ + ΨL (z2 ) ′z2 dsΓ

Γ
∫

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
. 

According to the residue theorem, we get  
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ΦL ′z dsΓ
Γ
∫ = P Φ3 ′z1 dsΓ

Γ
∫ +Q Φ4 ′z1 dsΓ

Γ
∫

⎛

⎝
⎜

⎞

⎠
⎟ ds

Lj

∫ = − 1
Δ1

(p1P + q1Q)ds
Lj

∫ , 

 

 

ΨL1 ′z2 dsΓ
Γ
∫ = P Ψ3 ′z2 dsΓ

Γ
∫ +Q Ψ2 ′z2 dsΓ

Γ
∫

⎛

⎝
⎜

⎞

⎠
⎟ ds

Lj

∫ = − 1
Δ2

(p2P + q2Q)ds
Lj

∫ . 

Hence, we find 

 Px = − (s11P + s21Q) ds
Γ
∫       and      Py = (s10P + s20Q) ds

Γ
∫ , 

where 

 s1k = 2 Re p1s1
k

Δ1
+ p2s2

k

Δ2

⎛
⎝⎜

⎞
⎠⎟

      and    s2k = 2 Re q1s1
k

Δ1
+ q2s2

k

Δ2

⎛
⎝⎜

⎞
⎠⎟

,    k = 0,1. 

By virtue of [11, 12], we obtain   

 s10 = s21 = 0 ,  s11 = 1,  and  s20 = −1.   

Then 

 Px = − P ds
Γ
∫       and     Py = − Q ds

Γ
∫ . 

Directing the contour  Γ   toward the contour  Lj,  we establish the following conditions: 

 X j = P ds
Lj

∫       and     Yj = Q ds
Lj

∫ ,     j = 1,…, J . (5) 

Similarly, it can be proved that the principal moment relative to the point  
 
Cj(x j

C , yj
C)  (center-of-weight of 

the domain  Dj )  is determined as follows:  

 

 

M j = (y − yjC)P −(x − x jC)Q( )ds
Lj

∫ ,     j = 1,…, J . (6) 

Thus, the unknown functions  P   and  Q   must satisfy conditions (5) and (6). 

ІІ.  We find the integrals of the derivatives of displacements on the indicated contour  Γ   corresponding to 
potentials (2).  By using formula (1), we can write 
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 ′u ds
Γ
∫ = 2 Re p1 Φ(z1) ′z1 dsΓ

Γ
∫ + p2 Ψ(z2 ) ′z2 dsΓ

Γ
∫

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, 

   (7) 

 ′v ds
Γ
∫ = 2 Re q1 Φ(z1) ′z1 dsΓ

Γ
∫ + q2 Ψ(z2 ) ′z2 dsΓ

Γ
∫

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
. 

Hence, for   j = 1,…, J ,  we find 

 

  

[u] = ′u ds
Lj

∫ = − (r20P + r11Q)ds
Lj

∫ , 

 

  

[v] = ′v ds
Lj

∫ = − (r11P + r02Q)ds
Lj

∫ , 

where 

 r20 = 2 Re p1
2

Δ1
+ p2

2

Δ2

⎛
⎝⎜

⎞
⎠⎟

,      r11 = 2 Re p1q1
Δ1

+ p2q2
Δ2

⎛
⎝⎜

⎞
⎠⎟

,      r02 = 2 Re q1
2

Δ1
+ q2

2

Δ2

⎛
⎝⎜

⎞
⎠⎟

. 

According to [11, 12], we have 

 r20 = r11 = r02 = 0. 

This yields the following conditions, which are identically satisfied: 

 ′u ds = 0
Lj

∫       and     ′v ds = 0
Lj

∫ ,     j = 1,…, J . (8) 

3. Integral Equations  

The integral equations for finding the functions  P   and  Q   are obtained from the condition that the vector 
of displacements on the boundaries of the holes is equal to a given vector [11].  In this case, we assume that the 
boundary of each hole may rotate as a rigid body.  Substituting potentials (2) in relation (1) and applying the 
Sochocki–Plemelj formulas, we arrive at the following system of equations: 

 
 
2 Re p1 !ΦL (z1) ′z1 + p2 !ΨL (z2 ) ′z2⎡⎣ ⎤⎦ + H1 = f − ω j

dy
ds

, 

   (9) 

 
 
2 Re q1 !ΦL (z1) ′z1 + q2 !ΨL (z2 ) ′z2⎡⎣ ⎤⎦ + H2 = g + ω j

dx
ds

,       (x, y)∈L , 
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where   
!ΦL   and   

!ΨL   are potentials (2) in which integrals are understood in a sense of Cauchy principal value, 

  H1 = (Pr20 +Qr11)/2 ,       H2 = (Pr11 +Qr21)/2, 

  f = UD (x, y) − 2 Re [p1ΦD (z1) ′z1 + p2ΨD (z2 ) ′z2 ], 

  g = VD (x, y) − 2 Re [q1ΦD (z1) ′z1 + q2ΨD (z2 ) ′z2 ]. 

In the system of equations (9), the rotation of the boundary of each hole as a rigid body by an unknown an-
gle  ω j ,  which is determined in what follows from the condition that the moment applied to the boundary is 
known, is added to the displacements specified on the contours. 

According to [12], we obtain  H1 = H2 = 0. 
Substituting potentials (2) in conditions (9), we arrive at the following equations: 

 U1
L (Z,T )P(T )+U2

L (Z,T )Q(T )⎡⎣ ⎤⎦ds
L
∫ = g(Z ), 

 V1
L (Z,T )P(T )+V2

L (Z,T )Q(T )⎡⎣ ⎤⎦ds
L
∫ = f (Z ), (10) 

 

 

(y − yjC)P −(x − x jC)Q( )ds
Lj

∫ = M j ,     j = 1,…, J , 

where  U j
L (Z,T )  and  Vj

L (Z,T )  are the derivatives of displacements at the point  Z(x, y)∈L   determined by 
using relations (1) via the complex potentials  Φ j (z1,T ),  Ψ j (z2,T ),   j = 1,…, J ,  and  T (ξ, η)∈L . 

According to the properties of the chosen general solution presented above, the integral equations have ei-
gensolutions and, moreover, conditions (5), (6) must be satisfied.  To solve equations of this kind, we use the 
Sherman approach [8].  For this purpose, to the general solution (2) (i.e., to the potentials  ΦL  and  ΨL )  on the 
right side we add 

 ΦΔ (z1) =
j=1

J

∑ Pj
ΔΦ1(z1,Cj )+Qj

ΔΦ2(z1,Cj )⎡⎣ ⎤⎦ , 

   (11) 

 ΨΔ (z2 ) =
j=1

J

∑ Pj
ΔΨ1(z2,Cj )+Qj

ΔΨ2(z2,Cj )⎡⎣ ⎤⎦, 

where  Pj
Δ   and  Qj

Δ  are unknown constant quantities and the functions  Φk   and  Ψk ,  k = 1, 2 ,  are determined 
by using relations (3) in which 
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 A1 = − is1
2πΔ1

,      A2 = i
2πΔ1

,      B1 = − is2
2πΔ2

,      B2 = − i
2πΔ2

. 

The functions  Φk   and  Ψk ,  k = 1, 2 ,  are dislocation solutions [12], i.e., solutions specifying the dis-
placements with jumps as a result of complete traversing around the points  Cj .  Thus, on the right-hand sides of 
Eqs. (10), it is necessary to replace  f (Z )  and  g(Z )  by  f (Z )+ fΔ (Z )  and  g(Z )+ gΔ (Z ), respectively, where 

 fΔ =
j=1

J

∑ Pj
ΔV1 j (Z )+Qj

ΔV2 j (Z )⎡⎣ ⎤⎦,      gΔ =
j=1

J

∑ Pj
ΔU1 j (Z )+Qj

ΔU2 j (Z )⎡⎣ ⎤⎦ , 

and  Ukj
L (Z )   and  Vkj

L (Z )  are the derivatives of displacements at the point  Z(x, y)∈L   given by relations (1) via 
the corresponding complex potentials  Φk (z1,Cj ),  Ψk (z2,Cj ),  k = 1, 2 . 

We relate the constants  Pj
Δ   and  Qj

Δ  to the functions  P   and  Q   as follows:  

 Pj
Δ = P ds

Lj

∫ − X j       and      Qj
Δ = Q ds

Lj

∫ − Yj . (12) 

It is easy to see that if we find the solution of the integral equations (10) modified in this way, then, instead 
of the identities established above, we get the following equation on each contour  Lj: 

 Pj
Δ = 0 ,      Qj

Δ = 0,     j = 1,…, J , 

i.e., conditions (5) are satisfied. 
The integral equations (10) are solved with the help of the quadrature formulas for regular and singular in-

tegrals on closed contours presented in [5, 11]. 
The solution constructed above can be generalized to the case of domains of more complex shapes with the 

help of Green’s solutions.  In particular, we write the integral equations for the half plane  y < 0   with holes on 
the basis of Green’s solution.  These equations are obtained if, in relations (2) and (11), we set [4] 

 Φk (z1) = − Ak
z1 − t1

+α1
Ak

z1 − t1
+β1

Bk

z1 − t2
⎛
⎝⎜

⎞
⎠⎟

, 

 Ψk (z2 ) = − Bk
z2 − t2

+α2
Ak

z2 − t1
+β2

Bk

z2 − t2
⎛
⎝⎜

⎞
⎠⎟

,     k = 1,…, 4 , 

where 

 α1 = s1 − s2
δ1

,      α2 = s1 − s1
δ1

, 
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Fig. 1.  Tension in a boron-epoxy strip with circular inclusion. 

 β1 = s2 − s2
δ1

,      β2 = s1 − s2
δ1

,    δ1 = s2 − s1. 

Moreover, we assume that the potentials  ΦD  and  ΨD   specify the solution of the problem of elasticity 
theory for solid half plane with load-free boundary subjected to the action of forces applied to the body. 

If we use Green’s solutions, then the conditions imposed on the horizontal boundary are automatically satis-
fied. 

The functions  Φ3,4   and  Ψ3,4  for the strip are presented in [6]. 

4. Numerical Results  

4.1.  Tension of a Strip Containing an Inclusion.  Consider a boron–epoxy [6]  strip −H < y < 0   contain-
ing a circular central inclusion of radius  R .  Assume that the strip is stretched by forces  p   and its boundaries 
are free of loads.  We represent the solution as the sum of two components.  The first component corresponds to 
the stresses formed in the solid strip  σx

0 = p ,  σy
0 = 0 ,  and  τxy

0 = 0.  The displacements in this strip are given by 
the formulas  

 u0 = εx
0x + γ xy

0 y,      v0 = εy
0y, 

where 

 εx
0 = a11σx

0 + a12σy
0 + a16τxy

0 , 

 εy
0 = a21σx

0 + a22σy
0 + a26τxy

0 , 

 γ xy
0 = a61σx

0 + a62σy
0 + a66τxy

0 . 
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Fig. 2.  Relative normal stresses on the boundary of the right inclusion in the case of tension by forces  P . 

The second component is a correcting solution.  Its determination is reduced to the analysis of the bounda-
ry-value problem (1) in which 

 UD = − εx
0 dx
ds

+ γ xy
0 dy
ds

⎛
⎝

⎞
⎠ ,        VD = −εy

0 dy
ds

, 

and the inclusion is assumed to be unloaded. 
In Fig. 1, we present the results of evaluation of the relative normal stresses   σ = σn/p.  The solid lines cor-

respond to case where the stiffness of the material is maximum in the vertical direction, whereas the dashed lines 
correspond to case where the stiffness of the material is maximum in the horizontal direction.  The curves were 
computed for the following ratios of the diameter of the inclusion to the width of the strip:   2R/H = 0, 0.5, 0.8.  
Here and in what follows, the angular coordinate  θ = −90°  corresponds to the highest point of the circle and, 
moreover, this coordinate increases as we move in the clockwise direction. 

In Fig. 1, we see that the highest stresses near the inclusion appear for small sizes of the inclusion.  As the 
sizes of the inclusion increase, the level of normal stresses decreases.  For the maximum stiffness of the material 
in the vertical direction, the stresses are much higher than in the case where the stiffness of the material in this 
direction is minimum. 

The numerical analysis was carried out for an isotropic material with Poisson’s ratio  ν = 0.3  and a small 
radius of the inclusion (R/H = 0.01).  In the case of 80 chosen nodal points, the computed maximum normal and 
circumferential stresses referred to  p   are equal to 1.477 and 0.6299.  These values are in good agreement with 
the data obtained on the basis of the analytic solution, namely, 1.4778 and 0.6333 [3].  

4.2. Tension of a Strip by Forces Applied to Inclusions.  We consider a boron–epoxy strip with two circu-
lar inclusions of radius  R = 0.25 H  centered at the points  (±mH , −0.5H ).  Concentrated forces  (−P, 0),  
(P, 0)  are applied to the centers of the inclusions.  The relative normal stresses   σ = σn/PH   on the boundary of 
the right inclusion computed for the values  m = 0.5, 1, 100  are presented in Fig. 2.  The solid curves correspond 
to the case where the stiffness is maximum in the vertical direction, while the dashed curves correspond to the 
case where the stiffness is maximum in the horizontal direction. 
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Fig. 3.  Stresses between inclusions. 

For small distances between the inclusions,  m <1,  the highest stresses on their boundaries are formed in 
the domains that are closer to the center of the strip.  At the same time, at remote points, the stresses are practi-
cally absent.  As the distance between inclusions increases, the maximum stresses on the boundary become low-
er.  The lowest stresses are formed for large distances between the inclusions.  Moreover, these stresses are low-
er than the stresses averaged over the thickness of the strip. 

In Fig. 3, we show the plots of normal relative stresses   σx/PH   in the vertical section between the inclu-
sions for m = 0.5, 1, 2.  

If the distances between the inclusions are larger than two thicknesses (for  m ≥1),  then the stresses formed 
in the region between the inclusions are almost constant and equal to the stresses acting in the solid strip in the 
case where the stiffness is maximum in the vertical direction;  the same picture is observed if the distances be-
tween the inclusions are larger than four thicknesses (for  m ≥ 2 )  and the stiffness is maximum in the horizontal 
direction.  For smaller distances,  m <1,  the stresses noticeably differ from their values averaged over the thick-
ness of the strip. 

4.3.  Gravitational Stresses in a homogeneous body are represented in the following form (the Oy-axis is 
vertical) [1]: 

 σy
0 = γy ,      σy

0 = λσy
0 ,      τxy

0 = 0 , (14) 

where  γ   is the specific weight of the body.  
The coefficient of lateral pressure  λ   is determined experimentally [1].  The researchers often use the 

Dynnyk hypothesis according to which only vertical displacements occur in a homogeneous massif and, there-
fore, for an isotropic material under the condition of plane deformation, we get   λ = ν/(1− ν). 

In the case of orthotropic material, the displacements are as follows: 

 u = a11λγyx ,      v = a22γy
2 − a11λγx

2

2
. 
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Fig. 4.  Stresses formed near the inclusion in an isotropic material under the action of its own weight. 

 

Fig. 5.  Relative normal stresses on the boundary of aleurolite and the inclusion. 

The stresses formed in the massif with inclusions are represented as the sum of the gravitational stresses 
(14) and a correcting solution.  We express the correcting solution in terms of the Lekhnitskii potentials  Φ(z1)   
and  Ψ(z2 ) determined from the boundary conditions (1) for 

 UD = −a11λγ ′y x + x ′y( )     and      VD = −a22γy ′y + a11λγx ′x , 

where   ′x = dx/ds   and   ′y = dy/ds. 
Consider a half plane  y < 0   in the plane strain state under the action of its own weight.  It is assumed that 

the inclusion has a circular shape of radius  R  and its center is located at the point  (0, −H ).  The material is 
supposed to be isotropic with Poisson’s ratio  ν = 0.3.  It is also assumed that the densities of the inclusion and 
the base material are equal.  In Fig. 4, we show the plots of the computed relative normal stresses   σn/γH   (sol-
id curves) and circumferential stresses   σθ/γH   (dashed curves) on the boundary of the inclusion for the follow-
ing ratios of the radius of the inclusion to the depth:   R/H = 0.1, 0.25, 0.5, 0.75.   



892 М. О. MAKSYMOVYCH,  H. Т. SULYM,  AND  Т. YA. SOLYAR 

In Fig. 4, we see that the highest compressive stresses are formed near the bottom part of the inclusion.  
These stresses increase with the sizes of the inclusion.  The magnitude of circumferential stresses is much small-
er than the magnitude of normal stresses. 

We consider the transport material (aleurolite) [1].  The computed relative normal stresses on the boundary 
of the inclusion are shown in Fig. 5.  In this figure, the solid curves correspond to the case where the density of 
the base material and the density of the inclusion are identical; the dashed curves correspond to case where the 
density of the inclusion material is twice lower than the density of the base material, and the dash-dotted curves 
correspond to case where the density of the material of the inclusion is two times higher than the density of the 
base material. 

It is easy to see that the magnitude of the maximum normal stresses increases with the weight of the rein-
forcing inclusion. 

CONCLUSIONS 

We propose an approach to the investigation of two-dimensional stresses in anisotropic materials with rigid 
inclusions based on the method of boundary integral equations.  The equations are written on the basis of the 
Lekhnitskii potentials and the Cauchy theorem.  The deduced equations are regularized by the Sherman method.  
The integral equations for a half plane and a strip are generalized by using Green’s solutions for which the 
conditions imposed on the rectilinear boundaries are identically satisfied.  By using the developed approach, we 
study the stresses formed in the strip in the course of its tension at infinity and by concentrated forces applied to 
the inclusions.  We also performed the analysis of stresses acting on the boundaries of the inclusions and in their 
vicinities.  In particular, it is established that the stresses formed on the boundaries of inclusions are lower than 
the stresses averaged over the width of the strip.  In the case of tension at infinity, the stresses are concentrated 
in the regions located in the direction opposite to the direction of action of the forces.  The stresses with the 
lowest magnitude are formed near inclusions for large distances between the inclusions. 

We also determine elastic stresses near cavities in the massifs of rocks reinforced by rigid materials.  The 
stresses near the cavities with circular sections are investigated for isotropic materials and a massif of aleurolite 
rocks with regard for their own weight.  We considered inclusions with different specific weights. 

On behalf of all authors, the corresponding author states that there is no conflict of interest. 
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