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HOLOMORPHIC CONTINUATION OF FUNCTIONS
ALONG A FIXED DIRECTION (SURVEY)

A. S. Sadullaev UDC 517.55

Abstract. In this article, we give an overview of the most significant and important results on holo-
morphic extensions of functions along a fixed direction. We discuss the following geometric questions
of multidimensional complex analysis:

• holomorphic extension along a bundle of complex straight line, the Forelly theorem;
• holomorphic continuation of functions with thin singularities along a fixed direction;
• holomorphic continuation of functions along a family of analytic curves.
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1. Introduction

The classical Hartogs’s theorem states that if the function f (′z, zn) is holomorphic in the poly-
circle ′U × {|zn| < rn} , rn > 0 and is such that for any fixed ′z0 ∈ ′U the function f

(′z0, zn
)
,

which is holomorphic by zn in the circle {|zn| < rn} , is holomorphically extended to the bigger circle
{|zn| < Rn} , Rn > rn, then f (′z, zn) is holomorpically extended to the polycircle ′U × {|zn| < Rn}
by (′z, zn).

Hartog’s theorem proved in the beginning of the previous century was developed and extended
in many ways. In the literature one can find a large variety of papers and books contatining such
extensions and applications in various fields of mathematics. In this paper we briefly describe the next
Hartog’s type theorems:

• a holomorhpic extension of formal series along a bundle of complex straight lines (Forelli’s
theorem);

• a holomorphic extension of the functions with thin singularities along a fixed direction (Chirki–
Sadullaev theorem);

• a holomorphic extension of the function along a family of analytic curves.
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The main method used in the study of the considered questions is pluripotential theory, as well as
the object and methods of this theory such as polyharmonic measures, Green’s functions, capacities
etc. We recall the basics of pluripotential theory in Sec. 2 (more details can be found, e.g., in [9, 24,
25, 27]).

2. Elements of Pluripotential Theory

The classical potential theory is based on subharmonic functions and Laplace operator Δ. Pluripo-
tential theory developed in 1980-1990 based on plurisubharmonic (psh) functions is connected to
Monge–Ampère operator (ddcu)n, where, as usual, d = ∂ + ∂, dc = i

(
∂̄ − ∂

)
. The theory was built

thanks to the research of many authors, is being successfully developed and applied in various branches
of science (see [1–35] and the bibliography).

For the twice differentiable function u ∈ C2 (G) , G ⊂ C
n, by definition

(ddcu)k = ddcu ∧ ddcu ∧ . . . ∧ ddcu︸ ︷︷ ︸
k times

represents the differential form of bidegree (k, k) . It is easy to prove that

(ddcu)n = πnn! det

(
∂2u

∂zj∂ z̄k

)
βn,

where βn =
( i
2

)n n∏

j=1
dzj ∧ d z̄j is the capacity form in the space C

n.

The operator (ddcu)k for an arbitrary bounded plurisubharmonic function −M ≤ u (z) ≤ M,
M = const, is defined in the generalized sense as the stream. The recurrent relation

∫
(ddcu)k ∧ φ =

∫
u (ddcu)k−1 ∧ ddcφ, φ ∈ D(n−k,n−k) (G) , k = 1, 2, . . . , n, (2.1)

where D(n−k,n−k) (G) is the space of infinitely smooth finitely differentiable forms of the bidegree

(n− k, n − k) , defines (ddcu)k as a positive stream of the bidegree (k, k) . The fundamental theo-

rem of pluripotential theory states that streams (ddcuj)
k weakly converges for monotonically de-

creasing locally bounded sequence of psh functions: if uj (z) ∈ psh (G)
⋂

L∞
loc (G) , uj (z) ↓ u (z) ,

then (ddcuj)
k �→ (ddcu)k . This circumstance allows us to apply the stream of the measure type

(ddcu)k to the class u (z) ∈ psh (G)
⋂

L∞
loc (G) as the differential form (ddcu)k to the class u (z) ∈

psh (G)
⋂

C2 (G) .
For a subset E ⊂ G of the space G ⊂ C

n define a P-measure. Put

ω (z,E,G) = sup {u (z) ∈ psh (G) : u|E ≤ −1, u|G < 0} .
Then the regularization ω∗ (z,E,G) = lim

w→z
ω (z,E,G) is called a P-measure of the set E relative to the

domain G. In substantive theory we usually suppose that the domain is G-regular and that there exists
a function ρ (z) ∈ psh (G) such that ρ|G < 0, lim

z→∂G
ρ (z) = 0. In these assumptions the P-measure

ω∗ (z,E,G) either not equals zero anywhere, −1 ≤ ω∗ (z,E,G) < 0, or ω∗ (z,E,G) ≡ 0. The last
expression holds iff E is pluripolar in G, i.e., there exists a plurisubharmonic function σ (z) 
≡ −∞ such
that σ|E ≡ −∞. In applications, especially in the estimates of holomorphic functions, the following
two constants theorem is used: if u ∈ psh (G) , u|G ≤ M, u|E ≤ m, then

u (z) ≤ M (1 + ω ∗ (z,E,G))−mω ∗ (z,E,G) ∀z ∈ G. (2.2)

Inequality (2.2) is meaningful if E is not a pluripolar set, i.e., if ω∗ 
≡ 0.
Similarly to harmonic functions in the classical potential theory, a locally bounded pluriharmonic

function u (z) ∈ psh (G)
⋂

L∞
loc (G) is called maximal function if its Monge–Ampère operator equals

zero: (ddcu)n = 0. For n = 1 Monge–Amp’ere operator ddcu = 4Δudx∧dy. Hence, maximal functions
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in the case n = 1 are pluriharmonic and hence they are infinitely smooth. Unlike the case n = 1, for
n > 1 maximal functions are not necessarily smooth: they can be even discontinuous. Nevertheless,
the following theorem holds.

Theorem 2.1. For any compact set K ⊂ G the plurisubharmonic function ω∗ (z,K,G) is maximal
and (ddcω∗ (z,K,G))n = 0 in the domain G\K.

Next, the function ω (z,K,G) , which is equal to −1 at the points z ∈ K, can be discontinuous
after regularization: at some points z0 ∈ K there may be the case ω

(
z0,K,G

)
> −1. Such points

are called (pluri)irregular points of the compact set K. Is the set of irregular points IK =
{
z0 ∈ K :

ω∗ (z0,K,G
)
> −1

}
= ∅, i.e., all the poins of the compact set K are pluriregular, K is called a

pluriregular compact set. Pluriregular compact sets play an important role in the pluripotential theory.
For them the following theorem holds.

Theorem 2.2. If K is a pluriregular compact set in the pluriregular domain G ⊂ C
n, then P-measure

ω∗ (z,K,G) is continuous in G.

The quantity

C (K,G) =

∫

K

(ddcω∗)n =

∫

G

(ddcω∗)n

is called the capacity of (K,G). For an open set U ⊂ G its capacity is defined as C (U,G) =
sup{C (K,G) : K ⊂ U, K is a compact set}. And finally, the quantity C∗ (E,G) = inf{C (U,G) :
U ⊃ E, U is open} is called the outer capacity of an arbitrary set E ⊂ G.

Outer capacity C∗ (E,G) of the set E ⊂ G is nonnegative, C∗ (E,G) ≥ 0, and it equals zero,
C∗ (E,G) = 0, iff E is pluripolar. Moreover, the function of the set C∗ (E,G) satisfies all Choquet
measurability conditions and Borel sets are measurable relative to C (E,G): if E ⊂ G is a Borel set,
then its inner and outer capacities coincide,

C∗ (E,G) = C∗ (E,G) = sup {C (K,G) : K ⊂ E, K is a compact set} .
In the descriptions of holomorphic hulls Green’s function plays a large role in the space C

n. For a
set E ⊂ C

n Green’s function V (z,E) is defined by Lelon class

L = {u (z) ∈ psh (Cn) : u (z) ≤ α+ log (1 + |z|) ∀z ∈ C
n, α = α (u) = const } .

Put V (z,E) = sup {u (z) ∈ L : u|E ≤ 0} ; then the regularization V ∗ (z,E) is called a generalized
Green’s function, or, simply, Green’s function. The function V ∗ (z,E) ≥ 0 either belongs to the
class L or V ∗ (z,E) ≡ +∞. The latter holds iff the set E is pluripolar. The function V ∗ (z,E) is
monotonical function by E : from E1 ⊂ E2 should V ∗ (z,E1) ≥ V ∗ (z,E2) . If an open set U ⊂ C

n is

represented as the union of the increasing sequence of compact sets, U =
∞⋃

j=1
Kj , Kj ⊂ Kj+1, then

V ∗ (z, U) = lim
j→∞

V ∗ (z,Kj) . For an abitrary set E ⊂ C
n there exists a decreasing sequence of compact

sets

U1 ⊃ U2 ⊃ . . . , Uj ⊃ E : V ∗ (z,E) =

[
lim
j→∞

V ∗ (z, Uj)

]∗
.

For pluriregular compact sets K ⊂ C
n, V ∗ (z, K) |K ≡ 0, Green’s function is continuous in the

whole C
n. In this case the open set {V ∗ (z,K) < β} contains a compact set K, K ⊂ {V ∗ (z,K) < β}

∀β > 0.

For any polynomial Pm (z) , degP ≤ m, the function
1

m
log |P (z)| ∈ L. Hence, the Bernstein–Walsh

inequality holds:
1

m
log |P (z)| ≤ 1

m
log ‖P (z)‖K + V (z,K) . (2.3)
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The set of all function of the form
1

degP
log |P (z)| , where P (z) are polynomials in C

n, is a proper

subclass in L. Therefore,

V (z,K) ≥ sup

{
1

degP
log |P (z)| : ‖P‖K ≤ 1

}
. (2.4)

Actually, (2.4) is an equality.

Theorem 2.3. For any compact set K ⊂ C
n the following equality holds:

V (z,K) = sup

{
1

degP
log |P (z)| : ‖P‖K ≤ 1, P are polynomials

}
. (2.5)

Below we need Green’s function for circle compact sets. Let K ⊂ C
n be a circle compact set, i.e.,

with each point z0 ∈ K the compact set K contains all point of the form eiφz0, φ ∈ R. It follows
from (2.5) that Green’s function V (z,K) of the circle compact set K coincides with Green’s function

V
(
z, K̂

)
of the polynomial convex hull K̂ with is the complete circle compact set.

Theorem 2.4. Let K ⊂ C
n be a circle compact set. Then

V (z,K) = sup

{
1

degP
log |P (z)| : ‖P‖K ≤ 1, P are polynomials

}

= sup

{
1

degQ
log |Q (z)| : ‖Q‖K ≤ 1, Q are homogeneous polynomials

}
.

Proof. The proof is conducted in two steps.

Step 1 (see [24, 25]). For the circle compact set K ⊂ C
n its polynomial convex hull K̂ coincides

with the convex hull K̃ relative to homogeneous polynomials. To show this, we have to show that
if z0 ∈ K̃, i.e., if

∣∣Q
(
z0
)∣∣ ≤ ‖Q‖K for any homogeneous polynomial Q, this equality holds for any

polynomial P (z) .

We fix a polynomial P (z) =
m∑

j=0
Qj (z) , m = degP such that ‖P‖K ≤ 1. For any complex line l

defined by z = λξ, where λ ∈ C
n is fixed, ‖λ‖ = 1 and ξ ∈ C is a parameter, the intersection l

⋂
K is

the circle {|ξ| ≤ r (l)} . Applying the Cauchy inequality for the cross-section P (z) |l =
m∑

j=0
Qj (λ) ξ

m,

we obtain |Qj (λ)| ≤ 1

rj (l)
, j = 0, 1, . . . ,m. This implies |Qj (λ) r (l)| ≤ 1, which is equivalent to

inequality ‖Qj‖K⋂
l ≤ 1. Therefore, ‖Qj‖K ≤ 1, j = 0, 1, . . . ,m, and for a fixed σ < 1 the following

holds:
∣∣P
(
σz0
)∣∣ ≤

m∑

j=0

∣∣Qj

(
z0
)∣∣ σj ≤ 1

1− σ
. This inequality holds for any polynomial R such that

‖R‖K = 1, in particular, for P k, k ∈ N, i.e.,
∣∣P k
(
σz0
)∣∣ ≤ 1

1− σ
, or
∣∣P
(
σz0
)∣∣ ≤ 1

(1− σ)1/k
. By taking

k → ∞ and then σ → 1 we obtain that
∣∣P
(
z0
)∣∣ ≤ 1.

Step 2. It is sufficient to prove the theorem for a polynomially convex compact set K̂ = K. Put

VO (z,K) = sup

{
1

degQ
log |Q (z)| : ‖Q‖K ≤ 1, Q are homogeneous polynomials

}
.

Then, on the one hand, VO (z,K) ≤ V (z,K) . On the other hand, we fix a number ε > 0, a point

z0 ∈ C
n\K and find a polynomial Pm (z) =

m∑

j=0
Qj (z) , m = degPm such that

‖Pm‖K ≤ 1, V
(
z0,K

)− 1

m
log
∣
∣Pm

(
z0
)∣∣ < ε. (2.6)
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By considering the cross-sections Pm|l = Pm (λξ) =
m∑

j=0
Qj (λ) ξ

j of the complex lines l of the type

z = λξ, λ ∈ C
n, ξ ∈ C, as shown above, by the Cauchy inequalities we get that ‖Qj‖K ≤ 1,

j = 0, 1, . . . ,m. From Pm (z) =
m∑

j=0
Qj (z) , V

(
z0,K

)− 1

m
log
∣
∣Pm

(
z0
)∣∣ < ε we obtain that for at least

one 0 ≤ j0 ≤ m

Pm (z) =
m∑

j=0

Qj (z) ,
∣
∣Qj0

(
z0
)∣∣ ≥

∣∣Pm

(
z0
)∣∣

m

and

V
(
z0,K

)− 1

m
log
∣
∣mQj0

(
z0
)∣∣ < ε. (2.7)

Since ‖Qj0‖K ≤ 1 and j0 ≤ m,
1

m
log
∣
∣Qj0

(
z0
)∣∣ ≤ VO

(
z0,K

)
. Hence, by (2.7),

V
(
z0,K

)− VO

(
z0,K

)
= V

(
z0,K

)− 1

m
log
∣∣mQj0

(
z0
)∣∣+

logm

m
≤ ε+

logm

m
.

Here we can put ε > 0 sufficiently small and m = degPm sufficiently large. From this we obtain that
V
(
z0,K

) ≤ VO

(
z0,K

)
, and combining with VO (z,K) ≤ V (z,K) we get that VO (z,K) = V (z,K) .

The theorem is proved.

Corollary 2.1. If K is a circle compact set belonging to the closed unit ball ‖z‖ ≤ 1, then

K̂ =

{
z : |z| · expV

(
z

|z| , K

)
≤ 1

}
.

Proof. Indeed, for any homogeneous polynomial Qm, ‖Qm‖K ≤ 1 we have

∣
∣∣
∣Qm

(
z

|z|
)∣∣∣
∣

1/m

≤ expV

(
z

|z| , K
)
.

Hence,

|Qm (z)| = |z|m
∣∣
∣
∣Qm

(
z

|z|
)∣∣
∣
∣ ≤
[
|z| expV

(
z

|z| , K
)]m

and, consequently,

K̃ ⊃
{
z : |z| expV

(
z

|z| , K
)

≤ 1

}
.

By step 1 of the proof of Theorem 2.4 we have K̃ = K̂, then

K̂ ⊃
{
z : |z| expV

(
z

|z| , K
)

≤ 1

}
.

Actually, we can write = instead of ⊃, since the compact set in the right-hand side is polynomially
convex.

Corollary 2.2 (see [5]). If a circle compact set K belongs to the unit sphere S (0, 1) , then its poly-

nomially convex hull K̂ contains the ball |z| ≤ exp

[

− sup
|ξ|=1

V (ξ,K)

]

.

Proof. Follows from Corollary 2.1.

Corollary 2.3. For the circle compact set K ⊂ C
n the following identity holds: expV (Rz,K) =

R expV (z,K) ∀z /∈ K̂
⋂

RK̂.
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Proof. Indeed, we can assume that K is polynomially convex, K = K̂ and R > 1. Then for z /∈ K̂ by
Theorem 2.4

expV (Rz,K) = sup
{
|Q (Rz)|1/degQ : ‖Q‖K ≤ 1, Q are homogeneous polynomials

}

= sup
{
|Q (Rz)|1/degQ : ‖Q‖K ≤ 1, Q are homogeneous polynomials degQ ≥ 1

}

= sup
{
R |Q (z)|1/degQ : ‖Q‖K ≤ 1, Q are homogeneous polynomials degQ ≥ 1

}

= R sup
{
|Q (z)|1/degQ : ‖Q‖K ≤ 1, Q are homogeneous polynomials

}
= R expV (z,K) .

thus expV (Rz,K) = R exp V (z,K) ∀z /∈ K̂.

Corollary 2.4. For the circle compact set K ⊂ C
n the following identity holds: expV (z,RK) =

R−1 expV (z,K) ∀z /∈ K̂
⋂

RK̂.

Proof. Indeed, if we assume that K is polynomially convex, K = K̂ and R > 1, for z /∈ K̂ by
Theorem 2.4 we have

expV (Rz,RK) = R expV (z,RK) , z /∈ RK.

Hence, expV (Rz,RK) = expV (z,K) . Therefore, expV (z,RK) = R−1 expV (z,K) ∀z /∈ RK̂.

3. The Convergence of Formal Hartogs Series

(1) Consider a formal Hartogs series

∞∑

k=0

ck
(′z
)
zkn, (3.1)

where ck (
′z) are holomorphic functions at some domain ′D ⊂ C

n−1. This series is formal because we

do not know how it converges and where. Suppose that for any fixed ′z ∈ ′D the series
∞∑

k=0

ck (
′z) zkn

converge in the circle |zn| < R
(′z0
)
. We assume that R (′z) is the maximal convergence radius,

R−1
(′z
)
= lim

k→∞
k
√

|ck (′z)|.

If series (3.1) uniformly converges at some neighbourhood of the plane {zn = 0} , i.e., the series sum
f (′z, zn) is holomorphic in the neighbourhood {zn = 0} , then, as known, f (′z, zn) is holomorphically
extended to the domain

D =
{′z ∈ ′D : |zn| < R∗(′z)

}
, (3.2)

where R∗ (′z) = lim
′w→z

R (z) is the lower regularization of the function R (′z) . We note that − logR∗ (′z)

∈ psh (′D) , and the set {′z ∈ ′D : R∗ (′z) < R (′z)} is pluripolar.
Without series (3.1) convergence at some neighbourhood of the plane {zn = 0} by all variables the

holomorphic extension of the function f (′z, zn) to the domain of type (3.2) does not exist.

Example 3.1. Take the sequence of compact sets

Km = K1
m

⋃
K2

m ⊂ C, K1
m =

{
|z1| ≤ 1,

1

m
≤ arg z1 ≤ 2π

}
,

K2
m =

{
1

m
≤ |z1| ≤ 1, arg z1 =

1

2m

}
, m = 1, 2, . . .
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Then the continuous function on the compact set Km

gm (z) =

⎧
⎨

⎩

1

m!
, if z1 ∈ K1

m,

m!, if z1 ∈ K2
m,

is approximated by the polynomials uniformly on Km, i.e., there exists a polynomial Pm (z1) such that

‖gm − Pm‖Km
≤ 1

m!
. The series

f (z1, z2) =
∞∑

m=1

Pm (z1) z
m
2

has the following property: for any fixed z01 such that
∣
∣z01
∣
∣ < 1, it converges on the whole plane

|z2| < ∞, but its sum f (z1, z2) is not holomorphic on the set S = {|z1| < 1, arg z1 = 0} ⊂ C
2.

Nevertheless, the following theorem holds.

Theorem 3.1 (see [31, 34]). Consider Hartogs series
∞∑

k=0

ck
(′z
)
zkn

with holomorphic coefficients ck (
′z) , k = 0, 1, . . . , on the domain ′D ⊂ C

n−1. Suppose that the con-

vergence radius is positive for any fixed ′z ∈ ′D, thus R (′z) = 1/ lim
k→∞

k
√|ck (′z)| > 0 ∀′z ∈ ′D.

Then there exists a nowhere dense closed set ′S ⊂ ′D such that

(a) − logR∗ (′z) ∈ psh (′D\′S);
(b) the series sum is holomorphic by all variables on

{′z ∈ ′D\S, |zn| < R∗
(′z
)}

.

Note that if we omit the condition R (′z) > 0 ∀′z ∈ ′D, then Theorem 3.1 does not hold true.

Example 3.2. LetK = {|z1| ≤ 1} be the closed unit circle on the complex plane Cz1 . Take a sequence
of polynomially convex compact sets

Fm =

{
z1 ∈ C : 1 +

1

m
≤ |z1| ≤ m, 0 ≤ arg z1 ≤ 2π − 1

m

}
.

Then Fm ⊂ Fm+1 and
∞⋃

m=1
Fm = C\K. Moreover, the compact sets Fm

⋃
K are polynomially convex.

Put

gm (z1) =

{
m!, if z1 ∈ Fm
1

m!
, if z1 ∈ K.

By the Mergelyan theorem these functions are polynomially approximated uniformy on Fm
⋃

K,
i.e., there exist poynomials pm (z1) such that

‖gm (z1)− pm (z1)‖K⋃
Fm

<
1

m!
, m = 1, 2, . . .

Consider the formal series

f (z1, z2) =
∞∑

m=1

pm (z1) z
m
2 .

This series converges on the whole plane Cz2 for any fixed point z1 ∈ K and its sum is holomorphic
on {|z1| < 1} × Cz2 . But its convergence radius R (z1) = 0 for all z1 ∈ C\K, and this series does not
define a holomorphic function on [Cz1\K]× Cz2 .

(2) For formal series on a bundle of complex straight lines the case is more natural.
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Let on the bundle of complex straight lines {l : z = λξ, λ ∈ C
n, ξ ∈ C} ≈ Pn−1 the following formal

series be defined:
∞∑

k=0

ck (λ) ξ
k =

∞∑

k=0

ck (λξ) =

∞∑

k=0

ck (z) , (3.3)

where ck (z) are homogeneous polynomials on C
n.

Theorem 3.2 (see [25]). If for any complex line from some bundle � ⊂ {l : z = λξ, λ ∈ C
n, ξ ∈ C}

series (3.3) converges on the circle l
⋂

B (0, 1) , this series converges on the open set G =
{
z ∈ C

n :

|z| · expV ∗
( z

|z| , E
)
< 1
}
. Here E =

⋃

l∈�
l
⋂

B (0, 1) .

Proof. Indeed, without loss of generality assume that � coincides with the set of all complex lines l
for which series (3.3) converges on the circle l

⋂
B (0, 1) . Fix ε > 0 and put

FN =

{

λ ∈ S (0, 1) :

∣
∣
∣∣
∣

∞∑

k=0

ck (λ) ξ
k

∣
∣
∣∣
∣
≤ N as |ξ| ≤ 1− ε

}

.

By the Cauchy inequalities |ck (λ)| ≤ N

(1− ε)k
, λ ∈ FN , k = 0, 1, . . . Hence, by the Bernstein–

Walsh inequality we have

|ck (λ)| ≤ N

(1− ε)k
[expV ∗ (λ, FN )]k , λ ∈ C

n, k = 0, 1, . . .

In particular, for λ =
z

|z| ∈ S (0, 1)

∣∣
∣∣ck

(
z

|z|
)∣∣
∣∣ ≤

N

(1− ε)k

[
expV ∗

(
z

|z| , FN

)]k
, z ∈ C

n\ {0} ,

which is equivalent to

|ck (z)| ≤ N

(1− ε)k

[
|z| exp V ∗

(
z

|z| , FN

)]k
, z ∈ C

n\ {0} , k = 0, 1, . . .

Hence, the homogeneous series
∞∑

k=0

ck (z) converges in

GN,ε =

{
z ∈ C

n : |z| · expV ∗
(

z

|z| , FN

)
< 1− 2ε

}
.

Note that the set FN is a closed compact set on the sphere S (0, 1) , with FN ⊂ FN+1, N = 1, 2, . . .

and
∞⋃

N=1
F̂N = E. Therefore, by taking N → ∞ and then ε → 0 we obtain the convergence of the

series
∞∑

k=0

ck (z) inside the open set G =
{
z ∈ C

n : |z| · expV ∗
( z

|z| , E
)
< 1
}
.

Remark 3.1. If f (z) is some function which is inifintely smooth on the neighbourhood of zero,
f (z) ∈ C∞ {0} , it correspond to the formal power series

f ∼
∞∑

|I|+|J |=0

cIJz
I z̄ J , (3.4)
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where I = (i1, i2, . . . , in) and J = (j1, j2, . . . , jn) are multiindexes, |I| = i1 + i2 + . . . + in, |J | =
j1 + j2 + . . .+ jn, zI = zi11 zi22 . . . zinn , z̄J = z̄j11 z̄j22 . . . z̄jnn . Rewrite the series in (3.4) in the form

∞∑

|I|+|J |=0

cIJz
I z̄ J =

∞∑

|I|=0

cI0z
I +

∞∑

|I|+|J |=0,J �=0

cIJz
I z̄ J . (3.5)

If the contraction of the function f (z) to each complex plane {l : z = wξ, w ∈ C
n, ξ ∈ C} ⊂ Pn−1

is holomorphically extended to the unit circle, then the last series in (3.5) vanishes, i.e., f (z) =
∞∑

|I|=0

cI0z
I , and by Theorem 3.2 we obtain that the function is holomorphic on the ball B (0, 1) ⊂ C

n.

Therefore, we obtain the Forelli theorem.

Theorem 3.3 (Forelli theorem [16]). If f is an infinitely smooth function at the point 0 and its con-
traction f |l is holomorphic in the circle l

⋂
B (0, 1) for all complex lines l � 0, then f is holomorphically

exnteded to the ball l
⋂

B (0, 1) .
Remark 3.2.

(1) For the function f (z1, z2) =
zk+1
1 z̄2

z1z̄1 + z2z̄2
∈ Ck

(
C
2
)
Theorem 3.2 cannot be applied, although

the contraction of the function is holomorphic for all comples lines l � 0 (f does not define
series (3.4)).

(2) The function f (z1, z2) = |z1|2 − |z2|2 ∈ C∞ (
C
2
)
, f |l ≡ 0 on complex lines � =

{
z2 = eiθz1,

θ ∈ [0, 2π]} . Although the set � ⊂ P 1 forms a nonpluripolar set on the projective plane P 1,
Theorem 3.2 can be applied here. To apply Theorem 3.2 to the formal series by z and by z̄, we
must require that the set � ⊂ Pn−1 is nonpolar in the sense of real analysis.

Theorem 3.2 can be proved in the general form when on the complex line l ∈ � we do not require
the convergence of series (3.3) on the circle l

⋂
B (0, 1), but its convergence on an arbitrary circle

l
⋂

B (0, rl) , 0 < rl ≤ ∞. The following main theorem holds.

Theorem 3.4. Let the bundle of complex lines, � ⊂ {l : z = wξ, w ∈ C
n, ‖w‖ = 1, ξ ∈ C}

intersecting zero, be given. If for each complex line l ∈ � the contraction
∞∑

k=0

ck (λ) ξ
k of series (3.3)

converges on the circle l
⋂

B (0, rl) , 0 < rl ≤ ∞, this series converges on the open set G =
{
z ∈ C

n :

|z| · expV ∗
( z

|z| , E
)
< 1
}
. Here E =

⋃

l∈�
l
⋂

B (0, rl) .

Proof. The proof of this theorem is conducted in several steps by supposing firstly that � is the set
of all complex lines with rl > 0, thus � =

{
l ∈ Pn−1 : rl > 0

}
.

1. For 0 < rl ≤ 1 ∀l ∈ � we fix the numbers N ∈ N, r > 0 and 0 < ε < r. Put �r = {l ∈ � : rl ≥ r}
and denote

FN,r,ε =

{

λ ∈ S (0, 1) , l = {z = λξ} ∈ �r :

∣
∣∣
∣∣

∞∑

k=0

ck (λ) ξ
k

∣
∣∣
∣∣
≤ N for |ξ| ≤ rl − ε

}

.

By the Cauchy inequalities |ck (λ)| ≤ N

(rl − ε)k
, λ ∈ FN,r,ε, k = 0, 1, . . . This is equivalent to

|ck ((rl − ε) ×λ)| ≤ N, λ ∈ FN,r,ε, k = 0, 1, . . . Since FN,r,ε is a circle compact set, |ck (z)| ≤ N, z = λξ,
λ ∈ FN,r,ε, |ξ| ≤ rl − ε, k = 0, 1, . . . Hence, ‖ck (z)‖EN,r,ε

≤ N, where EN,r,ε = {|z| ≤ rl − ε, z = λξ,

λ ∈ FN,r,ε} , and by the Bernstein–Walsh inequality we have |ck (z)| ≤ N [expV ∗ (z,EN,r,ε)]
k , z ∈ C

n,
k = 0, 1, . . .
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In particular, for λ =
z

|z| ∈ S (0, 1)

∣
∣∣
∣ck

(
z

|z|
)∣∣∣
∣ ≤ N

[
expV ∗

(
z

|z| , EN,r,ε

)]k
, z ∈ C

n\ {0} ,

which is equivalent to the inequality

|ck (z)| ≤ N

[
|z| expV ∗

(
z

|z| , EN,r,ε

)]k
, z ∈ C

n\ {0} , k = 0, 1, . . .

This implies that homogeneous series
∞∑

k=0

ck (z) converges on

GN,r,ε =

{
z ∈ C

n : |z| · expV ∗
(

z

|z| , EN,r,ε

)
< 1

}
.

By taking N → ∞, and next ε → 0, we obtain the convergence of the series
∞∑

k=0

ck (z) inside the

open set

Gr =

{
z ∈ C

n : |z| · expV ∗
(

z

|z| , Er

)
< 1

}
,

where Er =
⋃

l∈�r

l
⋂

B (0, rl) . As r ↓ 0 the set Er increasingly converges to E. Therefore, V ∗
( z

|z| , Er

)
↓

V ∗
( z

|z| , E
)
and the series

∞∑

k=0

ck (z) uniformly converges inside the open set

G =

{
z ∈ C

n : |z| · exp V ∗
(

z

|z| , E
)

< 1

}
.

2. Series (3.3) converges on the circle l
⋂

B (0, rl) of variable radius rl, 0 < rl ≤ R, l ∈ �. We

make the transformation z = Rw. The corresponding series
∞∑

k=0

ck (Rw) has the following property:

its contraction l ∈ � converges on the circle of radius rl/R, 0 < rl/R ≤ 1. Therefore, this series
converges on the open set

{
w ∈ C

n : |w| · expV ∗
(

w

|w| ,
E

R

)
< 1

}
,

E

R
=
⋃

l∈�
l
⋂

B (0, rl/R) .

Hence, the series
∞∑

k=0

ck (z) converges on the open set

{
z ∈ C

n :
|z|
R

expV ∗
(

z

|z| ,
E

R

)
< 1

}
.

But, by Corollary 2.4 of Theorem 2.4, Green’s function V ∗
(
ξ,

E

R

)
= RV ∗ (ξ,E) . Then the series

∞∑

k=0

ck (z) converges on the open set

{
z ∈ C

n : |z| expV ∗
( z

|z| , E
)
< 1

}
, where E =

⋃

l∈�
l
⋂

B (0, rl) .

3. Consider the general case: 0 < rl ≤ ∞, l ∈ �. Fix R > 1 and denote ER = E
⋂ {‖z‖ ≤ R} . By

step 2 of the proof the series
∞∑

k=0

ck (z) converges on the open set

{
z ∈ C

n : |z| expV ∗
( z

|z| , ER

)
< 1

}
.

Now the proof of the theorem is easily obtained by taking R to infinity: V ∗
( z

|z| , ER

)
↓ V ∗

( z

|z| , E
)

as R ↑ ∞.
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4. Holomorphic Extensions of the Functions with a Thin Singularity
Along a Fixed Direction

We begin with the following theorem proved in [28].

Theorem 4.1. Let the function f (′z, zn) be holomorphic on the polycircle U = ′U ×Un ⊂ C
n−1
′z ×Czn

and for each fixed ′a in some nonpluripolar set E ⊂ ′U the function f (′a, zn) of the variable zn is
extended to the function which is holomoprhic on the whole plane without some polar (discrete) set of
singularities S′a. Then f is holomorphically extended to (′U ×C) \ S, where S is the closed pluripolar
(analytic) subset ′U × C.

The difficult moment of the proof in the description of the set of singularities outside U ; apriori⋃
′a∈′U

S′a can be dense in ′U × [C \Un]. This difficulty is overcome by the expansion of the function to

Jacoby–Hartogs series f(z′, zn) =
∞∑

k=0

ck (
′z, zn) gk(zn) by all rational functions

g(zn) =
zmn

pm(zn)
, pm(zn) is a polynomial of the degree m > 0. (4.1)

Below we often use the pluripotential theory, the potential properties of the family of plurisubhar-
monic function and pseudoconcave sets.

For the formal seires on the bundle of lines, i.e., for the formal series of homogeneous polynomials
∞∑

k=0

ck (z) , where ck (z) are homogeneous polynomials, the following theorem holds (see Example 3.2).

Theorem 4.2. Let a nonpluripolar bundle of complex lines

� ⊂ {l : z = λξ, λ ∈ C
n, ‖λ‖ = 1, ξ ∈ C} = Pn,

intersecting zero, be given. If for each comples line l ∈ � the contraction
∞∑

k=0

ck (λ) ξ
k of the series

∞∑

k=0

ck (z) to the complex line l converges on the circle of radius rl > 0 and its sum is holomorphic

on C without a polar (discrete) set, then the series
∞∑

k=0

ck (z) defines a holomorphic function on the

space C
n without some pluripolar (analytic) set S ⊂ C

n.

Proof. By Theorem 3.4 the series
∞∑

k=0

ck (z) converges on the open set

G =

{
z ∈ C

n : |z| · exp V ∗
(

z

|z| , E
)

< 1

}
,

where E =
⋃

l∈�
l
⋂

B (0, rl) . The sum of this series f (z) =
∞∑

k=0

ck (z) is a holomorphic function on G.

By Theorem 4.2 the set E is not pluripolar. Hence, V ∗ (·, E) 
= +∞ and the domain G contains the
point 0.

Consider the standard transformation in the space Cn:

π : (z1, z2, . . . , zn−1, zn) → (z1zn, z2zn, . . . , zn−1zn, zn) ,

upon which vertical complex lines
(′z0, zn

)
=
(
z01 , z

0
2 , . . . , z

0
n−1, zn

)
, zn ∈ C, are taken into the

bundle of lines
(
z01zn, z

0
2zn, . . . , z

0
n−1zn, zn

)
, zn ∈ C. Hence, the function f̃ (′z, zn) = π−1 ◦ f =

f
(
z1zn, z2zn, . . . , zn−1zn, zn

)
, zn ∈ C, is holomorphic by all variables on some neighbourhood of the

plane {zn = 0} , and for each fixed ′z0 =
(
z01 , z

0
2 , . . . , z

0
n−1

)
: l =

{
z01zn, z

0
2zn, . . . , z

0
n−1zn, zn, zn ∈ C

} ∈
� the function f̃

(′z0, zn
)
, zn ∈ C is holomorphically extended to the whole plane Czn without a polar
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(discrete) set. By Theorem 4.1 the funciton f̃ (′z, zn) is holomorphically extended to C
n\S, where

S ⊂ C
n is a pluripolar (anaytic) set. Hence, the function f (z) = π ◦ f (z) is holomorphically extended

to [Cn\ {zn = 0}] \π (S) , where π (S) is a pluripolar (analytic) set in C
n\ {zn = 0} .

Above we considered the transformation π : (z1, z2, . . . , zn−1, zn) → (z1zn, z2zn, . . . , zn−1zn, zn) by
taking the coordinate ozn. If we commence this procedure for any index k = n, n− 1, . . . , 1, we obtain
that the function f (z) is holomorphically exnteded to [Cn\ {zk = 0}] \Ak, where Ak is a pluripolar
(analytic) set in C

n\ {zk = 0} . Hence we easily obtain that f (z) is holomorphically extended to C
n\A,

where A is a pluripolar (analytic) set in C
n.

5. Holomorphic Extension of the Functions Along the Family of Analytic Curves

The version of Hartogs theorem in the sense of the replacement of coordinate curves with the families
of analytic curves was probably firstly considered in the work of Chirka [13]. Here we introduce three
statements from this work, in which new approaches to the study of the functions holomorphic on
holomorphic laminations are introduced:

(1) Let in the domain Ω ⊂ C
n be given n lineary independent delaminations

{
Sj
ξ

}
, Ω =

⋃

ξ

Sj
ξ ,

by holomorphic curves Sj
ξ , j = 1, 2, . . . , n. If the function f is locally bounded on Ω and all

contractions of f |
Sj
ξ
are holomorhpic, then f is holomorphic on Ω.

The proof on this statement is based on the fact that in the described conditions f is Lipschitz-
continuous with locally bounded differential df a.e. on Ω and ∂̄f = 0.

(2) Let the domain Ω ⊂ D × C
k
w, D ⊂ C

m
z be delaminated by holomorphic graphs Sξ such that

w = φξ (z) . If all laminations f |Sξ
of the function f (z, w) are holomorphic on Sξ and f (c, w)

are holomorphic on Ω
⋂ {z = c} , c ∈ D, then f (z, w) is holomorphic on Ω.

In the proof of this statement with the application of the Baire theorem one can find an open
part Ω1 ⊂ Ω, where f (z, w) is bounded, and then with the application of the proof method
used in Proposition (1) they prove that this function is holomorphic on Ω1. Next, since f (c, w)
is holomorphic on Ω

⋂ {z = c} , then by the classic Hartogs lemma we conclude that f (z, w) is
holomorphic on Ω.

The following proposition is a curvilinear analog of the classic Hartogs lemma.

(3) Let the domain Ω ⊂ D×C
k
w, D ⊂ C

m
z , 0 ∈ D, as in Proposition (2) be delaminated by holomor-

phic graphs Sξ such that w = φξ (z) . If all contractions f |Sξ
of the function f (z, w) are holo-

morphic on Sξ and f (z, w) is holomorphic by all variables on some neighbourhood Ω
⋂ {z = 0} ,

then f (z, w) is holomorphic on Ω.

Note that the Forelli theorem (see Sec. 3) is some kind of the Hartogs theorem. In the work [13]
Chirka showed that the Forelli theorem curvilinear analog holds in the case n = 2. The next variations
of the Hartogs theorem, as well as the variations of the Forelli theorem, are obtained in [18, 19, 22].

Theorem 5.1 (see [22]). If the function f : B (0, 1) → C is infinitely smooth at the point 0, f ∈
C∞ (0) and is holomorphic along the integral analytic curves of the vector field X =

n∑

j=1
αjzj

∂

∂z
,

where αj are constant,
αj

αk
> 0 ∀j, k, then f is holomorphic on B (0, 1) .

Theorem 5.2 (see [18]). Let the domain Ω ⊂ D×C
k
w, D ⊂ C

m
z , be delaminated by smooth family of

analytic curves {Sξ} , ξ ∈ Pn−1, 0 ∈ Sξ radial at the point 0 such that
⋃

ξ

Sξ = Ω. If the function f ∈
C
∞ {0} has the property that all its contractions f |Sξ

are holomorphic on Sξ, then f is holomorphically
extended to Ω.
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In this section we study the holomorphic extension of the formal series of homogeneous polynomials
which is holomoprhic along the given family of analytic curves intersecting zero. With that we do not
place any other conditions of the family of analytic curves. We start with the following lemma, which
is quite self-sufficient.

Lemma 5.1. The series of the form
∞∑

k=0

ak (ξ) ξ
k, where ak (ξ) ∈ O (U) , k = 0, 1, . . . , uniformly

converges inside the circle U : |ξ| < 1 iff for any ε > 0

lim
k→∞

‖ak (ξ)‖1/k|ξ|≤1−ε ≤ 1. (5.1)

Proof. Indeed, if (5.1) holds, for fixed ε > 0 there exists k0 such that |ak (ξ)| < (1 + ε)k , |ξ| ≤ 1 −
ε, k ≥ k0. Hence,

∣∣ak (ξ) ξk
∣∣ ≤ |(1 + ε) ξ|k ≤ (1− ε2

)k
and the series

∞∑

k=0

ak (ξ) ξ
k uniformly converges

inside the circle |ξ| ≤ 1 − ε. And vice versa, if the series
∞∑

k=0

ak (ξ) ξ
k uniformly converges inside the

circle |ξ| ≤ 1− ε, then
∥
∥ak (ξ) ξk

∥
∥
|ξ|≤1−ε

≤ const, k = 0, 1, 2, . . . Hence, lim
k→∞

‖ak (ξ)‖1/k|ξ|≤1−ε ≤ 1.

Remark 5.1. If the inequality lim
k→∞

|ak (ξ)|1/k ≤ 1 holds pointwise for a fixed ξ ∈ U, then there exists

a dense open set Ũ ⊂ U inside which the series converges uniformly.

Indeed, put Fm =
{
ξ ∈ U :

∣
∣ak (ξ) ξk

∣
∣ ≤ m, k = 0, 1, 2, . . . ,

}
. Then Fm are closed subsets of U and

U =
∞⋃

m=1
Fm. By Boier theorem we obtain that the open kernel Ũ =

∞⋃

m=1
F 0
m is dense in U and the

series
∞∑

k=0

ak (ξ) ξ
k converges uniformly inside Ũ .

The following theorem plays a key role in the study of holomorphic functions of many variables along
the fixed curves. Let A = {z = p (ξ) , |ξ| < 1} be an analytic curve where p (ξ) = (p1 (ξ) , . . . , pn (ξ)) is
a vector function holomorphic in the unit circle U : |ξ| < 1, p (0) = 0. Put Aε = A

⋂ { |ξ| < 1− ε} , 0 <
ε < 1.

Theorem 5.3. Suppose that A ⊂ C
n is an analytic curve intersecting zero, 0 ∈ A, such that the

series of homogeneous polynomials f (z) =
∞∑

k=0

ck (z) , where ck (z) is a homogeneous polynomial of the

degree k, converges on the set A. Then lim
k→∞

‖ck (z)‖1/kA ε
≤ 1.

Proof. Indeed, let A : {z = p (ξ)} be an analytic curve intersecting 0, where p (ξ) is a vector function

holomorphic in the unit circle U : |ξ| < 1, p (0) = 0. Suppose that fA (z) =
∞∑

k=0

ck (p (ξ)) converges in

the circle |ξ| < 1. Write
∞∑

k=0

ck (p (ξ)) =
∞∑

k=0

ck (p (ξ))

ξk
ξk,

where
ck (p (ξ))

ξk
are holomorphic functions in the unit circle |ξ| < 1. It is clear that the series

∞∑

k=0

ck (p (ξ)) uniformly converges in the circle |ξ| < 1− ε, ε > 0. Hence, by Lemma 5.1

lim
k→∞

∥∥
∥
∥
ck (p (ξ))

ξk

∥∥
∥
∥

1/k

|ξ|≤1−ε

≤ 1.
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Therefore,

lim
k→∞

‖ck (p (ξ))‖1/k|ξ|≤1−ε ≤ 1.

The main result of Sec. 4 is the following theorem.

Theorem 5.4. Let be given an arbitrary family ℵ = {Aα, α ∈ Λ} of analytic curves Aα: z =

pα (ξ) , ξ ∈ U, pα (0) = 0. If the series of homogeneous polynomials f (z) =
∞∑

k=0

ck (z) , where ck (z) is

a homogeneous polynomial of the degree k, converges on each set Aα, α ∈ Λ, then this series uniformly
converges inside the ball

B

(
0,

1

exp γ (E)

)
=

{
z ∈ C

n : ‖z‖ <
1

exp γ (E)

}
, (5.2)

Here E =
⋃

α∈Λ
Aα and γ (E) = lim

z→∞
[V ∗ (z, E)− log ‖z‖] is the lower Robin constant of the set E.

Corollary 5.1. In the conditions of Theorem 5.4, is the set E =
⋃

α∈Λ
Aα is not pluripolar on C

n,

the formal series
∞∑

k=0

ck (z) has the sum f (z) which is holomorphic inside the nonempty ball ‖z‖ <

exp−1 γ (E).

Remark 5.2 (see Sec. 3). If f (z) ∈ C∞ {0} , it corresponds to the formal power series

f ∼
∞∑

|I|=0

cI0z
I +

∞∑

|I|+|J |=0,J �=0

cIJz
I z̄ J , (5.3)

where I = (i1, i2, . . . , in) and J = (j1, j2, . . . , jn) are multiindexes, |I| = i1 + i2 + . . . + in, |J | = j1 +

j2 + . . . + jn, zI = zi11 zi22 . . . zinn , z̄J = z̄j11 z̄j22 . . . z̄jnn . If the contractions f |Aα , α ∈ Λ are holomorphic
and the set E =

⋃

α∈Λ
Aα is not R

2n-polar, the second series in (5.3) vanishes. Therefore, applying

Theorem 5.4 in this case we obtain that f is holomorphic on some heighbourhood of the point zero.

Proof of Theorem 5.2. Let 0 < ε < 1 be fixed. By Theorem 5.1 the following lim
k→∞

‖ck (z)‖1/kA α, ε
≤ 1

holds for each α ∈ Λ, where Aα, ε = {z ∈ C
n : z = pα (ξ) , |ξ| ≤ 1− ε } ⊂⊂ Aα. For any fixed j ∈ N

put

Λj, ε =
{
α ∈ Λ : ‖ck (z)‖1/kA α, ε

≤ 1 + ε, k ≥ j
}

and

E j, ε =
{⋃

Aα, ε : α ∈ Λj, ε

}
.

Then ‖ck (z)‖1/kE j, ε
≤ 1 + ε, k ≥ j. By continuity this inequality holds up to the closure of Ej,ε, i.e.,

‖ck (z)‖1/kEj, ε
≤ 1 + ε, k ≥ j. By the Bernstein–Walsh inequality

|ck (z)|1/k ≤ (1 + ε) exp V ∗ (z,Ej,ε

)
, z ∈ C

n, k ≥ j.

Hence, for a fixed radius R > 0

|ck (z)|1/k ≤ (1 + ε) max
‖z‖=R

expV ∗ (z,Ej,ε

)
, z ∈ ∂B (0, R) , k ≥ j,

and arbitrary z ∈ C
n we have

|ck (z)|1/k =

∣∣
∣∣ck

(‖z‖
R

Rz

‖z‖
)∣∣
∣∣

1/k

=
‖z‖
R

∣∣
∣∣ck

(
Rz

‖z‖
)∣∣
∣∣

1/k

≤ (1 + ε) ‖z‖
max
‖ξ‖=R

expV ∗ (ξ,Ej,ε

)

R
, k ≥ j.
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For R → ∞ from this inequality we obtain that

|ck (z)|1/k ≤ (1 + ε) ‖z‖ exp γ
(
Ej,ε

)
, k ≥ j. (5.4)

From (5.4) we get that the series
∞∑

k=0

ck (z) uniformly converges inside the ball

B

(

0,
1

(1 + ε) exp γ
(
Ej,ε

)

)

=

{

‖z‖ <
1

(1 + ε) exp γ
(
Ej,ε

)

}

. (5.5)

By taking j → ∞ and then ε → 0 from (5.5) we obtain that the series
∞∑

k=0

ck (z) uniformly converges

inside the ball

B

(
0,

1

exp γ (E)

)
=

{
z ∈ C

n : ‖z‖ <
1

exp γ (E)

}
.

Theorem is proved.

Remark 5.3. As we can see from the proof of Theorem 5.4, the series convergence domain f (z) =
∞∑

k=0

ck (z) may be larger than ball (5.2) if we use the estimates of homogeneous polynomials in circle

domains.
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