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AN IMPROVED BLOW-UP CRITERION
FOR THE MAGNETOHYDRODYNAMICS
WITH THE HALL AND ION-SLIP EFFECTS

S. Gala and M. A. Ragusa UDC 35Q35; 35L60; 35Q80

Abstract. In this work, we consider the magnetohydrodynamics system with the Hall and ion-slip
effects in R

3. The main result is a sufficient condition for regularity on a time interval [0, T ] expressed

in terms of the norm of the homogeneous Besov space Ḃ0
∞,∞ with respect to the pressure and the

BMO−norm with respect to the gradient of the magnetic field, respectively

T∫

0

(
‖∇π(t)‖

2
3

Ḃ0∞,∞
+ ‖∇B(t)‖2BMO

)
dt < ∞,

which can be regarded as improvement of the result in [3].
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1. Introduction and Main Result

Magnetohydrodynamics (MHD) is concerned with interaction between fluid flow and magnetic field.
The fundamental governing equations consist of the compressible Navier–Stokes equations of fluid
dynamics and Maxwell’s equations of electromagnetism. In this paper, we consider the Cauchy problem
of the following incompressible MHD equations with the Hall and ion-slip effects in R

3:
⎧
⎪⎪⎨

⎪⎪⎩

∂tu+ (u · ∇)u+∇π = (∇×B)×B + μΔu,
∂tB +∇× (u×B) + σ∇× ((∇×B)×B) = κ∇× [B × (B × (∇×B))] + ηΔB,

∇ · u = ∇ ·B = 0,
u(x, 0) = u0(x), B(x, 0) = B0(x).

(1.1)

Here, the nonnegative parameters μ and η are associated with the properties of the materials: μ
denotes the kinematic viscosity coefficient of the fluid and η denotes the reciprocal of the magnetic
Reynolds number. κ ≥ 0, σ are constants. Because of their mathematical and physical importance,
there is a great amount of literature on the mathematical theory of MHD equations with the Hall and
ion-slip effects, for instances see [3, 4] and references therein.
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The mathematical study of the above system has important applications in fluid mechanics and
material sciences, and has recently attracted considerable attention in the community of mathematical
fluids (see, e.g., [6–8]). Physically u denotes the velocity of the fluid, π the pressure, B denotes the
magnetic field, while u0(x) and B0(x) are the given initial velocity and initial magnetic field with
∇ · u0 = 0 and ∇ ·B0 = 0, respectively in the sense of distribution. Comparing with the usual viscous
incompressible MHD equations, system (1.1) contains the extra term ∇ × ((∇ × B) × B), which is
the so-called Hall term and ∇× [B × (B × (∇×B))] the ion-slip effect. Here we have normalized the
viscous coefficient and the magnetic diffusion coefficient to be 1 for convenience.

System (1.1) is important to describe some physical phenomena, e.g., in the magnetic reconnection
in space plasmas, star formation, neutron stars and dynamo. In the case σ = κ = 0, system (1.1)
reduces to the standard MHD equations; when κ = 0, system (1.1) reduces to the Hall-MHD system.

In [8], Mulone and Solonnikov proved the small data global existence of strong solutions in a
bounded domain. Therefore, it is important to study a global regularity criterion and structure of
possible singularities of strong solutions. In a recent paper, Fan et al. [3] proved the existence of local-
in-time strong solutions. Various criteria for regularity in terms of the velocity field, the magnetic
field, the pressure and their derivatives have been proposed to (1.1) in [3]. In particular, they proved
that if (u, π,B) satisfies one of the following conditions

⎧
⎪⎨

⎪⎩

u ∈ L
2q
q−3 (0, T ;Lq(R3)), 3 < q < ∞,

∇π ∈ L
2s

3s−3 (0, T ;Ls(R3)), 3 < s ≤ ∞,

∇π ∈ L
2
3 (0, T ;BMO(R3)),

(1.2)

and

B ∈ L∞(0, T ;L∞(R3)), ∇B ∈ L
2s
s−3 (0, T ;Ls(R3)) with 3 < s ≤ ∞ (1.3)

and 0 < T < ∞, then the solution (u,B) can be extended beyond time T. Here BMO denotes the
Bounded Mean Oscillation space [9].

Later on, Gala and Ragusa [4] extended the results of [3] to the critical Besov space Ḃ−1∞,∞ and
multiplier spaces. Despite a great deal of efforts by mathematicians, the question of global existence or
finite time blow-up of smooth solutions for the 3D MHD equations is still one of the most outstanding
open problems in applied analysis. For further progresses on this topic, the interested readers are
referred to [1, 6, 7] and references therein.

Motivated by this work in [3, 4], it is reasonable to establish a blow-up criterion on the pressure
and magnetic field for system (1.1). The main purpose is to improve and extend the above regularity
results in [3, 4] and to consider the main mechanism for possible breakdown of strong solutions to

problem (1.1) in terms of the critical Besov spaces Ḃ0∞,∞ by removing the assumption on the magnetic

field B ∈ L∞(0, T ;L∞(R3)) in [3].
For the sharp blow-up criterion, we need to introduce the following functional setting. We recall the

homogeneous Besov space Ḃ0∞,∞, which is defined as follows. Let {ϕj}j∈Z be the Littlewood–Paley

dyadic decomposition of unity, where the Fourier transform is supported on the annulus
{
ξ ∈ R

3 : 2j−1

≤ |ξ| < 2j
}
(see, e.g. [2, 9]). Then,

f ∈ Ḃ0
∞,∞(R3) if and only if sup

j∈Z
‖ϕj ∗ f‖L∞ = ‖f‖Ḃ0∞,∞

< ∞.

The following is a well-known embedding result (cf. [9, pp. 244]):

L∞(R3) ↪→ BMO(R3) ↪→ Ḃ0
∞,∞(R3). (1.4)

Now our result reads as:
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Theorem 1.1. Let (u,B) be the local strong solution to system (1.1) with initial data (u0, B0) ∈
H2(R3) and ∇ · u0 = ∇ · B0 = 0. Then (u,B) can be extended beyond time T provided that

∇π ∈ L
2
3 (0, T ; Ḃ0

∞,∞(R3)) and ∇B ∈ L2(0, T ;BMO(R3)), (1.5)

with 0 < T < ∞.

Remark 1.1. We would like to compare (1.5) with the corresponding results (1.2)2 and (1.2)3 on
pressure fields. Due to the embedding relation (1.4), our result here obviously improves the previous
ones (1.2)2 and (1.2)3. And it should be mentioned that our regularity criterion result (1.5) covers

the limiting case s = ∞ in (1.2)2, and also extends it into the larger Ḃ0∞,∞ spaces. Moreover, the

assumption on the magnetic field B ∈ L∞(0, T ;L∞(R3)) was removed.

Remark 1.2. Since the margin case s = ∞ in (1.3) on magnetic field appears to be more challenging,
we have refined the above results in critical Lebesgue spaces to the BMO spaces in the following sense

∇B ∈ L2(0, T ;BMO(R3)).

Remark 1.3. In the absence of global well-posedness, the development of blow-up / non blow-up
theory is of major importance for both theoretical and practical purposes. For incompressible Euler
and Navier–Stokes equations, the well-known Beale–Kato–Majda’s criterion [1] says that any solution
u is smooth up to time T under the assumption that

T∫

0

‖∇ × u(·, t)‖L∞ dt < ∞.

Later, Beale–Kato–Majda’s criterion is slightly improved by Kozono–Taniuchi [5] under the assump-
tion

T∫

0

‖∇ × u(·, t)‖BMO dt < ∞.

In this paper, we obtain a Beale–Kato–Majda type blow-up criterion of smooth solutions to Cauchy
problem for the Hall-magnetohydrodynamics system in terms of the pressure and magnetic field.

Before proceeding further, we estimate the pressure in (1.1)1, which will be needed later. Because
of ∇ · u = ∇ · B = 0, we have

∇× (u×B) = (B · ∇)u− (u · ∇)B.

Along the arguments in [10], taking ∇div operator of both sides (1.1)1, and using the identity

(∇×B)×B = (B · ∇)B −∇
(
|B|2
2

)

,

it follows that

∇
(

π +
|B|2
2

)

= (−Δ)−1
3∑

i,j=1

∂2

∂xi∂xj
(∇(uiuj −BiBj)) ,

where we have used the facts ∇ · u = ∇ · B = 0, and then the Calderón–Zygmund inequality implies:

‖∇π‖Lq ≤ C ‖(u · ∇)u‖Lq + C ‖(B · ∇)B‖Lq , 1 < q < ∞. (1.6)

Remark 1.4. Due to the velocity growth condition (1.2)1 and estimate (1.6), it is reasonable to expect
the regularity of the strong solutions by imposing some suitable growth conditions on the pressure.
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2. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. The existence and uniqueness of local strong
solutions was be done in [3], thus it is sufficient to establish a priori estimates for (u,B) for any T > 0.
The key step is to establish that ‖u(·, t)‖L4 and ‖B(·, t)‖L4 are bounded due to the standard Serrin
type criterion on the 3D MHD equations.

Proof. First, taking the inner product of (1.1)1 with u, after integration by parts and taking the
divergence-free property into account, we have

1

2

d

dt
‖u‖2L2 + ‖∇u‖2L2 =

∫

R3

((∇×B)×B) · udx

=

∫

R3

((B · ∇)B − 1

2
∇ |B|2) · udx =

∫

R3

(B · ∇)B · udx. (2.1)

Similarly, taking the inner product of (1.1)2 with B, using the divergence free property, we obtain

1

2

d

dt
‖B‖2L2 + ‖∇B‖2L2 + ‖B × (∇×B)‖2L2 =

∫

R3

∇× (u×B) · Bdx

=

∫

R3

[(B · ∇)u− (u · ∇)B] · Bdx =

∫

R3

(B · ∇)u · Bdx = −
∫

R3

(B · ∇)B · udx, (2.2)

where the following cancellation property have been applied:
∫

R3

∇× ((∇×B)×B) · Bdx =

∫

R3

((∇×B)×B) · (∇×B)dx = 0.

Summing up (2.1) and (2.2), we easily get

1

2

d

dt
(‖u‖2L2 + ‖B‖2L2) + ‖∇u‖2L2 + ‖∇B‖2L2 + ‖B × (∇×B)‖2L2 = 0.

This proves

‖(u,B)‖L∞(0,T ;L2) + ‖(u,B)‖L2(0,T ;H1) ≤ C. (2.3)

Now, we are devoted to obtaining the L4 estimate of u and B. Multiplying (1.1)1 by |u|2 u, taking
the divergence-free property into account and integrating the resulting equation lead to

1

4

d

dt
‖u‖4L4 +

∫

R3

|u|2 |∇u|2 dx+
1

2

∫

R3

∣
∣
∣∇ |u|2

∣
∣
∣
2
dx

=

∫

R3

((B · ∇)B − 1

2
∇ |B|2) · |u|2 udx−

∫

R3

u |u|2 · ∇πdx = K1 +K2. (2.4)

In similar way, multipling (1.1)2 by |B|2B, we find that

1

4

d

dt
‖B‖4L4 +

∫

R3

|B|2 |∇B|2 dx+
1

2

∫

R3

∣
∣
∣∇ |B|2

∣
∣
∣
2
dx

=

∫

R3

(B · ∇)u · |B|2Bdx+

∫

R3

(B × (∇×B)) · ∇ × (|B|2 B)dx
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+

∫

R3

[((∇×B)×B)×B] · (∇× (|B|2 B))dx = K3 +K4 +K5. (2.5)

Combining (2.4) and (2.5), we obtain

1

4

d

dt

(
‖u‖4L4 + ‖B‖4L4

)
+‖|u| |∇u|‖2L2+‖|B| |∇B|‖2L2+

1

2
(
∥
∥
∥∇ |u|2

∥
∥
∥
2

L2
+
1

2

∥
∥
∥∇ |B|2

∥
∥
∥
2

L2
) =

5∑

m=1

Km. (2.6)

In what follows, we will deal with each term on the right-hand side of (2.6) separately.
For the term K1, using Hölder’s and Young’s inequalities, it follows that

K1 ≤ C

∫

R3

|B| |∇B| |u|3 dx ≤ C
∥
∥
∥|u|3

∥
∥
∥
L

4
3

∥
∥
∥∇ |B|2

∥
∥
∥
L4

≤ C ‖u‖3L4 ‖B‖L4 ‖∇B‖BMO

≤ C
(
‖u‖3L4 + ‖B‖4L4

)
‖∇B‖BMO ≤ C

(
‖u‖3L4 + ‖B‖4L4

)
(1 + ‖∇B‖2BMO), (2.7)

where we have used the following fact (see [5]):
∥
∥
∥∇ |B|2

∥
∥
∥
L4

≤ C ‖|B|∇B‖L4 ≤ C ‖B‖L4 ‖∇B‖BMO .

In order to estimate K2 =
∫

R3

∇π · |u|2 udx, we decompose K2 into three parts as follows:

∇π =
∑

j∈Z
ϕj ∗ ∇π =

∑

j<−N

ϕj ∗ ∇π +

N∑

j=−N

ϕj ∗ ∇π +
∑

j>N

ϕj ∗ ∇π

by using the Littlewood–Paley decomposition, where N is a positive integer to be determined later.
Plugging this decomposition into K2 produces that

K2 ≤
∣
∣
∣
∣
∣
∣

∫

R3

∑

j<−N

ϕj ∗ ∇π · |u|2 udx
∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

∫

R3

N∑

j=−N

ϕj ∗ ∇π · |u|2 udx
∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

∫

R3

∑

j>N

ϕj ∗ ∇π · |u|2 udx
∣
∣
∣
∣
∣
∣

= K21 +K22 +K23.

Recalling the Bernstein inequality [2]:

‖ϕj ∗ f‖Lq ≤ C23j(
1
p
− 1

q
) ‖ϕj ∗ f‖Lp , 1 ≤ p ≤ q ≤ ∞, (2.8)

with C being a positive constant independent of f and j, we apply the Hölder inequality to deduce
that

K21 ≤
∑

j<−N

‖ϕj ∗ ∇π‖L4 ‖u‖3L4 ≤ C ‖u‖3L4

∑

j<−N

23j(
1
2
− 1

4
) ‖ϕj ∗ ∇π‖L2

≤ C ‖u‖3L4

⎛

⎝
∑

j<−N

2
3
2
j

⎞

⎠

1
2
⎛

⎝
∑

j<−N

‖ϕj ∗ ∇π‖2L2

⎞

⎠

1
2

≤ C2−
3
4
N ‖u‖3L4 ‖∇π‖L2 ≤ C2−

3
4
N ‖u‖3L4 (‖(u · ∇)u‖L2 + ‖(∇×B)×B‖L2)

= C
(
2−

3
2
N ‖u‖6L4

) 1
2
(
‖(u · ∇)u‖2L2 + ‖(∇×B)×B‖2L2

) 1
2

≤ C
(
2−N ‖u‖4L4

) 6
4
+

1

8
‖(u · ∇)u‖2L2 +

1

8
‖(∇×B)×B‖2L2 .
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Using the Hölder and Young inequalities, K22 is controlled as

K22 ≤
∫

R3

N∑

j=−N

|ϕj ∗ ∇π| |u|3 dx =

∫

R3

N∑

j=−N

|ϕj ∗ ∇π| 12 |ϕj ∗ ∇π| 12 |u|3 dx

=

N∑

j=−N

∥
∥
∥|ϕj ∗ ∇π| 12

∥
∥
∥
L∞

∥
∥
∥|ϕj ∗ ∇π| 12

∥
∥
∥
L4

‖u‖3L4

= ‖u‖3L4

⎛

⎝
N∑

j=−N

‖ϕj ∗ ∇π‖
1
2
L∞ ‖ϕj ∗ ∇π‖

1
2

L2

⎞

⎠

≤ C ‖u‖3L4

(

sup
j∈Z

‖ϕj ∗ ∇π‖
1
2
L∞

)⎛

⎝
N∑

j=−N

‖ϕj ∗ ∇π‖
1
2

L2

⎞

⎠

≤ CN
3
4 ‖u‖3L4 ‖∇π‖

1
2

Ḃ0∞,∞
‖∇π‖

1
2

L2

≤ CN
3
4 ‖u‖3L4 ‖∇π‖

1
2

Ḃ0∞,∞
(‖(u · ∇)u‖L2 + ‖(∇×B)×B‖L2)

1
2

≤ CN ‖u‖4L4 ‖∇π‖
2
3

Ḃ0∞,∞
+

1

8
‖(u · ∇)u‖2L2 +

1

8
‖(∇×B)×B‖2L2 .

For K23, with the aid of the Bernstein inequality, the Hölder inequality, and the Sobolev inequality,
one shows that

K23 ≤
∑

j>N

∫

R3

|ϕj ∗ ∇π| |u|3 dx ≤
∑

j>N

‖ϕj ∗ ∇π‖
L

12
7
‖u‖L4

∥
∥
∥|u|2

∥
∥
∥
L6

≤ C ‖u‖L4

∥
∥
∥∇ |u|2

∥
∥
∥
L2

∑

j>N

2−
j
4 ‖ϕj ∗ ∇π‖L2

≤ C ‖u‖L4

∥
∥
∥∇ |u|2

∥
∥
∥
L2

⎛

⎝
∑

j>N

2−
j
2

⎞

⎠

1
2
⎛

⎝
∑

j>N

‖ϕj ∗ ∇π‖2L2

⎞

⎠

1
2

≤ C2−
N
4 ‖u‖L4

∥
∥
∥∇ |u|2

∥
∥
∥
L2

‖∇π‖L2

≤ C
(
2−N ‖u‖4L4

) 1
4
(‖(u · ∇)u‖L2 + ‖(∇×B)×B‖L2)

2

≤ C
(
2−N ‖u‖4L4

) 1
4
(
‖(u · ∇)u‖2L2 + ‖(∇×B)×B‖2L2

)
.

Plugging the estimates of K21, K22, K23 into K2, it follows that

K2 ≤
(
C2−N ‖u‖4L4

) 6
4
+

1

4
‖(u · ∇)u‖2L2 +

1

4
‖(∇×B)×B‖2L2

+ CN ‖u‖4L4 ‖∇π‖
2
3

Ḃ0∞,∞
+

(
C2−N ‖u‖4L4

) 1
4
(
‖u · ∇u‖2L2 + ‖(∇×B)×B‖2L2

)
. (2.9)

Now let us choose a fixed positive integer N so that C2−N ‖u‖4L4 ≈ 1
4 , i.e., N =

[
logC+log(‖u‖4

L4+e)

log 4

]

+1,

where [a] denotes the largest integer less than or equal to a. Therefore, inserting N into (2.9), we
arrive at
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K2 ≤ C + C
(
logC + log(‖u‖4L4 + e)

)
‖∇π‖

2
3

Ḃ0∞,∞
‖u‖4L4 +

1

8
‖(u · ∇)u‖2L2 +

1

8
‖(∇×B)×B‖2L2 .

(2.10)

For K3, using integration by parts, Hölder’s and Young’s inequalities, we can derive

K3 =
3∑

i=1

∫

R3

Bi∂iu · |B|2Bdx = −
3∑

i=1

∫

R3

Biu∂i(|B|2B)dx

= −
∫

R3

u |B|2 (B · ∇)Bdx−
∫

R3

B · u ·
3∑

i=1

Bi∂iB
2dx

≤ C ‖(B · ∇)B‖L4 ‖u‖L4

∥
∥
∥|B|2

∥
∥
∥
L2

≤ C ‖B‖3L4 ‖u‖L4 ‖∇B‖BMO

≤ C
(
‖u‖3L4 + ‖B‖4L4

)
(1 + ‖∇B‖2BMO). (2.11)

In the same way, we get the estimates to K4 and K5 as follows:

K4 =

∫

R3

((B × (∇×B)))(∇ |B|2 ×B)dx ≤ C ‖B × (∇×B)‖L4

∥
∥
∥∇ |B|2

∥
∥
∥
L4

‖B‖L2

≤ C ‖B‖2L4 ‖∇B‖2BMO ≤ C
(
1 + ‖B‖4L4

)
‖∇B‖2BMO , (2.12)

where we have used the fact (see [5]) that

‖B × (∇×B)‖L4 ≤ C ‖|B|∇B‖L4 ≤ C ‖B‖L4 ‖∇B‖BMO

and

K5 =

∫

R3

[((∇×B)×B)×B](∇ |B|2 ×B)dx

≤ C ‖B × (∇×B)‖L4

∥
∥
∥∇ |B|2

∥
∥
∥
L4

∥
∥
∥|B|2

∥
∥
∥
L2

≤ C ‖B‖4L4 ‖∇B‖2BMO . (2.13)

We substitute the estimate of Km (m = 1, 2, . . . , 5) into (2.6) and obtain

1

4

d

dt

(
‖u‖4L4 + ‖B‖4L4

)
+

1

2
‖|u| |∇u|‖2L2 +

1

2
‖|B| |∇B|‖2L2 +

1

2

∥
∥
∥∇ |u|2

∥
∥
∥
2

L2
+

1

2

∥
∥
∥∇ |B|2

∥
∥
∥
2

L2

≤ C + C
(
logC + log(‖u‖4L4 + e)

)
‖∇π‖

2
3

Ḃ0∞,∞
‖u‖4L4 + C(1 + ‖∇B‖2BMO)

(
‖B‖4L4 + ‖u‖4L4

)
,

the above inequality reduces to

d

dt

(
‖u‖4L4 + ‖B‖4L4

)
≤ C + C(1 + ‖∇B‖2BMO)

(
‖B‖4L4 + ‖u‖4L4

)

+C ‖∇π‖
2
3

Ḃ0∞,∞
log(‖u‖4L4 + ‖B‖4L4 + e)

(
‖B‖4L4 + ‖u‖4L4

)
,

for all 0 ≤ t < T . For the sake of clear presentation, we set F (t) = e+ ‖u(·, t)‖4L4 + ‖B(·, t)‖4L4 . Thus,
we have

dF

dt
(t) ≤ C(1 + ‖∇B‖2BMO)F (t) +CF (t) ‖∇π‖

2
3

Ḃ0∞,∞
log(F (t)) + C.

Using Gronwall’s inequality, we obtain for all 0 ≤ t ≤ T :

F (t) ≤ (F (0) + CT ) exp

⎛

⎝C

T∫

0

‖∇π(τ)‖
2
3

Ḃ0∞,∞
log F (τ)dτ

⎞

⎠ exp

⎛

⎝

T∫

0

1 + ‖∇B(τ)‖2BMO dτ

⎞

⎠ . (2.14)
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Taking logarithmic on both sides of (2.14), one has

logF (t) ≤ log (F (0) + CT ) + C

T∫

0

‖∇π(τ)‖
2
3

Ḃ0∞,∞
logF (τ)dτ +

T∫

0

{
1 + ‖∇B(τ)‖2BMO

}
dτ.

Employing the Gronwall inequality again, we obtain that

log F (t) ≤ log (F (0) + CT )

T∫

0

‖∇π(τ)‖
2
3

Ḃ0∞,∞
dτ < ∞

for any 0 ≤ t ≤ T . This implies that

(u,B) ∈ L∞(0, T ;L4(R3)) ⊂ L8(0, T ;L4(R3)). (2.15)

From (2.15) and (1.2), it is easy to conclude that the solution (u,B) can be extended beyond t = T .
This completes the proof of Theorem 1.1.
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