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ON CALCULATION OF THE NORM OF A MONOTONE OPERATOR
IN IDEAL SPACES

E. G. Bakhtigareeva and M. L. Goldman UDC

Abstract. This paper contains the proof of general results on the calculation of the norms of monotone
operators acting from one ideal space to another under matching convexity and concavity properties
of the operator and the norms in ideal spaces.
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1. Introduction

The work is devoted to the justification of some general results on the computation of the norm of
a monotone operator acting from one normalized (quazinormalized in more general case) ideal space
to another and having the convexity property which matches the convexity and concavity properties
of the (quazi)norms of the ideal spaces. The term of the ideal space of measurable functions gener-
alizes the construction of the Banach functional space introduced by Bennett and Sharpley [3]. The
general questions of theory ideal structures and Banach functional spaces are considered in papers
by Kantorovich and Akilov [8], Kreyn, Petunin and Semenov [9] and also Berg and Löfström [4] and
Triebel [10].

In the current paper we use the definitions and the general properties of the spaces represented
in [1]. Here we note that the (quasi)norm ‖ ·‖X in the ideal space X possesses the monotone property:
if the function f is measurable and |f | ≤ g ∈ X, then f ∈ X, ‖f‖X ≤ ‖g‖X ; also ‖f‖X < ∞ ⇒ |f | < ∞
almost everywhere and, moreover, if 0 ≤ fm ≤ fm+1, fm → f (m → ∞) almost everywhere, then
‖f‖X = lim

m→∞ ‖fm‖X (the Fatou property). In [1] there was proven, in particular, that the ideal space

is complete, i.e., that it is (quasi)Banach, and the ideal spans for the cones of functions with the
monotone property are also described there.
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Justifying the results on the norm calculations in the current paper we generalize and modify the
approach developed in paper by Burenkov and Goldman [5]. We also give the example of the usage of
the general formulas when computing the norm of the integral operator. The number of applications
of the general results proven here in the theory of Lorentz weighted spaces and in the calculation of
the associated norms on the cones of functions with the monotone property is given in [2]. Note that
some other approaches to the problems of such type were developed by Gogatishvili and Stepanov
in [6, 7].

The structure of the paper is as follows. In Sec. 2 there are stated the main definitions and given the
results on the calculation of the norm of the operator on the cone of decreasing nonnegative functions
in the ideal space both in the nondegenerate case and in the case of degeneration (Theorem 2.1). The
lemmas necessary for the proof of this lemma are considered in Sec. 3. Sec. 4 contains the proof of
Theorem 2.1 and some of its corollaries. In Sec. 5 there are given generalizations of the obtained
results onto more general cones of functions under monotone conditions (Theorem 5.1). In Sec. 6,
we consider an example of the application of the general results to the calculation of the norm of an
integral operator on the cone of functions with the monotone property.

2. General Theorems on the Norms of Operators on the Cones of Functions
with the Monotone Property

Let (M,ΣM , β), (N,ΣN , γ) be spaces with nonnegative σ-additive complete measures β, γ; S(M,
ΣM , β), S(N,ΣN , γ) be spaces of real-valued measurable functions.

We say that the norm in the ideal space X ⊂ S(M,ΣM , β) is order continuous if

{xm ∈ X,m ∈ N; 0 ≤ xm ↓ 0 β − a.e.} ⇒ ‖xm‖X ↓ 0. (2.1)

The ideal space X ⊂ S(M,ΣM , β) is called lp-concave for p ∈ R+ if(∑
m

‖xm‖pX
)1/p

≤
∥∥∥∥∥∥
(∑

m

|xm|p
)1/p

∥∥∥∥∥∥
X

. (2.2)

The ideal space Y ⊂ S(N,ΣN , γ) is called lq-convex for q ∈ R+ if∥∥∥∥∥∥
(∑

m

|ym|q
)1/q

∥∥∥∥∥∥
Y

≤
(∑

m

‖ym‖qY
)1/q

. (2.3)

That means that the convergence of series on the right-hand side of Eq. (2.2) or Eq. (2.3) implies
the convergence of series on the left-hand side and the corresponding inequalities hold.

Note that every normalized ideal space is l1-convex and the lq-concavity for 0 < q < 1 leads to the
triangle inequality in the following form:

‖f + g‖Y ≤ (‖f‖qY + ‖g‖qY
)1/q ≤ 21/q−1 (‖f‖Y + ‖g‖Y ) . (2.4)

Indeed, by the Jensen inequality for 0 < q < 1 we have

|f + g| ≤ |f |+ |g| ≤ (|f |q + |g|q)1/q .
Next, the application of Eq. (2.3) and Hölder’s inequality (for two summands) implies

‖f + g‖Y ≤
∥∥∥(|f |q + |g|q)1/q

∥∥∥
Y
≤ (‖f‖qY + ‖g‖qY

)1/q ≤ 21/q−1 (‖f‖Y + ‖g‖Y ) .
Also note that Y = Lq(N, γ), 0 < q < ∞ is lρ-convex for each ρ ∈ (0, q] (see Lemma 4.1 below) and

it is lp-concave for each p ∈ [q,∞).
Consider a cone D ⊂ X of nonnegative functions with the condition

f, g ∈ D; α, β ≥ 0 ⇒ αf + βg ∈ D.

238



The operator T : D → Y is called lr-convex as 0 < r < ∞ if ∀fm ∈ D, m ∈ Z such that(∑
m

f r
m

)1/r

∈ D, ∣∣∣∣∣∣T
⎡
⎣(∑

m

f r
m

)1/r
⎤
⎦
∣∣∣∣∣∣ ≤
(∑

m

|Tfm|r
)1/r

(2.5)

almost everywhere on M ; and ∀f ∈ D; α ≥ 0 ⇒ T [αf ] = αT [f ].
Note that the l1-convexity of T coincides with the sublinearity∣∣∣∣∣T

[(∑
m

fm

)]∣∣∣∣∣ ≤
(∑

m

|Tfm|
)
.

The operator T is called monotone if

{f, g ∈ D; 0 ≤ f ≤ g β − a.e.} ⇒ {0 ≤ Tf ≤ Tg γ − a.e.} . (2.6)

An example of an lr-convex monotone operator is the operator

T [f ] = (L[f r])1/r ,

where L is a sublinear monotone operator. More, this formula illustrates the correspondence between
the lr-convex and sublinear operators.

We consider the case M = J := (a, b), −∞ ≤ a, b ≤ ∞, with noninear Borel measure β and the
restrictions of operator onto the following cones of nonnegative decreasing left-continuous functions
on J := (a, b):

Ω = {g ∈ X : 0 ≤ g ↓; g(t) = g(t− 0), t ∈ (a, b)} ,

Ω̇ =

{
g ∈ Ω : lim

t→b−0
g(t) = 0

}
. (2.7)

Let us define the norms of the restrictions of operator:

‖T‖Ω = sup {‖T [g]‖Y : g ∈ Ω, ‖g‖X ≤ 1} , (2.8)

‖T‖Ω̇ = sup
{
‖T [g]‖Y : g ∈ Ω̇, ‖g‖X ≤ 1

}
. (2.9)

We denote by

Ω̇0 :=
{
χ(a,t] : a < t < b

}
, Ω0 := Ω̇0

⋃
χ(a,b); (2.10)

F (x, t) = T
[
χ(a,t]

]
(x), a < t < b; F (x, b) = T

[
χ(a,b)

]
(x). (2.11)

Theorem 2.1. Let 0 < p ≤ q ≤ r < ∞; X ⊂ S(J, β) be an ideal lp-concave space with order
continuous (quasi)norm; Y ⊂ S(N, γ) be an ideal lq-convex space, and T : Ω → Y be an lr-convex
monotone operator.

(1) Then there hold the relations

‖T‖Ω̇ = ‖T‖Ω̇0
:= sup

a<t<b

[‖F (·, t)‖Y ‖χ(a,t](·)‖−1
X

]
. (2.12)

(2) Under the additional nondegeneracy condition

‖χ(a,b)‖X = ∞ (2.13)

there hold the relations

‖T‖Ω = ‖T‖Ω̇ = ‖T‖Ω̇0
:= sup

a<t<b

[‖F (·, t)‖Y ‖χ(a,t](·)‖−1
X

]
. (2.14)
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(3) Under the degeneracy

‖χ(a,b)‖X < ∞ (2.15)

there hold the relations

‖T‖Ω = ‖T‖Ω0 := max
{
‖T‖Ω̇0

, ‖F (·, b)‖Y ‖χ(a,b)(·)‖−1
X

}
, (2.16)

see Eq. (2.11).

Remark 2.1. Note that in nondegenerate case Eq. (2.13)

‖χ(a,b)‖X = ∞ ⇒ Ω = Ω̇,

since {
0 ≤ g ↓, lim

t→b−0
g(t) > 0

}
⇒ g /∈ X. (2.17)

This means that in the case of Eq. (2.13) there hold the equality ‖T‖Ω = ‖T‖Ω̇. Thus for the
calculation of ‖T‖Ω one can apply Eq. (2.12). Thus, there holds the relation (2.14) and the item (2)
of Theorem 2.1 follows from its item (1).

Remark 2.2. When proving Theorem 2.1 we firstly prove the general statement, which comprises
item (3) of this theorem. Next we note the simplifications (quite significant), which arise in this
reasoning while proving item (1) of theorem, no matter if the nondegeneracy condition (2.13) holds
or fails. These simplifications are connected to the fact that in item (1) of theorem we consider the

cone Ω̇ instead of the general cone Ω, see Eq. (2.7).

3. Lemmas

Lemma 3.1. Let 0 < q < s < ∞; ω,ψ be nonegative functions on (a, b), −∞ ≤ a < b ≤ ∞, ω ↑, ψ ↓;
ω,ψ, ψ′ ∈ C(a, b), ψ(a) > ψ(b). We define

ω(a) := lim
t→a+0

ω(t), ω(b) := lim
t→b−0

ω(t), ψ(a) := lim
t→a+0

ψ(t), ψ(b) := lim
t→b−0

ψ(t).

If ψ(b) = 0, then we set C := 0. If ψ(b) > 0, then we set that the condition C := ω(b)ψ(b) < ∞ is
valid. We introduce for r ∈ [q, s] the operator

Ar(a, b) =

⎧⎪⎨
⎪⎩
∫

(a,b)

ω(t)r (−d [ψ(t)r])

⎫⎪⎬
⎪⎭

1/r

. (3.1)

Then

{Cs +As(a, b)
s}1/s ≤ {Cq +Aq(a, b)

q}1/q . (3.2)

Proof. We set Aq(a, b) < ∞.

1. Firstly we consider the case when b ∈ (a,∞], ψ(b) = 0.

As(a, b)
s =

∫
(a,b)

ωs
(
−d
[
(ψq)s/q

])
=

s

q

∫
(a,b)

ωsψs−q (−d [ψq]) =
s

q

∫
(a,b)

[ωψ]s−qωq (−d [ψq]) .

Note that the increase of ωq together with the condition ψ(b) = 0 implies that

[ω(t)ψ(t)]s−q ≤

⎡
⎢⎣∫
[t,b)

ω(τ)q (−d [ψ(τ)q])

⎤
⎥⎦
s/q−1

, t ∈ (a, b).
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Thus,

As(a, b)
s ≤ s

q

∫
(a,b)

⎡
⎢⎣∫
[t,b)

ω(τ)q (−d [ψ(τ)q])

⎤
⎥⎦
s/q−1

ω(t)q (−d [ψ(t)q])

=

∫
(a,b)

⎛
⎜⎜⎝−d

⎡
⎢⎢⎣
⎛
⎜⎝∫
[t,b)

ω(τ)q (−d [ψ(τ)q ])

⎤
⎥⎦
s/q
⎤
⎥⎥⎦
⎞
⎟⎟⎠ =

⎡
⎢⎣ ∫
(a,b)

ωq (−d [ψq])

⎤
⎥⎦
s/q

= Aq(a, b)
s.

2. Now let b ∈ R+, ψ(b) > 0, C = ω(b)ψ(b) < ∞. We extend the functions ω,ψ onto [b, b + 1) in
such way that ω(τ) = ω(b), τ ∈ [b, b+ 1); ψ(τ) ↓, ψ(b + 1) = 0. Next we apply the result obtained on
the first step on (a, b+ 1) and obtain

As(a, b+ 1) ≤ Aq(a, b+ 1). (3.3)

Next,

As(a, b+ 1)s = As(a, b)
s +

∫
[b,b+1)

ω(t)s (−d [ψ(t)s]

= As(a, b)
s + ω(b)s

∫
[b,b+1)

(−d [ψ(t)s]) = As(a, b)
s + ω(b)sψ(b)s.

Analogically, Aq(a, b+ 1)q = Aq(a, b)
q + ω(b)qψ(b)q, and Eq. (3.3) leads to Eq. (3.2).

3. Consider the last case b = ∞, ψ(∞) > 0. We apply the inequality obtained above in the case
when b < ∞, ψ(b) > 0:

{ω(b)sψ(b)s +As(a, b)
s}1/s ≤ {ω(b)qψ(b)q +Aq(a, b)

q}1/q .
Then we pass to the limit as b → +∞. Then

{ω(∞)sψ(∞)s +As(a,∞)s}1/s ≤ {ω(∞)qψ(∞)q +Aq(a,∞)q}1/q .

Remark 3.1. Estimate (3.2) remain valid in the case of substitution of C with any constant D ∈
(C,∞).

Proof. As A,B > 0, 0 < q < s < ∞ consider the function ϕ(x) = (xs +As)1/s(xq +Bq)−1/q, x ∈ R+.

1. If A ≤ B, then ϕ(x) ≤ (xs +Bs)1/s(xq +Bq)−1/q ≤ 1, x ∈ R+.
2. Let A > B. Then ϕ(0) = AB−1 > 1. Moreover,

ϕ′(x) = (xs +As)1/s−1(xq +Bq)−1/q−1xq−1(xs−qBq −As).

Thus, the function ϕ decreases from ϕ(0) > 1 to ϕ(x1) < 1, x1 = (AsB−q)1/(s−q), then increases
to ϕ(+∞) = 1. Thus, if ϕ(x0) ≤ 1 for x0 > 0, then ϕ(x) ≤ 1 for all x ≥ x0. Then we denote
A = As(a, b), B = Aq(a, b) and note that by Eq. (3.2)

ϕ(C) = (Cs +As(a, b)
s)1/s (Cq +Aq(a, b)

q)−1/q ≤ 1.

Thus for any D ≥ C we have ϕ(D) ≤ 1.

Lemma 3.2. Let
ωm, ψm ≥ 0, m ∈ Z; ωm ↑, ψm ↓ .

We define
ω∞ = lim

m→+∞ωm, ψ∞ = lim
m→+∞ψm, C := ω∞ · ψ∞. (3.4)
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Here we set that

ψ∞ = 0 ⇒ C = 0; ψ∞ > 0 ⇒ C < ∞.

Then as 0 < q < s < ∞{
Cs +

∑
m∈Z

ωs
m

(
ψs
m − ψs

m+1

)}1/s

≤
{
Cq +

∑
m∈Z

ωq
m

(
ψq
m − ψq

m+1

)}1/q

. (3.5)

Estimate (3.5) remains valid under the substitution of C with any constant D ∈ (C,∞).

Proof. We introduce the function ψ ∈ C1(R+), 0 ≤ ψ ↓; ψ(2m) = ψm,m ∈ Z.
Next, we introduce for n ∈ N the function ω(n, ·) ∈ C(R+) on [2m, 2m+1], m ∈ Z, in the following

way:

ω(n, t) =

{
ωm, 2m ≤ t ≤ 2m+1 − 2m−1/n;

linear as 2m+1 − 2m−1/n ≤ t ≤ 2m+1.

Note that

ψ(∞) := lim
t→+∞ψ(t) = lim

m→+∞ψm = ψ∞.

If ψ∞ = 0, then we set C = 0. Next, if ω∞ = lim
m→+∞ωm < ∞, then we have ω(n,∞) =

lim
t→+∞ω(n, t) = ω∞ < ∞ (ω∞ does not depend on n ∈ N), and we set C := ω(n,∞)ψ(∞) =

ω∞ψ∞ < ∞. By Eq. (3.2) there holds the inequality

In :=

⎧⎪⎨
⎪⎩Cs +

∫
R+

ω(n, t)s (−d [ψ(t)s])

⎫⎪⎬
⎪⎭

1/s

≤ Jn :=

⎧⎪⎨
⎪⎩Cq +

∫
R+

ω(n, t)q (−d [ψ(t)q])

⎫⎪⎬
⎪⎭

1/q

.

Note that {ω(n, t)}n∈N is the decreasing sequence and

lim
n→+∞ω(n, t) = ω(∞, t) = ωm, t ∈ [2m, 2m+1), m ∈ Z.

Then by Levi theorem on the monotone convergence we can pass to the limit as n → +∞ in the latter
inequality, which implies

I∞ :=

⎧⎪⎨
⎪⎩Cs +

∫
R+

ω(∞, t)s (−d [ψ(t)s])

⎫⎪⎬
⎪⎭

1/s

≤ J∞ :=

⎧⎪⎨
⎪⎩Cq +

∫
R+

ω(∞, t)q (−d [ψ(t)q])

⎫⎪⎬
⎪⎭

1/q

.

However,

I∞ :=

⎧⎪⎨
⎪⎩Cs +

∑
m∈Z

∫
[2m,2m+1)

ω(∞, t)s (−d [ψ(t)s])

⎫⎪⎬
⎪⎭

1/s

=

⎧⎪⎨
⎪⎩Cs +

∑
m∈Z

ωs
m

∫
[2m,2m+1)

(−d [ψ(t)s])

⎫⎪⎬
⎪⎭

1/s

,

which coincides with the left-hand side of Eq. (3.5). Analogically,

J∞ =

⎧⎪⎨
⎪⎩Cq +

∑
m∈Z

ωq
m

∫
[2m,2m+1)

(−d [ψ(t)q])

⎫⎪⎬
⎪⎭

1/q

=

{
Cq +

∑
m∈Z

ωq
m

(
ψq
m − ψq

m+1

)}1/q

.

These reasonings lead to Eq. (3.5).
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Corollary 3.1. Let

ωm, ψm ≥ 0, m ∈ {0, 1, . . . ,m0 + 1} , ωm ↑, ψm ↓, C = ωm0+1 · ψm0+1. (3.6)

Then as 0 < q ≤ s < ∞{
Cs +

m0∑
m=0

ωs
m

(
ψs
m − ψs

m+1

)}1/s

≤
{
Cq +

m0∑
m=0

ωq
m

(
ψq
m − ψq

m+1

)}1/q

. (3.7)

Estimate (3.7) holds as m0 = ∞ with constant

C = ω∞ · ψ∞, ω∞ = lim
m→+∞ωm, ψ∞ = lim

m→+∞ψm; ∞ · 0 := 0.

This estimate remain valid in the case of substitution of C with any constant D ∈ (C,∞).

Indeed, in Eq. (3.5) we set ωm = 0, ψm = ψ0, m ≤ −1; if m0 < ∞,

ωm = ωm0+1, ψm = ψm0+1, m ≥ m0 + 2,

then Eq. (3.5) implies Eq. (3.7).

Remark 3.2. We obtained the discrete estimates (3.5) and (3.7) as the corollaries of the integral
estimate (3.2). For the applications if suffices to show that Eq. (3.2), in its turn, can be obtained
from the discrete estimates. In order to do this it suffices for ω to be left-continuous, and for ψ to be
right-continuous on (a, b). For completeness of the material we give the following statement.

Lemma 3.3. Let 0 < q < s < ∞; ω,ψ be the nonegative functions on (a, b); −∞ ≤ a < b ≤ ∞, ω ↑,
ψ ↓; ω be left-continuous on (a, b), ψ be right-continuous on (a, b); ψ(b) < ψ(a) < ∞. We define

ω(a) := lim
t→a+0

ω(t), ω(b) := lim
t→b−0

ω(t), ψ(a) := lim
t→a+0

ψ(t), ψ(b) := lim
t→b−0

ψ(t).

If ψ(b) = 0, we set C := 0. If ψ(b) > 0, we claim that C := ω(b)ψ(b) < ∞. As r ∈ [q, s] we introduce
Ar(a, b) by Eq. (3.1). Then estimate (3.2) holds.
Proof.

1. Firstly we obtain some useful inequalities for Lebesgue–Stieltjes integral (in the case considered
here it coincides with the Riemann–Stieltjes integral). For any r ∈ R+, a ≤ t < τ < b and decreasing
on (a, b) right-continuous at t (note that it happens automatically at t = a since ψ(a) = ψ(a + 0))
function ψ there holds the quality ∫

(t,τ ]

(−d [ψr]) = ψ(t)r − ψ(τ)r . (3.8)

Indeed, ∫
(t,τ ]

(−d [ψr]) = lim
ρ→t+0

∫
[ρ,τ ]

(−d [ψr]) = lim
ρ→t+0

[ψ(ρ)r − ψ(τ)r] = ψ(t)r − ψ(τ)r.

Here we use the equality ∫
[ρ,τ ]

(−d [ψr]) = ψ(ρ)r − ψ(τ)r. (3.9)

It follows from the definition of the Riemann–Stieltjes integral, since all integral sums of the integral
on the segment [ρ, τ ] coincide with the right-hand side of this formula. Thus, there holds Eq. (3.8).

Passing to the limit in this formula as t = a, τ → b− 0, we obtain∫
(a,b)

(−d [ψ(t)r]) = ψ(a)r − ψ(b)r. (3.10)
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For any r ∈ R+, a < t < τ ≤ b and function ψ decreasing on (a, b) left-continuous at τ (note that at
point τ = b it happens automatically, since ψ(b) = ψ(b− 0)) there holds the equality∫

[t,τ)

(−d [ψ(t)r]) = ψ(t)r − ψ(τ)r. (3.11)

Indeed, ∫
[t,τ)

(−d [ψ(t)r]) = lim
ρ→τ−0

∫
[t,ρ]

(−d [ψ(t)r]) = lim
ρ→τ−0

[ψ(t)r − ψ(ρ)r] = ψ(t)r − ψ(τ)r.

Moreover, if ψ is left-continuous at τ and right-continuous at t, then∫
(t,τ)

(−d [ψ(t)r]) = ψ(t)r − ψ(τ)r. (3.12)

Applying Eq. (3.11), we obtain∫
(t,τ)

(−d [ψ(t)r]) = lim
ρ→t+0

∫
[ρ,τ)

(−d [ψ(t)r]) = lim
ρ→t+0

[ψ(ρ)r − ψ(τ)r] = ψ(t)r − ψ(τ)r.

Set Aq(a, b) < ∞ (otherwise there is nothing to prove in Eq. (3.2)). If ω(a) > 0, then this supposition
implies ψ(a) < ∞. Indeed, ω increases on (a, b), thus, ω(t) ≥ ω(a), t ∈ (a, b), and

Aq(a, b)
q =

∫
(a,b)

ωq (−d [ψq]) ≥ ω(a)q
∫

(a,b)

(−d [ψq]) = ω(a)q [ψ(a)q − ψ(b)q ] .

The case ω(a) = 0 will be considered in the fifth step below.

2. At first we consider the case 0 < ω(a) = ω(b). Then ω(t) = ω(b), t ∈ [a, b), thus Eq. (3.10) as
r = s and r = q leads to the equality

As
s = ω(b)s

∫
(a,b)

(−d [ψ(t)s]) = ω(b)s [ψ(a)s − ψ(b)s] ,

{ω(b)sψ(b)s +As
s}1/s = ω(b)ψ(a) =

{
ω(b)qψ(b)q +Aq

q

}1/q
.

3. Let 0 < ω(a) < ω(b) < ∞. As 1 < d < ω(b)/ω(a) we choose tm ∈ [a, b) in the following way:
t0 = a, t1 = sup {t > a : ω(t) ≤ dω(a)} ,

tm+1 = sup {t > a : ω(t) ≤ dω(tm + 0)} , m = 1, 2, . . . ,m0 − 1;

ω(tm0 + 0) < ω(b) ≤ dω(tm0 + 0).
(3.13)

Note that
(1) tm+1 > tm, m = 0, 1, . . . ,m0;

(2) ω(tm + 0) ≤ ω(t) ≤ dω(tm + 0), t ∈ δm := (tm, tm+1],

m = 0, 1, . . . ,m0 − 1;

(3) ω(t) > dω(tm + 0), ∀t ∈ (tm+1, b); m = 0, 1, . . . ,m0 − 1.

(3.14)

Thus, a = t0 < t1 < . . . < tm0 < tm0+1 := b.
Now we obtain the estimates for As

s, A
q
q. We denote by δm := (tm, tm+1], m = 0, 1, . . . ,m0−1, δm0 =

(tm0 , tm0+1).

As
s =

∫
(a,b)

ωs (−d [ψs]) =

m0−1∑
m=0

∫
δm

ωs (−d [ψs]) +

∫
(tm0 ,b)

ωs (−d [ψs]) .
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The function ωs increases in such way that

As
s ≤

m0−1∑
m=0

ω(tm+1)
s

∫
δm

(−d [ψs]) + ω(b)s
∫

(tm0 ,b)

(−d [ψs]) =

m0∑
m=0

ω(tm+1)
s [ψ(tm)s − ψ(tm+1)

s]

≤ ds
m0∑
m=0

ω(tm + 0)s [ψ(tm)s − ψ(tm+1)
s] .

On the second step we noted that ψ is right-continuous on (a, b) and ψ(b − 0) = ψ(b), such that
Eq. (3.8) as 0 ≤ m ≤ m0−1 and Eq. (3.12) as m = m0 are applicable. Then, by Eq. (3.12) as t = tm0 ,
τ = b, r = s we obtain ∫

(tm0 ,b)

(−d [ψs]) = ψ(tm0)
s − ψ(b)s = ψ(tm0)

s − ψ(tm0+1)
s.

On the last step we apply Eq. (3.13). Denote

ωm := ω(tm + 0), ψm := ψ(tm), m = 0, . . . ,m0; ωm0+1 := ω(b), ψm0+1 := ψ(b).

Then

As
s ≤ ds

m0∑
m=0

ωs
m

[
ψs
m − ψs

m+1

]
. (3.15)

Analogically,

Aq
q =

∫
(a,b)

ωq (−d [ψq]) =

m0−1∑
m=0

∫
δm

ωq (−d [ψq]) +

∫
(tm0 ,b)

ωq (−d [ψq]) ,

Aq
q =

m0∑
m=0

∫
δm

ωq (−d [ψq]) ≥
m0∑
m=0

ω(tm + 0)q [ψ(tm)q − ψ(tm+1)
q] ,

such that

Aq
q ≥

m0∑
m=0

ωq
m

[
ψq
m − ψq

m+1

]
. (3.16)

Now we apply Eq. (3.7) as C = ωm0+1 · ψm0+1 = ω(b)ψ(b) and obtain

{ω(b)sψ(b)s +As
s}1/s ≤

{
dsω(b)sψ(b)s + ds

m0∑
m=0

ωs
m

[
ψs
m − ψs

m+1

]}1/s

≤ d

{
ω(b)qψ(b)q +

m0∑
m=0

ωq
m

[
ψq
m − ψq

m+1

]}1/q

≤ d
{
ω(b)qψ(b)q +Aq

q

}1/q
.

Thus,

{ω(b)sψ(b)s +As
s}1/s ≤ d

{
ω(b)qψ(b)q +Aq

q

}1/q
.

In the latter inequality all summands in {} do not depend on d > 1. Then the passage to the limit as
d → 1 + 0 leads to Eq. (3.2).

4. Let 0 < ω(a) < ω(b) = ∞. In this case we set that ψ(b) = 0, C = 0. For any d > 1 we define
tm, m ∈ N0 = {0, 1, . . .} by formulas (3.13) with properties (3.14) for m ∈ N0 (in this case m0 = ∞).
Thus, estimates (3.15) and (3.16) are valid. More than that, here ψ∞ = ψ(b) = 0. The application of
Eq. (3.7) as C = 0, m0 = ∞ implies

As ≤ dAq, ∀d > 1 ⇒ As ≤ Aq.
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5. It remains to consider the case ω(a) = 0, ψ(a) ≤ ∞. Without loss of generality we consider that
ω(δ) > 0, ψ(δ) < ∞, δ ∈ (a, b). For each δ ∈ (a, b) there holds the estimate

{ω(b)sψ(b)s +As
s(δ, b)}1/s ≤

{
ω(b)qψ(b)q +Aq

q(δ, b)
}1/q

, (3.17)

which was proved above (with δ instead of a). Note that Ar(δ, b) → Ar(a, b) (δ → a + 0) as r = q,
r = s.

Thus, passing to the limit as δ → a+ 0 in Eq. (3.17), we obtain Eq. (3.2).

4. The Proof of Theorem 2.1. Corollaries

4.1. Proof of Theorem 2.1.
1. Let us now prove item (3) of this theorem, i.e., we obtain Eq. (2.16). Let

a < tm < tm+1 < b, m ∈ Z; lim
m→−∞ tm = a, lim

m→+∞ tm = b.

For function g ∈ Ω consider its “step majorant” g̃:

g̃(u) =
∑
m

g(tm)χΔm(u); Δm = (tm, tm+1], m ∈ Z. (4.1)

Note that for any u ∈ (a, b), s > 0, there holds χΔm(u)
s = χΔm(u), and

g̃(u) =

(∑
m

g(tm)sχΔm(u)
s

)1/s

, (4.2)

since the summands in Eq. (4.1) do not intersect and for each u ∈ (a, b) only one summand does not
vanish. Denote

B := lim
u→b−0

g(u); 0 ≤ cm(s) = (g(tm−1)
s − g(tm)s)1/s . (4.3)

Then for any u ∈ (a, b), s > 0,

g̃(u) =

(∑
m

cm(s)sχ(a,tm](u)
s +Bsχ(a,b)(u)

s

)1/s

, (4.4)

Equality (4.4) follows from Eq. (4.2) after applying the Abel transformation of the form
n∑

m=l

em (dm+1 − dm) =
n∑

m=l

(em − em+1) dm+1 + en+1dn+1 − eldl, (4.5)

if we set
em = g(tm)s, dm = χ(a,tm](u)

s = χ(a,tm](u)

and take into account that

lim
n→+∞ (en+1dn+1) = lim

n→+∞
(
g(tn+1)

sχ(a,tn+1](u)
s
)
= Bsχ(a,b)(u)

s;

lim
l→−∞

(eldl) = lim
l→−∞

(
g(tl)

sχ(a,tl](u)
s
)
= 0.

Next, passing to the limit in Eq. (4.5) as n → +∞, l → −∞ and using the equality∑
m

(em − em+1) dm+1 =
∑
m

(em−1 − em) dm,

we obtain Eq. (4.4).

By Eq. (4.4) as s = r we have g̃(u) = (f(u)r + h(u)r)1/r ;

f(u) =

(∑
m

cm(r)rχ(a,tm](u)
r

)1/r

; h(u) = Bχ(a,b)(u).
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Here 0 ≤ g ≤ g̃, and for the monotone lr-convex operator T there holds

0 ≤ T [g] ≤ T [g̃] ≤ (T [f ]r + T [h]r)1/r .

Next, by Eq. (2.5) as fm = cm(r)χ(a,tm](u), m ∈ Z,

T [f ]r ≤
∑
m

cm(r)rT
[
χ(a,tm]

]r
; T [h]r = BrT

[
χ(a,b)

]r
.

Thus,

0 ≤ T [g](x) ≤ T [g̃](x) ≤
{∑

m

cm(r)rF (x, tm)r +BrF (x, b)r

}1/r

. (4.6)

As 0 < q < r we use Corollary 3.1 of Lemma 3.2 as s = r, ωm = F (x, tm) ↑, ψm = g(tm−1) ↓ . Thus,

cm(r)r = g(tm−1)
r − g(tm)r = ψr

m − ψr
m+1;

cm(q)q = g(tm−1)
q − g(tm)q = ψq

m − ψq
m+1.

Here A = lim
m→+∞ωm = lim

m→+∞F (x, tm) := F0(x, b); B = lim
m→−∞ψm = g(b − 0), see (4.3). Note that

χ(a,t] ≤ χ(a,b), t ∈ (a, b). Thus,

F (x, t) ≤ F (x, b), t ∈ (a, b) ⇒ F0(x, b) ≤ F (x, b). (4.7)

Finally,

C ≡ AB = F0(x, b)B ≤ F (x, b)B ≡ D,

and we come to Eq. (3.5) as s = r substituting C with D in our notation{∑
m

cm(r)rF (x, tm)r +BrF (x, b)r

}1/r

≤
{∑

m

cm(q)qF (x, tm)q +BqF (x, b)q

}1/q

.

By Eq. (4.6) we have

0 ≤ T [g](x) ≤
{∑

m

[g(tm−1)
q − g(tm)q]F (x, tm)q +BqF (x, b)q

}1/q

. (4.8)

Note that in the case q = r Eq. (4.8) coincides with Eq. (4.6).
Inequality (4.8) and lq-convexity of Y imply

‖T [g]‖Y ≤
{∑

m

[g(tm−1)
q − g(tm)q] ‖F (·, tm)‖qY +Bq‖F (·, b)‖qY

}1/q

for any g ∈ Ω. We apply the estimates

‖F (·, tm)‖Y = ‖T [χ(a,tm]]‖Y ≤ ‖T‖Ω̇0
‖χ(a,tm]‖X ≤ ‖T‖Ω0‖χ(a,tm]‖X ,

‖F (·, b)‖Y ≤ ‖T‖Ω0‖χ(a,b)‖X
and obtain

‖T [g]‖Y ≤ ‖T‖Ω0

{∑
m

[g(tm−1)
q − g(tm)q] ‖χ(a,tm]]‖qX +Bq‖χ(a,b)‖qX

}1/q

.

From here as p ≤ q by Corollary 3.1 of Lemma 3.2 with q instead of s and p instead of q we obtain

‖T [g]‖Y ≤ ‖T‖Ω0

{∑
m

[g(tm−1)
p − g(tm)p] ‖χ(a,tm]]‖pX +Bp‖χ(a,b)‖pX

}1/p

.
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Thus,

‖T [g]‖Y ≤ ‖T‖Ω0

{∑
m

cm(p)p‖χ(a,tm]‖pX +Bp‖χ(a,b)‖pX
}1/p

.

Consider nonnegative functions

ϕm = cm(p)χ(a,tm]; ϕ =

(∑
m

ϕp
m

)1/p

; ζ = Bχ(a,b).

Then

‖T [g]‖Y ≤ ‖T‖Ω0

{∑
m

‖ϕm‖pX + ‖ζ‖pX
}1/p

.

The lp-concavity of X implies{∑
m

‖ϕm‖pX + ‖ζ‖pX
}1/p

≤
∥∥∥∥∥∥
(∑

m

ϕp
m + ζp

)1/p
∥∥∥∥∥∥
X

,

such that for g ∈ Ω there holds the inequality

‖T [g]‖Y ≤ ‖T‖Ω0

∥∥∥∥∥∥
(∑

m

ϕp
m + ζp

)1/p
∥∥∥∥∥∥
X

= ‖T‖Ω0

∥∥∥∥∥∥
(∑

m

cm(p)pχp
(a,tm] +Bpχp

(a,b)

)1/p
∥∥∥∥∥∥
X

= ‖T‖Ω0‖g̃‖X .

On the last step we apply inequality (4.4) as s = p. Thus, for any g ∈ Ω we obtain the inequality

‖T [g]‖Y ≤ ‖T‖Ω0‖g̃‖X , (4.9)

where g̃ is a “step majorant” of Eq. (4.1).
Next, we construct for n = 1, 2, 3, . . . the sequences {tm(n)}m∈Z in such way that the corresponding

step functions g̃n of form of Eq. (4.1) form a nonincreasing sequence everywhere tending to g ∈ Ω. By
the order continuity of (quasi)norm in X we obtain

‖g̃n‖X → ‖g‖X (n → ∞).

Now let us use inequality (4.9) with g̃n instead of g̃ and pass to the limit as n → ∞. As the result,
we obtain the inequality

‖T [g]‖Y ≤ ‖T‖Ω0‖g‖X , g ∈ Ω, (4.10)

such that ‖T‖Ω ≤ ‖T‖Ω0 . The opposite is obvious, since under Eq. (2.15) there holds the embedding
Ω0 ⊂ Ω. Thus, we obtain Eq. (2.16).

2. In the conditions of item (1) of Theorem 2.1 we obtain that

g ∈ Ω̇ ⇒ B := lim
t→b−0

g(t) = 0.

Thus it suffices to set B = 0 (ψ = 0, respectively) in the reasoning above. With that all sum-
mands containing χ(a,b) have the multiplier B = 0 and, thus, disappear independently on whether
the nondegeneracy condition (2.13) holds or fails. As a result, we obtain ‖T‖Ω̇0

instead of ‖T‖Ω0 in

Eqs. (4.9), (4.10), such that ‖T‖Ω̇ ≤ ‖T‖Ω̇0
. The opposite is obvious since there holds the embedding

Ω̇0 ⊂ Ω̇. Thus, we come to Eq. (2.12).

Remark 4.1. Thus, we have proven items (1) and (3) of Theorem 2.1. With Remark 2.1 we see that
the proof of Theorem 2.1 is now complete.
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Remark 4.2. In many cases there holds Eq. (4.7):

F0(x, b) = F (x, b) γ − a.e., (4.11)

which leads to ‖T‖Ω0 = ‖T‖Ω̇0
by Eq. (2.12).

For instance, Eq. (4.11) holds for any bounded linear operator T : X → Y. Indeed, for any
{tm}m∈Z ; tm ↑ b (m ↑ +∞)

‖F (·, b) − F (·, tm)‖Y =
∥∥T [χ(a,b) − χ(a,tm]

]∥∥
Y
≤ ‖T‖ ∥∥χ(tm,b)

∥∥
X

→ 0 (m ↑ +∞).

Here we take into account that χ(tm,b) ↓ 0 (m ↑ +∞), and the ideal space X has the order continuous
(quasi)norm. Next,

0 ≤ F (x, b)− F0(x, b) ≤ F (x, b)− F (x, tm), m ∈ Z.

Thus, for the ideal space Y we have

‖F (·, b) − F0(·, b)‖Y ≤ ‖F (·, b) − F (·, tm)‖Y .
This implies ‖F (·, b) − F0(·, b)‖Y = 0 ⇒ Eq. (4.11).

Remark 4.3. There are cases where Eq. (4.11) does not hold. For instance, consider the case N =
J = (a, b), T0[g](x) = g(b− 0)χJ (x), g ∈ G. Then

T0[g](x) = 0, g ∈ Ω̇0 ⇒ ‖T0‖Ω̇0
= 0; T0[χJ ] = χJ ⇒ ‖T0‖Ω0

=
‖χJ‖Y
‖χJ‖X

> 0.

4.2. Corollaries.

Corollary 4.1. Let 0 < p ≤ min {q, r} < ∞; X ⊂ S(J, β) be the ideal lp-concave space with order
continuous (quasi)norm, and let condition (2.13) hold. Let Y = Lq(N, γ), and let T be a lr-convex
monotone operator. Then Eq. (2.14) holds.

Corollary 4.2. Let 0 < p ≤ min {q, r} < ∞; X ⊂ S(J, β) be the ideal lp-concave space with order
continuous (quasi)norm, and let condition (2.15) hold. Let Y = Lq(N, γ) and let T be the lr-convex
monotone operator. Then Eq. (2.16) holds.

In order to prove these corollaries we need a lemma on the convexity properties of the Lebesgue
spaces.

Lemma 4.1. Let 0 < q < ∞. Then Y = Lq(N, γ) is the ideal lρ-convex space for any ρ ∈ (0, q].

Proof. Denote

A =

∥∥∥∥∥∥
(∑

m

|ym|ρ
)1/ρ

∥∥∥∥∥∥
Y

. (4.12)

Let us show that

A ≤
(∑

m

‖ym‖ρY
)1/ρ

. (4.13)

As ρ = q we obtain

Aq =

∫
N

∑
m

|ym|qdγ =
∑
m

∫
N

|ym|qdγ =
∑
m

‖ym‖qY ,

such that Eq. (4.13) is the equality. Let now 0 < ρ < q. Then

Aq =

∫
N

(∑
m

|ym|ρ
)(∑

l

|yl|ρ
)q/ρ−1

dγ =
∑
m

∫
N

|ym|ρ
(∑

l

|yl|ρ
) q−ρ

ρ

dγ.
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Then we apply the Hölder’s inequality to every term with powers p = q/ρ > 1 and p′ = q/(q − ρ),
1/p + 1/p′ = 1, and obtain

Aq ≤
∑
m

⎛
⎝∫

N

|ym|qdγ
⎞
⎠

ρ/q⎛
⎝∫

N

(∑
l

|yl|ρ
)q/ρ

dγ

⎞
⎠

q−ρ
q

= Aq−ρ
∑
m

⎛
⎝∫

N

|ym|qdγ
⎞
⎠

ρ/q

.

Hence,

Aρ ≤
∑
m

⎛
⎝∫

N

|ym|qdγ
⎞
⎠

ρ/q

=
∑
m

‖ym‖ρY .

Thus we obtain the inequality (4.13), which means the lρ-convexity of the ideal space Y = Lq(N, γ).

Proof of Corollaries 4.1 and 4.2. Let us denote ρ = min {q, r} . Then p ≤ ρ ≤ r. By Lemma 4.1 the
space Y = Lq(N, γ) is lρ-convex and we can apply Theorem 2.1 with ρ instead of q. Thus, Eq. (4.13)
holds for Y = Lq(N, γ). The proof of Corollary 4.2 is similar.

5. The Generalization of Monotone Conditions

The analogical results are valid for the cones of functions with the monotone property related to
the given positive function k ∈ C(J). We define

Ωk ≡ Ω(X, k)= {g∈ X : g ≥ 0, g(t)/k(t) ↓; g(t) = g(t− 0), t ∈ (a, b)} , (5.1)

Ω̇k ≡ Ω̇(X, k) = {g ∈ Ωk : g(t)/k(t) → 0, t → b− 0} (5.2)

(in this notation as k(t) ≡ 1 we have: Ω1 = Ω, Ω̇1 = Ω̇, see Eq. (2.7)). We denote

Ω̇k,0 ≡ Ω̇0(X, k) =
{
kχ(a,t] : a < t < b

}
,

Ωk,0 ≡ Ω0(X, k) = Ω̇k,0 ∪
{
kχ(a,b)

}
.

(5.3)

Theorem 5.1. Let 0 < p ≤ q ≤ r < ∞; X ⊂ S(J, β) be the ideal lp-concave space with order
continuous (quasi)norm; Y ⊂ S(N, γ) be the ideal lq-convex space, and let T : Ωk → Y be the lr-
convex monotone operator.

(1) Then there hold the relations

‖T‖Ω̇k
= ‖T‖Ω̇k,0

:= sup
a<t<b

[‖Fk(·, t)‖Y ‖k(·)χ(a,t](·)‖−1
X

]
, (5.4)

where

Fk(x, t) = T [kχ(a,t]](x), a < t < b. (5.5)

(2) Under the additional nondegeneracy condition

‖kχ(a,b)‖X = ∞ (5.6)

there hold the relations

‖T‖Ωk
= ‖T‖Ω̇k

= ‖T‖Ω̇k,0
= sup

a<t<b

[‖Fk(·, t)‖Y ‖k(·)χ(a,t](·)‖−1
X

]
. (5.7)

(3) Under the degeneracy

‖kχ(a,b)‖X < ∞ (5.8)

there hold the relations

‖T‖Ωk
= ‖T‖Ωk,0

:= max
{
‖T‖Ω̇k,0

, ‖Fk(·, b)‖Y ‖kχ(a,b)(·)‖−1
X

}
, (5.9)

where

Fk(x, b) = T [kχ(a,b)](x). (5.10)
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Remark 5.1. Note that in the nondegenerate case

‖kχ(a,b)‖X = ∞ ⇒ Ωk = Ω̇k, (5.11)

since {
0 ≤ g/k ↓, lim

t→b−0
[g(t)/k(t)] > 0

}
⇒ g /∈ X. (5.12)

This means that in the case of Eq. (5.6) there holds the equality ‖T‖Ωk
= ‖T‖Ω̇k

. Thus, in order to

calculate ‖T‖Ωk
one can apply Eq. (5.4). Thus, there holds Eq. (5.7), and item (2) of Theorem 5.1

follows from its item (1).

Proof. Formally this theorem is more general than Theorem 2.1, however we can easily reduce it to
Theorem 2.1.

Consider the lr-convex monotone operator T : Ω(X, k) → Y. Define

Xk := {f ∈ S(J, β) : kf ∈ X} = {f = g/k : g ∈ X} , ‖f‖Xk
= ‖g‖X . (5.13)

Then we have the equivalence

g ∈ Ω(X, k) ⇔ f = g/k ∈ Ω(Xk, 1); ‖f‖Xk
= ‖kf‖X . (5.14)

see Eqs. (5.1), (5.2), (5.13). Thus

‖T‖Ω(X,k)=sup

{‖T [g]‖Y
‖g‖X : 0 �= g∈Ω(X, k)

}
=sup

{‖T [kf ]‖Y
‖f‖Xk

: 0 �= f ∈Ω(Xk, 1)

}
.

Note that Xk, as well as X, is the ideal lp-concave space with order continuous (quasi)norm, and
the operator

Tk : Ω(Xk, 1) → Y ; Tk[f ] := T [kf ], f ∈ Ω(Xk, 1),

is lr-convex along with the operator T. Remark 5.1 here takes the form of Remark 2.1. Thus, Theo-
rem 2.1 is applicable, and we obtain all statements of Theorem 5.1.

6. Applications. The Computation of the Norm of Integral Operator
on the Cone of Functions with the Monotone Property

Here we consider one application of the general results given in Secs. 2–5, namely, the computation
of the norm of the integral operator on the cone of functions with the monotone property. In our
paper [2] we gave a number of other applications of these general results in the theory of weighted
Lorentz spaces, in computation of associated norms on the cones of the monotone functions, etc.

Let K = K(x, τ) be a nonnegative measurable function of (x, τ) ∈ N ⊗ J, where (N ; γ) and (J ;μ)
are the spaces with nonnegative σ-finite σ-additive measure γ and nonnegative Borel measure μ on
J = (a, b).

Trμ[f ](x) =

⎛
⎜⎝ ∫
(a,b)

K(x, τ)|f(τ)|rdμ(τ)

⎞
⎟⎠

1/r

, r ∈ (0,∞). (6.1)

This is the lr-convex monotone operator. As r = 1 its restriction onto the set of nonnegative μ-
measurable functions coincides with the restriction of the linear integral operator

T [f ](x) =

∫
(a,b)

K(x, τ)f(τ)dμ(τ). (6.2)

Here we can apply the results of Secs. 2–5. In particular, for the restriction of operator Trμ onto
the cone Ωk the application of Theorem 5.1 gives the following results.
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Theorem 6.1. Let 0 < p ≤ q ≤ r < ∞; X ⊂ S(J, β) be the ideal lp-concave space with order
continuous (quasi)norm; Y ⊂ S(N, γ) be the lq-convex ideal space, and

‖kχ(a,b)‖X = ∞. (6.3)

Then

‖Trμ‖Ωk
= ‖Trμ‖Ω̇k,0

:= sup
a<t<b

{‖Trμ[kχ(a,t]]‖Y ‖kχ(a,t]‖−1
X

}
. (6.4)

Here

Trμ[kχ(a,t]](x) =

∫
(a,t]

K(x, τ)k(τ)rdμ(τ), x ∈ N. (6.5)

In the case

‖kχ(a,b)‖X < ∞ (6.6)

we have ‖Trμ‖Ω̇k
= ‖Trμ‖Ω̇k,0

(see Eq. (6.4)),

‖Trμ‖Ωk
= max

{
‖Trμ‖Ω̇k,0

; ‖Trμ[kχ(a,b)]‖Y ‖kχ(a,b)‖−1
X

}
. (6.7)

Remark 6.1. For the restriction onto the cone Ω = Ω1 of nonnegative decreasing left-continuous
functions we need to set k(τ) = 1 in Eqs. (6.3)–(6.7).

Remark 6.2. In the case Y = Lq(N, γ) the results of Theorem 6.1 remain valid if 0 < p ≤ min {q, r} <
∞, see Corollaries 4.1 and 4.2.

Remark 6.3. As a concretization of operator (6.1) we consider the case where (N, γ) = (J, γ) with
nonnegative Borel measure γ on J = (a, b), and Trμ coincides with the generalized operator of Hardy
type

Arμ[f ](x) =

⎛
⎜⎝ ∫
(a,x]

|f(τ)|rdμ(τ)

⎞
⎟⎠

1/r

, x ∈ (a, b). (6.8)

Then

Arμ[kχ(a,t]](x) =

⎛
⎜⎝ ∫
(a,x]

k(τ)rdμ(τ)

⎞
⎟⎠

1/r

, x ≤ t,

Arμ[kχ(a,t]](x) =

⎛
⎜⎝∫
(a,t]

k(τ)rdμ(τ)

⎞
⎟⎠

1/r

, x > t, (6.9)

and we have the equalities in the case of Eq. (6.3):

‖Arμ‖Ωk
= ‖Arμ‖Ω̇k,0

:= sup
a<t<b

{∥∥Arμ[kχ(a,t]]
∥∥
Y

∥∥kχ(a,t]

∥∥−1

X

}
. (6.10)

In the case of Eq. (6.6) formula (6.10) remains valid for ‖Arμ‖Ω̇k
, but

‖Arμ‖Ωk
= max

{
‖Arμ‖Ω̇k,0

;
∥∥Arμ[kχ(a,b)]

∥∥
Y

∥∥kχ(a,b)

∥∥−1

X

}
. (6.11)
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