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ASYMPTOTICS OF THE SPECTRUM OF VARIATIONAL PROBLEMS
ARISING IN THE THEORY OF FLUID OSCILLATIONS

T. A. Suslina UDC 517.95

Abstract. This work is a survey of results on the spectral asymptotics of variational problems arising
in the theory of small oscillations of a fluid in a vessel near the equilibrium position. These problems
were posed by Kopachevsky in the late 1970s and cover various fluid models. The statements of the
problems are given both in the form of boundary-value problems in the domain Ω ⊂ R

3 occupied by
the fluid in the equilibrium state and in the form of variational problems on the spectrum of the ratio
of quadratic forms. The common features of all the problems under consideration are the presence of
an “elliptic” constraint (the Laplace equation for an ideal fluid or a homogeneous Stokes system for
a viscous fluid), as well as the occurrence of the spectral parameter in the boundary condition on the
free (equilibrium) surface Γ. The spectrum in the considered problems is discrete; the spectral counting
functions have power-law asymptotics.

Keywords: variational problem, spectral asymptotics, small oscillation, fluid oscillation, boundary-
value problem, variational problem.

Conflict-of-interest. The author declares no conflicts of interest.

Acknowledgments and funding. The author thanks G. V. Rozenblum for consultation on the state
of the art concerning the spectral properties of the Steklov-type problem. The author is grateful to
A. I. Nazarov for discussion and useful comments.

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
2. Preliminaries on Operator Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
3. The Spectral Asymptotics of Small Oscillations of the Heavy Ideal Fluid . . . . . . . . . . 159
4. The Spectral Asymptotics of a Nonclassical Steklov-Type Problem. Application to the

Theory of Small Fluid Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5. The Spectral Asymptotics of Small Oscillations of the Heavy Viscous Fluid . . . . . . . . 175
6. The Spectral Asymptotics of Small Oscillations of the Capillary Viscous Fluid . . . . . . 181

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

To the bright memory of Nikolai Dmitrievich Kopachevsky

1. Introduction

1.1. Background of the topic. The present paper gives a survey of the results on the spectral
asymptotics of variational problems arising in the theory of fluid oscillations. We study small (linear)
oscillations of the fluid in a vessel near the equilibrium position. In [23, Appendix 1] (see also [3,
21, 22]), Nikolai Dmitrievich Kopachevsky posed a number of problems on the spectrum of normal
fluid oscillations for various physical models: heavy ideal, capillary ideal, heavy viscous, and capillary
viscous fluids. (These problems were also discussed in the later monograph [26] by Kopachevsky,
Krein, and Ngo Zui Kan and in books [24, 25] by Kopachevsky and Krein.) Recall that for the heavy
fluid the main role is played by the mass forces (force of gravity, centrifugal force during the vessel
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rotation). For the capillary fluid the main role is played by the surface forces (surface tension force).
We consider the case of one fluid partially filling a vessel and the case of a system of immiscible
fluids. By the heuristic arguments, Kopachevsky has found the formulas for the principal terms of the
spectral asymptotics in these problems. In the end of 1970s, he raised the question about the rigorous
proof of these formulas and turned for advice to Leningrad mathematicians Birman and Solomyak,
well known specialists in the spectral operator theory. It turned out that in one auxiliary problem for
the heavy viscous fluid the spectral asymptotics followed from the general results of Metivier [31]. In
other problems, the question about the rigorous proof of the asymptotic formulas was open at that
time.

Soon, in the case of the heavy ideal fluid the spectral asymptotics was justified by Karazeeva and
Solomyak [19]. In all other problems stated in [23] the spectral asymptotics was justified by the
author (at that time, the PhD student of Birman). On this subject, the author has published the
short note [40] and has deposited manuscript [38]. A detailed exposition of the results has not been
previously published. The present survey fills this gap.

Solving these problems marked the beginning of many years of close scientific cooperation and strong
friendship between the author and Nikolai Dmitrievich Kopachevsky, a wonderful mathematician and
person.

1.2. On the statements of the problems and the results. The statements of the problems
are given both in the form of boundary-value problems in the domain Ω ⊂ R

3 occupied by a fluid
in the equilibrium state and in the form of variational problems on the spectrum of the ratio of
quadratic forms. The common features of all the problems under consideration are the presence of an
“elliptic” constraint (the Laplace equation for the ideal fluid or the homogeneous Stokes system for
the viscous fluid), as well as the occurrence of the spectral parameter in the boundary condition on
the free (equilibrium) surface Γ. Problems with elliptic constraints in smooth domains are amenable
to the technique of pseudodifferential operators; see [11, 12]. However, now the boundary ∂Ω is not
smooth, since the free surface Γ (or the interface of two fluids) and the solid wall S of the vessel form
an edge at the intersection. This is the main difficulty. In addition to the nonsmoothness of ∂Ω,
other complications arise in the problems under consideration. They are related to the presence of
the nonlocal operator B−1

Γ in the variational formulation for the capillary fluid (this is the resolving
operator for some elliptic boundary-value problem on Γ; see Secs. 4, 6), to the vector nature of the
problems and to the additional constraints (divu = 0) for a viscous fluid.

The spectrum of the problems under consideration is discrete; the counting functions of the spectrum
have power-like asymptotics. The main terms of the spectral asymptotic formulas are obtained.

1.3. Method. We start from the variational statements of the problems, i.e., study the spectrum
of the ratio of quadratic forms

BΓ[u]

AΩ[u]
, (1.1)

where AΩ[u] is a positive definite differential quadratic form in the domain Ω, and BΓ[u] is a form
on Γ, which is compact with respect to AΩ[u]. The proof of the spectral asymptotics is based on the
general approach developed by Birman and Solomyak in [6, 7]. The scheme of the proof is as follows.
First, we obtain estimates of the spectrum in terms of appropriate Lr(Γ)-norms of the coefficients of
the form BΓ. These estimates allow us to consider only coefficients from some dense set in Lr(Γ), when
calculating the principal term of the spectral asymptotics. It is convenient to take C∞

0 (Γ) as such set.
For the case of smooth coefficients compactly supported on Γ, it is possible to compare ratio (1.1)

with a similar ratio defined on a domain ˜Ω with smooth boundary (the domain ˜Ω “smooths out” Ω).

Next, the problem in the domain ˜Ω is reduced to the boundary, by parametrizing the solutions of a
homogeneous elliptic equation in terms of their Dirichlet data. From the properties of the Boutet de
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Monvel algebra of pseudodifferential operators [14, 17] it follows that the initial forms are represented1

as the quadratic forms of some pseudodifferential operators on ∂˜Ω. After reducing to the boundary,
we arrive at the problem on the spectrum of the ratio of pseudodifferential forms (probably, with
additional constraints on a part of the boundary). Then the spectral asymptotics follows from the
results of [8, 10, 37].

A similar method was applied in the author’s works [39, 42], where, in a rather general statement,
the spectral asymptotics of variational problems on the solutions of an elliptic equation in a domain
with piecewise smooth boundary was obtained. Two more model problems of the theory of fluid
oscillations were studied in [41].

1.4. A short survey of the results on the spectral asymptotics for problems with the
spectral parameter in the boundary condition. Boundary-value problems considered in the
present paper involve the spectral parameter in the boundary condition. Spectral properties of such
problems have been actively studied by many authors during a long time. Asymptotics of the spectrum
for such problems is discussed in survey [9, Sec. 7] by Birman and Solomyak. We will mention only
a few most important papers, sending the reader to more complete bibliography in [9]. The simplest
problem with the spectral parameter in the boundary condition is the Steklov problem:

−Δu = 0 in Ω,
∂u

∂n
= λu on ∂Ω,

∫

∂Ω
u dS = 0.

Here Ω ⊂ R
m+1 is a bounded domain. The eigenvalues of this problem coincide with the consecutive

maxima of the ratio of forms
∫

∂Ω |u|2 dS
∫

Ω |∇u|2 dx, u ∈ H1(Ω),

∫

∂Ω
u dS = 0.

The counting function N(λ) for the eigenvalues of the Steklov problem has the following power-like
asymptotics: N(λ) ∼ λ−mωmmeas ∂Ω, as λ → +0. Here ωm is the volume of the unit m-dimensional
ball. A more general “Steklov-type problem” with variable coefficients is equivalent to the variational
problem on the spectrum of the ratio

∫

∂Ω b(y)|u(y)|2 dS(y)
∫

Ω

(

∑n
i,j=1 aij∂iu∂ju+ |u|2

)

dx
, u ∈ H1(Ω),

where the coefficients are real-valued, and the matrix {aij(x)} is symmetric and positive definite. First,
the case where the boundary of the domain and the coefficients are smooth was studied. Sandgren [35]
was the first who obtained the spectral asymptotics, by using the variational method. Rather general
results for the problems with the spectral parameter in the boundary condition were obtained by
Kozhevnikov [20, 27] with the help of the pseudodifferential technique. Vulis and Solomyak proved
the spectral asympotics for the degenerating Steklov-type problem [45]. In the two-dimensional case,
some delicate results on the behavior of the eigenvalues of the Steklov-type problem were obtained by
Rozenblum [33].

The spectral asymptotics in the problems with the spectral parameter in the boundary condition in
a domain with piecewise smooth boundary (a domain with edges) was studied in the above mentioned
paper [19] by Karazeeva and Solomyak and in the author’s papers [38, 40] (the results from [19, 38,
40] are described below in details). Agranovich [1] proved the spectral asymptotics for the Steklov-
type problem in a Lipschitz domain with the “almost smooth” boundary (it was assumed that ∂Ω is
infinitely smooth outside some closed set of zero measure). Rozenblum [34] managed to obtain the
same result in the Lipschitz domain replacing the “almost smoothness condition” by the following
assumption: for any ε > 0 there exists a closed set Uε ⊂ ∂Ω with measure less than ε such that on
∂Ω \ Uε the vector field n(x) belongs to the VMO class (here n(x) is the unit outer normal vector

1In [11], where the Boutet de Monvel algebra was not used, such representation was obtained only up to the lower order
terms, which does not influence the principal term of the spectral asymptotics, but explicit formulas for the principal

terms of the corresponding pseudodifferential operators on ∂˜Ω were obtained.
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to ∂Ω at the point x). For the Steklov-type problem, in the case where it is known only that the
boundary is Lipschitz, Rozenblum [34] obtained the two-sided estimates of right order for the counting
function, however, the problem of proving the spectral asymptotics remains open.

Note that recently the properties of eigenfunctions of the Steklov-type problem were actively studied:
they decrease rapidly, as the distance from a point to the boundary grows (see, e.g., [15, 16, 46] and
references therein).

1.5. Plan of the paper. The paper consists of Introduction (Sec. 1) and five more sections. In
Sec. 2, the necessary information about compact operators in a Hilbert space with the power-like
spectral asymptotics is provided. In Sec. 3, the Steklov-type problem (the case of a heavy ideal
fluid) is considered; the results of paper [19] are presented. In Sec. 4, the spectral asymptotics of
the nonclassical Steklov-type problem (the problem on the spectrum of ratio (4.1)) is studied; the
result is applied to several problems of the theory of fluid oscillations, including the problem for the
capillary ideal fluid. Secs. 5 and 6 are devoted to problems for the viscous fluid. In Sec. 5, the spectral
asymptotics for one auxiliary problem for the heavy viscous fluid is studied. In Sec. 6, the spectrum
of small oscillations of the capillary viscous fluid is studied.

1.6. Notation and preliminaries. Let H be a complex separable Hilbert space. The inner product
and the norm in H are denoted by (·, ·)H and ‖ · ‖H, respectively. Sometimes we omit the indices.

The standard inner product and the norm in C
k are denoted by 〈·, ·〉 and | · |, respectively.

Next, Lp(Ω;C
k), 1 ≤ p ≤ ∞, and Hs(Ω;Ck), s ≥ 0, stand for the standard Lp-spaces and Sobolev

spaces of Ck-valued functions in a domain Ω ⊂ R
n. Let Hs

0(Ω;C
k) be the closure of C∞

0 (Ω;Ck) in
Hs(Ω;Ck). For k = 1 we write simply Hs(Ω), Hs

0(Ω); but sometimes we use such simple notation also
for spaces of vector-valued functions.

If Ω ⊂ R
n is a bounded domain with piecewise smooth boundary and ν(x) is the unit (inner or

outer) normal vector to ∂Ω at the point x ∈ ∂Ω (defined on smooth parts of the boundary), then the
symbol ∂/∂ν stands for the normal derivative.

Let K be the class of bounded domains Ω ⊂ R
n satisfying the assumptions of usual embedding and

extension theorems. A sufficient condition for Ω ∈ K is that Ω is Lipschitz (i.e., locally, in appropriate
coordinates, the boundary ∂Ω is the graph of a Lipschitz function).

If f(x) is a real-valued function in a domain Ω, its positive and negative parts are denoted by
f±(x) := 1

2(|f(x)| ± f(x)).
If D is a smooth compact m-dimensional manifold with or without boundary, then T ∗D stands

for the cotangent bundle, and T ∗
xD stands for the cotangent space at the point x ∈ D, T ∗D \ {0}

is the cotangent bundle without zero section. We need the notion of semidensity (see [44]). In any
local coordinate system on D, a semidensity u is given by a function. If the functions u(y) and u′(y′)
correspond to the same semidensity u in coordinates related by the transformation h : y′ → y, then
u′ = (u ◦ h)jh, where j2h is the modulus of the Jacobian of the transformation h. The classes C l, Hs,
etc., for semidensities are introduced via local coordinates. The notion of classical pseudodifferential
operator on semidensities makes sense; the definition can be given in local coordinates. The algebra
of the principal symbols for pseudodifferential operators on semidensities is the same as the similar
algebra for pseudodifferential operators on functions. In particular, the principal symbol of a pseu-
dodifferential operator is a function on the cotangent bundle. The product of two semidensities is a
density. For densities on D, the integral is defined invariantly. This allows one to introduce a complex
separable Hilbert space L2(D) of semidensities.

2. Preliminaries on Operator Theory

Now, we give the necessary information about compact operators in a Hilbert space; see [6, § 1], [7,
Appendix 1], [13].
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2.1. Spectrum counting functions for compact operators. Let H be a complex separable
Hilbert space, and let S∞ = S∞(H) be the set of all compact operators in H. If T = T ∗ ∈ S∞(H),
then λ+

n (T ), −λ−
n (T ) denote the positive and negative eigenvalues of T ; the values λ±

n (T ) are numbered
in the nonincreasing order with multiplicities taken into account. By N±(λ, T ) we denote the counting
functions for the positive and negative eigenvalues: N±(λ, T ) := #{n : λ±

n (T ) > λ}, λ > 0. If T ≥ 0,
we write simply N(λ, T ) = N+(λ, T ).

The minimaximal principle for the eigenvalues of a self-adjoint operator T ∈ S∞(H) claims that

λ±
n+1(T ) = min

codimG≤n
max
0�=u∈G

±(Tu, u)H
(u, u)H

, (2.1)

where G is a subspace of H.
We will systematically use the following statement which follows from (2.1).

Lemma 2.1. Let H1 be a subspace of H2. Let Ti = T ∗
i ∈ S∞(Hi), i = 1, 2. Suppose that any function

u ∈ H1 such that ±(T1u, u) > 0 satisfies ±(T1u, u) ≤ ±(T2u, u). Then N±(λ, T1) ≤ N±(λ, T2) for
λ > 0.

The following lemma generalizes Lemma 2.1 and allows us to compare the spectra of operators
acting in different Hilbert spaces.

Lemma 2.2 (see [7, Lemma 1.15]). Let Ti = T ∗
i ∈ S∞(Hi), i = 1, 2. Let S : H1 → H2 be a continuous

operator such that (T1u, u)H1 = 0 for u ∈ KerS. If, for some t > 0 and any u ∈ H1 satisfying
±(T1u, u)H1 > 0, we have

±(T1u, u)H1

(u, u)H1

≤ ± t (T2Su,Su)H2

(Su,Su)H2

,

then N±(λ, T1) ≤ N±(t−1λ, T2) for λ > 0.

We will consider operators T = T ∗ ∈ S∞(H) with power-like asymptotics of the functions N±(λ, T ).
It is convenient to introduce the functionals

Δ±
θ (T ) := lim

λ→+0
supλθN±(λ, T ), δ±θ (T ) := lim

λ→+0
inf λθN±(λ, T ). (2.2)

Here θ > 0. Note that

lim
n→∞ supn1/θλ±

n (T ) =
(

Δ±
θ (T )

)1/θ
, lim

n→∞ inf n1/θλ±
n (T ) =

(

δ±θ (T )
)1/θ

.

Functionals (2.2) do not change under compact perturbations of the metric of the initial Hilbert
space H. Let Q = Q∗ ∈ S∞(H) and let λ+

1 (Q) < 1. We put

(u, v)H1 := (u, v)H − (Qu, v)H. (2.3)

The inner product (2.3) transforms H into a new Hilbert space H1. The metrics of H and H1 are
equivalent. Let T = T ∗ ∈ S∞(H), and let T1 be the self-adjoint operator in H1 generated by the
sesquilinear form of T, i.e., (T1u, v)H1 = (Tu, v)H, u, v ∈ H.

Lemma 2.3 (see [7, Lemma 1.16]). Under the above assumptions, we have Δ±
θ (T1) = Δ±

θ (T ) and

δ±θ (T1) = δ±θ (T ) for any θ > 0.

Now, let us discuss the behavior of the functionals Δ±
θ (T ), δ

±
θ (T ) under additive perturbations of

the operator T. First of all, note that if Ti = T ∗
i ∈ S∞(H), i = 1, 2, then

N±(λ+ μ, T1 + T2) ≤ N±(λ, T1) +N±(μ, T2), λ, μ > 0. (2.4)

Inequalities (2.4) are equivalent to well-known H. Weyl’s inequalities for eigenvalues of the sum of
self-adjoint operators. The following statement also belongs to H. Weyl.

Lemma 2.4 (see [7, Lemma 1.17]). Let Ti = T ∗
i ∈ S∞(H), i = 1, 2. Suppose that Δ+

θ (T2) = Δ−
θ (T2)

= 0 for some θ > 0. Then Δ±
θ (T1 + T2) = Δ±

θ (T1) and δ±θ (T1 + T2) = δ±θ (T1).

Lemma 2.4 is contained in the following statement, which is important for us.
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Lemma 2.5 (see [13, (6)]). Let Ti = T ∗
i ∈ S∞(H), i = 1, 2. Then

∣

∣

∣

(

Δ±
θ (T1)

)
1

1+θ −
(

Δ±
θ (T2)

)
1

1+θ

∣

∣

∣ ≤
(

Δ+
θ (T1 − T2) + Δ−

θ (T1 − T2)
)

1
1+θ ,

∣

∣

∣

(

δ±θ (T1)
)

1
1+θ −

(

δ±θ (T2)
)

1
1+θ

∣

∣

∣ ≤
(

Δ+
θ (T1 − T2) + Δ−

θ (T1 − T2)
)

1
1+θ .

Functionals (2.2) do not change if H is replaced by a subspace of finite codimension.

Lemma 2.6. Let H2 be a subspace of H1 such that dimH1 � H2 < ∞. Suppose that J : H2 → H1 is
the embedding operator and P is the orthogonal projection of H1 onto H2. Let T1 = T ∗

1 ∈ S∞(H1) and
let T2 be an operator in H2 given by T2 := PT1J . Then Δ±

θ (T2) = Δ±
θ (T1) and δ±θ (T2) = δ±θ (T1).

When calculating the spectral asymptotics for the orthogonal sum of operators, we will use the
following obvious statement. Let Ti = T ∗

i ∈ S∞(Hi), i = 1, 2. Then T = T1 ⊕ T2 ∈ S∞(H1 ⊕ H2) and

N±(λ, T1 ⊕ T2) = N±(λ, T1) +N±(λ, T2), λ > 0. (2.5)

2.2. The spectrum of the ratio of quadratic forms. We will consider compact operators gen-
erated by the ratio of quadratic forms. If F [u, v] is a sesquilinear form in H, we put F [u] := F [u, u].
Suppose that a continuous sesquilinear form A[u, v] generates an inner product in the Hilbert space H,
transforming H into the new Hilbert space HA. Suppose that B[u, v] is a continuous sesquilinear form
in H. This form generates an operator B in the space HA, i.e., B[u, v] = A[Bu, v], u, v ∈ H. Suppose
that B = B∗ ∈ S∞(HA). Then, by the minimaximal principle (2.1), the numbers λ±

n (B) coincide with
the consecutive maxima of the ratio of quadratic forms

±B[u]
A[u]

, u ∈ H. (2.6)

Therefore, we can speak simply about the spectrum of the form ratio (2.6) and use the notation like
N±(λ, (2.6)), Δ±

θ (2.6), δ±θ (2.6) instead of N±(λ,B), Δ±
θ (B), δ±θ (B). If B[u] ≥ 0, then the indices ±

are omitted.
We will often deal with the finite-dimensional spectral problems depending on the additional pa-

rameter w (usually, w = (x, ξ) ∈ T ∗D \ {0}, where D is a smooth compact manifold). Suppose that
aw and bw are Hermitian sesquilinear forms on a finite-dimensional space Hw, such that aw[f ] > 0,
0 �=f ∈Hw. Then the spectrum counting functions for the ratio

± bw[f ]

aw[f ]
, f ∈ Hw, (2.7)

will be denoted by n±(λ,w; (2.7)).
Sometimes, a finite-dimensional spectral problem will be represented in a different form. If q(w),

p(w) are Hermitian (l × l)-matrices depending on the parameter w, such that p(w) > 0, then the
counting functions for eigenvalues of the problem

q(w)z = λp(w)z, z ∈ C
l, (2.8)

are denoted by n±(λ,w; (2.8)).

2.3. Estimates for the spectrum of the ratio of differential or pseudodifferential forms.
Let Ω ⊂ R

m be a bounded domain such that Ω ∈ K. Consider the quotient of quadratic forms

‖u‖2Hs1 (Ω)

‖u‖2
Hs2 (Ω)

, u ∈ Hs2(Ω), (2.9)

where s2 > s1 ≥ 0. The following statement is well known.

Lemma 2.7. The spectrum counting function for ratio (2.9) satisfy the estimate

N(λ, (2.9)) ≤ Cλ−θ, λ > 0; θ =
m

2(s2 − s1)
.

The constant C depends on m, s1, s2, and the domain Ω.
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Now, we consider the ratio

±
∫

Ω b(y)|u(y)|2 dy
‖u‖2

Hs(Ω)

, u ∈ Hs(Ω), (2.10)

where s > 0 and b(y) is a real-valued measurable function on Ω.

Lemma 2.8. Let b(y) be a real-valued function such that b ∈ Lr(Ω), where r = 1 for 2s > m, r > 1
for 2s = m, and r = m

2s for 2s < m. Then the spectrum counting functions for ratio (2.10) satisfy the
estimates

N±(λ, (2.10)) ≤ Cλ−θ‖b‖θLr(Ω), λ > 0; θ =
m

2s
.

The constant C = C(m, r, s,Ω) does not depend on the function b.

For integer s, the statement of Lemma 2.8 coincides with the statement of [7, Theorem 4.1]. The
corresponding proof can be automatically carried over to the case of noninteger s: this proof is based
on theorems about approximations of functions from Hs(Ω) by piecewise polynomial functions, and
these theorems were proved in [6, 7] for the case of arbitrary s > 0.

We also need estimates for the spectrum of the ratio

±
2Re

∫

Ω b(y)u1(y)u2(y) dy

‖u1‖2Hs1 (Ω) + ‖u2‖2Hs2 (Ω)

, {u1, u2} ∈ Hs1(Ω)⊕Hs2(Ω), (2.11)

where s1, s2 > 0.

Lemma 2.9. Let b(y) be a real-valued function such that b ∈ Lr(Ω), where r = 1 for 2s1 > m,
2s2 > m; 1 < r < 2 for 2s1 = m, 2s2 > m or 2s1 > m, 2s2 = m or 2s1 = 2s2 = m; 1

r = 1
2 + s2

m for

2s1 > m, 2s2 < m; 1
r = 1

2 + s1
m for 2s1 < m, 2s2 > m; 1

r < 1
2 + s2

m for 2s1 = m, 2s2 < m; 1
r < 1

2 + s1
m

for 2s1 < m, 2s2 = m; r = m
s1+s2

for 2s1 < m, 2s2 < m. Then the spectrum counting functions for

ratio (2.11) satisfy the estimates

N±(λ, (2.11)) ≤ Cλ−θ‖b‖θLr(Ω), λ > 0; θ =
m

s1 + s2
. (2.12)

The constant C = C(m, r, s1, s2,Ω) does not depend on the function b.

Proof. It suffices to check inequality (2.12) in the case where ‖b‖Lr(Ω) = 1.
For any ε > 0 and 0 < α < 1 the absolute value of ratio (2.11) is estimated by

ε
∫

Ω |b(y)|2α|u1(y)|2 dy + ε−1
∫

Ω |b(y)|2(1−α)|u2(y)|2 dy
‖u1‖2Hs1 (Ω) + ‖u2‖2Hs2 (Ω)

, {u1, u2} ∈ Hs1(Ω)⊕Hs2(Ω).

Consider the ratios
∫

Ω |b(y)|2α|u1(y)|2 dy
‖u1‖2Hs1 (Ω)

, u1 ∈ Hs1(Ω), (2.13)

∫

Ω |b(y)|2(1−α) |u2(y)|2 dy
‖u2‖2Hs2 (Ω)

, u2 ∈ Hs2(Ω). (2.14)

According to Lemma 2.1 and (2.5),

N±(λ, (2.11)) ≤ N(λε−1, (2.13)) +N(λε, (2.14)), λ > 0. (2.15)

From the conditions on r it follows that there exist numbers r1, r2 such that r−1 = 1
2(r

−1
1 + r−1

2 ) and
ri = 1 for 2si > m; ri > 1 for 2si = m; ri = m

2si
for 2si < m, i = 1, 2. Applying Lemma 2.8 for

ratios (2.13), (2.14) and taking (2.15) into account, we obtain

N±(λ, (2.11)) ≤ C

(

εθ1λ−θ1
∥

∥|b|2α
∥

∥

θ1
Lr1 (Ω)

+ ε−θ2λ−θ2
∥

∥

∥|b|2(1−α)
∥

∥

∥

θ2

Lr2(Ω)

)

,

where θi =
m
2si

, i = 1, 2. We take ε = λ
s2−s1
s1+s2 , α = r2

r1+r2
. Then N±(λ, (2.11)) ≤ Cλ−θ for ‖b‖Lr(Ω) = 1.
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We also need the spectral asymptotics for the ratio of two pseudodifferential forms defined on a
smooth compact orientable m-dimensional manifold D without boundary. (In applications, the role

of the manifold D will be played by the boundary of the smooth domain ˜Ω ⊂ R
m+1.)

Let ρ > 0 and let Hρ(D;Cl) be the Sobolev space of Cl-valued semidensities on D. In Hρ(D;Cl),

we consider a pseudodifferential form (Pϕ,ψ) =
∑l

i,j=1(Pijϕj , ψi). It is assumed that the operators
Pij = P∗

ji are classical pseudodifferential operators of order not exceeding 2ρ acting on semidensities

on D. Suppose that the pseudodifferential form (Pϕ,ϕ) defines an equivalent norm on Hρ(D;Cl):

(Pϕ,ϕ) � ‖ϕ‖2Hρ(D), ϕ ∈ Hρ(D;Cl). (2.16)

The principal symbol of the pseudodifferential operator P (of order 2ρ) is denoted by p◦(w), w ∈
T ∗D \ {0}.

Let κ > 0 and let Qij = Q∗
ji be classical pseudodifferential operators of order not exceeding

2(ρ−κ) acting on semidensities on D. Then the pseudodifferential form (Qϕ,ψ) =
∑l

i,j=1(Qijϕj , ψi)

is continuous in Hρ−κ(D;Cl). The principal symbol of the pseudodifferential operator Q (of order
2(ρ− κ)) is denoted by q◦(w), w ∈ T ∗D \ {0}.

We consider the ratio of the forms

±(Qϕ,ϕ)

(Pϕ,ϕ)
, ϕ ∈ Hρ(D;Cl). (2.17)

From condition (2.16) it follows that the matrix p◦(w) is positive. Therefore, a finite-dimensional
problem on the spectrum of the ratio

±〈q◦(w)z, z〉
〈p◦(w)z, z〉 , z ∈ C

l, (2.18)

makes sense. The counting functions n±(λ,w; (2.18)) are homogeneous in the following sense:
n±(λ,x, tξ; (2.18)) = n±(t2κλ,x, ξ; (2.18)), x ∈ D, ξ ∈ T ∗

xD \ {0}, t > 0.
The next statement follows from [11, Lemma 1]; see also [8, 10].

Lemma 2.10. Under the above assumptions, the spectrum counting functions for ratio (2.17) satisfy
the following asymptotics for λ → +0:

N±(λ, (2.17)) ∼ (2π)−m

∫

T ∗D
n±(λ,w; (2.18)) dw = λ−θ(2π)−m

∫

T ∗D
n±(1,w; (2.18)) dw, θ =

m

2κ
.

Here dw is the invariant measure on T ∗D.

Finally, we need the spectral asymptotics of the ratio of pseudodifferential forms under additional
constraints on a part of the manifold D. Let D0 be an open subset of the manifold D such that
measm ∂D0 = 0. Consider the ratio of the forms

±(Qϕ,ϕ)

(Pϕ,ϕ)
, ϕ ∈ Hρ(D;Cl), ϕ|D0 = 0. (2.19)

The following statement is a particular case of the result of [37].

Lemma 2.11. Under the above assumptions, the spectrum counting functions for ratio (2.19) satisfy
the following asymptotics for λ → +0:

N±(λ, (2.19)) ∼ λ−θ(2π)−m

∫

T ∗(D\D0)
n±(1,w; (2.18)) dw, θ =

m

2κ
.

3. The Spectral Asymptotics of Small Oscillations of the Heavy Ideal Fluid

In paper [19] by Karazeeva and Solomyak, the Steklov-type problem in composite domains was
considered. As the main example, the authors obtained the spectral asymptotics for the problem of
small oscillations of a system of immiscible heavy ideal fluids completely filling a vessel. The method
was based on the general approach to the study of nonsmooth variational problems developed by
Birman and Solomyak. The same method can be used to consider the problem in the case of one fluid
partially filling a vessel. In this section, we will briefly describe the results for the heavy ideal fluid.
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Fig. 1. One fluid partially filling a vessel

3.1. Small oscillations of the heavy ideal fluid. Let Ω ⊂ R
3 be a domain occupied by the fluid

in the vessel in the equilibrium position (see Fig. 1); Γ is the equilibrium free surface of the fluid;
S = ∂Ω \ Γ is the solid wall of the vessel. We start with the classical formulation of the problem.

Let n0(x) be the unit outer normal vector to S at the point x ∈ S, and let n(x) be the unit outer
normal vector to Γ at the point x ∈ Γ. Suppose that a(x) is a real-valued function on Γ such that
∫

Γ a(x) dx �= 0. For physical reasons, the function a(x) is positive, but the mathematical problem can
be considered without this restriction.

The problem of normal oscillations of the heavy ideal fluid is reduced to the following spectral
boundary-value problem2:

ΔΦ = 0 in Ω,
∂Φ

∂n0
= 0 on S,

∂Φ

∂n
(x) = λ−1a(x)Φ(x) on Γ,

∫

Γ
a(x)Φ(x) dS = 0.

(3.1)

Here Φ(x) is the amplitude of fluctuations of the potential Φ(x, t) of the fluid particles velocity field:

Φ(x, t) = Φ(x)eiωt, where ω−1 =
√
λ and t is the time. The Laplace equation is the continuity

equation, the condition on S is the nonflow condition.
The boundary-value problem (3.1) is equivalent to the problem of finding successive maxima of the

form ratio

±
∫

Γ a(x)|Φ(x)|2 dS
∫

Ω |∇Φ|2 dx , Φ ∈ H1(Ω),

∫

Γ
a(x)Φ(x) dS = 0. (3.2)

By the theorem on equivalent norms in Sobolev spaces (see, e.g., [36]), the functional
∫

Ω |∇Φ|2 dx +

|
∫

Γ a(x)Φ(x) dS|2 determines a norm in H1(Ω) equivalent to the standard one. Therefore, on the

subspace {Φ ∈ H1(Ω) :
∫

Γ a(x)Φ(x) dS = 0} the form
∫

Ω |∇Φ|2 dx is equivalent to ‖Φ‖2H1(Ω). The

Laplace equation in Ω and the condition on S are natural conditions in the variational problem on
the spectrum of ratio (3.2).

Theorem 3.1. Let Ω be a bounded domain in R
3 satisfying the assumptions of usual embedding and

extension theorems: Ω ∈ K; let Γ be a smooth two-dimensional surface with Lipschitz boundary such
that Γ ⊂ ∂Ω. Let a ∈ L2(Γ) be a real-valued function. Then the spectrum counting functions for
ratio (3.2) satisfy the following asymptotics for λ → +0:

N±(λ, (3.2)) ∼ λ−2

4π

∫

Γ
a2±(x) dS(x). (3.3)

We give the scheme of the proof of Theorem 3.1 by the method of [19]. Applying Lemmas 2.3
and 2.6, we see that the values Δ±

2 (3.2) and δ±2 (3.2) coincide with the similar values for the ratio

±
∫

Γ a(x)|Φ(x)|2 dS
∫

Ω (|∇Φ|2 + |Φ|2) dx , Φ ∈ H1(Ω). (3.4)

We start with the estimate for the spectrum.

2In [26, Chap. 3, § 3], this problem is discussed in the case where a(x) = 1.
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Lemma 3.1. Under the assumptions of Theorem 3.1, we have Δ±
2 (3.4) ≤ C‖a‖2L2(Γ)

.

Proof. By the trace theorem,
∫

Ω

(

|∇Φ|2 + |Φ|2
)

dx ≥ C‖Φ‖2
H1/2(Γ)

, Φ ∈ H1(Ω), C > 0. Applying

Lemma 2.2, we see that the functions N±(λ, (3.4)) are estimated by the spectrum counting functions
for the ratio

±C

∫

Γ a(x)|Φ(x)|2 dS
C‖Φ‖2

H1/2(Γ)

, Φ ∈ H1/2(Γ), C > 0. (3.5)

Using Lemma 2.8, we obtain Δ±
2 (3.4) ≤ Δ±

2 (3.5) ≤ C‖a‖2L2(Γ)
.

Lemmas 3.1 and 2.5 show that the values Δ±
2 (3.4) and δ±2 (3.4) are continuous functionals of

a ∈ L2(Γ). Therefore, it suffices to calculate these values for a set of coefficients a dense in L2(Γ). As
such a set, we take C∞

0 (Γ).

Now, assuming that a ∈ C∞
0 (Γ), we will compare ratio (3.4) and a similar ratio in the domain ˜Ω

with smooth boundary. Let ˜Ω be a bounded domain with smooth boundary such that ˜Ω ⊂ Ω and

supp a lies strictly inside the set ∂˜Ω ∩ Γ. Let ã ∈ C∞(∂˜Ω) be the function that is equal to a(x) for

x ∈ ∂˜Ω ∩ Γ and equal to zero for x ∈ ∂˜Ω \ Γ.
Our goal is to compare ratio (3.4) and the ratio

±
∫

∂˜Ω ã(x)|Φ(x)|2 dS
∫

˜Ω (|∇Φ|2 + |Φ|2) dx , Φ ∈ H1(˜Ω). (3.6)

Lemma 3.2. Suppose that the assumptions of Theorem 3.1 are satisfied, and let a ∈ C∞
0 (Γ). Then

δ±2 (3.6) ≤ δ±2 (3.4) ≤ Δ±
2 (3.4) ≤ Δ±

2 (3.6). (3.7)

Proof. Obviously, for Φ ∈ H1(Ω) the numerators of ratios (3.4) and (3.6) are the same, and the
denominator of (3.6) does not exceed the denominator of (3.4). Applying Lemma 2.2, in which the

role of S is played by the restriction operator S : H1(Ω) → H1(˜Ω), we obtain:

N±(λ, (3.4)) ≤ N±(λ, (3.6)), λ > 0. (3.8)

This implies the right inequality in (3.7).
Let us fix the cut-off function ϑ ∈ C∞(Ω); 0 ≤ ϑ(x) ≤ 1; ϑ(x) = 1 for x ∈ suppa; ϑ(x) = 0 in some

neighborhood of Ω \ ˜Ω. We have
∫

˜Ω

(

|∇Φ|2 + |Φ|2
)

dx ≥ ε

∫

˜Ω

(

|∇Φ|2 + |Φ|2
)

dx+ (1− ε)

∫

˜Ω
ϑ2

(

|∇Φ|2 + |Φ|2
)

dx

= ε

∫

˜Ω

(

|∇Φ|2 + |Φ|2
)

dx+ (1− ε)

∫

˜Ω

(

|∇(ϑΦ)|2 + |ϑΦ|2
)

dx

+ (1− ε)

∫

˜Ω

(

ϑ2|∇Φ|2 − |∇(ϑΦ)|2
)

dx, Φ ∈ H1(˜Ω).

(3.9)

The sum of the first two terms in the right-hand side of (3.9) determines an equivalent metric in

H1(˜Ω), and the last term is a compact form in H1(˜Ω).

Next, using the relation ã(x) = ϑ2(x)ã(x), x ∈ ∂˜Ω, we obtain
∫

∂˜Ω
ã(x)|Φ(x)|2 dS =

∫

∂˜Ω
ã(x)|ϑ(x)Φ(x)|2 dS, Φ ∈ H1(˜Ω).

According to Lemma 2.3, the values δ±θ (3.6) do not exceed the similar values for the ratio

±
∫

∂˜Ω
ã(x)|ϑ(x)Φ(x)|2 dS

ε
∫

˜Ω (|∇Φ|2 + |Φ|2) dx+ (1− ε)
∫

˜Ω (|∇(ϑΦ)|2 + |ϑΦ|2) dx , Φ ∈ H1(˜Ω). (3.10)

For Φ ∈ H1(˜Ω), let ̂SΦ be the function equal to ϑΦ on ˜Ω and equal to zero on Ω \ ˜Ω. Then the

operator ̂S : H1(˜Ω) → H1(Ω) is bounded. For any Φ ∈ H1(˜Ω) such that ±
∫

∂˜Ω
ã(x)|ϑ(x)Φ(x)|2 dS > 0,
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ratio (3.10) does not exceed

±
∫

Γ a(x)|( ̂SΦ)(x)|2 dS
(1− ε)

∫

Ω

(

|∇( ̂SΦ)|2 + | ̂SΦ|2
)

dx
.

By Lemma 2.2, this implies that δ±2 (3.6) ≤ δ±2 (3.10) ≤ (1−ε)−2δ±2 (3.4). Tending ε to zero, we arrive
at the left inequality in (3.7).

It remains to establish the asymptotics of the spectrum for the problem in a smooth domain.

Lemma 3.3. Let ˜Ω be a bounded domain in R
3 with smooth boundary. Suppose that ã is a smooth

real-valued function on ∂˜Ω. Then the spectrum counting functions for ratio (3.6) satisfy the following
asymptotics for λ → +0:

N±(λ, (3.6)) ∼ λ−2

4π

∫

∂˜Ω
ã2±(x) dS(x). (3.11)

Proof. Let L0 = −Δ+ I. By H1(˜Ω, L0) we denote the subspace in H1(˜Ω) formed by solutions of the

equation L0u = 0 in ˜Ω. We have H1(˜Ω) = H1(˜Ω, L0)⊕H1
0 (

˜Ω). Since the form in the numerator of (3.6)

vanishes for u ∈ H1
0 (

˜Ω), then the nonzero spectrum of ratio (3.6) will not change if we consider this

ratio on H1(˜Ω, L0).

Let G0 be the “Poisson operator” taking a function ϕ ∈ H1/2(∂˜Ω) to the solution of the correspond-

ing Dirichlet problem for the equation L0u = 0: the relation u = G0ϕ means that u ∈ H1(˜Ω, L0),

u|∂˜Ω = ϕ. The operator G0 is a homeomorphism of the spaces H1/2(∂˜Ω) and H1(˜Ω, L0). The problem
on the spectrum of ratio (3.6) is equivalent to the problem on the spectrum of the ratio

±
∫

∂˜Ω ã(x)|ϕ(x)|2 dS
∫

˜Ω (|∇G0ϕ|2 + |G0ϕ|2) dx
, ϕ ∈ H1/2(∂˜Ω). (3.12)

From the properties of the Boutet de Monvel algebra [14, 17] it follows that
∫

˜Ω

(

|∇G0ϕ|2 + |G0ϕ|2
)

dx = (P0ϕ,ϕ), ϕ ∈ H1/2(∂˜Ω),

where P0 is a classical pseudodifferential operator on ∂˜Ω of order 1. Calculating the principal symbol
p◦0(x, ξ) of the operator P0 according to the known computational rules for the Boutet de Monvel

algebra, we obtain: p◦0(x, ξ) = |ξ|, x ∈ ∂˜Ω, 0 �= ξ ⊥ ν(x). Here ν(x) is the normal to ∂˜Ω. (Compare
with the calculations in Sec. 4.4 below.)

Obviously, the form in the numerator of ratio (3.12) can be interpreted as the form (Q0ϕ,ϕ) of a

zeroth-order pseudodifferential operator Q0 on ∂˜Ω with the symbol q◦0(x, ξ) = ã(x). Thus, ratio (3.12)
coincides with the ratio of the pseudodifferential forms

±(Q0ϕ,ϕ)

(P0ϕ,ϕ)
, ϕ ∈ H1/2(∂˜Ω). (3.13)

We have proved that

N±(λ, (3.6)) = N±(λ, (3.12)) = N±(λ, (3.13)), λ > 0. (3.14)

By Lemma 2.10, the spectrum counting functions for ratio (3.13) satisfy the following asymptotics
for λ → +0:

N±(λ, (3.13)) ∼ 1

4π2

∫

∂˜Ω
dS(x)

∫

ξ⊥ν(x)
dξ n±(λ,x, ξ; (3.16)), (3.15)

where n±(λ,x, ξ; (3.16)) are the spectrum counting functions for the ratio of the (one-dimensional)
forms

±q◦0(x, ξ)|z|2
p◦0(x, ξ)|z|2

, z ∈ C. (3.16)

We have

n±(λ,x, ξ; (3.16)) =

{

1, λ < ã±(x)|ξ|−1,

0, λ ≥ ã±(x)|ξ|−1.
(3.17)
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Fig. 2. System of fluids in a closed vessel

Now, calculating asymptotics of the functions N±(λ, (3.13)) according to (3.15), (3.17) and us-
ing (3.14), we obtain the required asymptotics (3.11).

Completion of the proof of Theorem 3.1. Combining Lemma 3.2, asymptotics (3.11), and the relation
ã(x) = a(x) for x ∈ supp a = supp ã ⊂ Γ, we obtain asymptotics of form (3.3) for N±(λ, (3.4)) in the
case where a ∈ C∞

0 (Γ). By closure, this formula is true for a ∈ L2(Γ); see Lemma 3.1. It remains to
recall that Δ±

2 (3.2) = Δ±
2 (3.4) and δ±2 (3.2) = δ±2 (3.4). This completes the proof of Theorem 3.1.

3.2. Small oscillations of a system of the heavy ideal fluids. By the previous way, we can
obtain asymptotics of the spectrum for the problem on oscillations of a system of immiscible fluids
completely or partially filling a vessel. We restrict ourselves to the statement of the problem and the
formulation of the result for a system of the heavy ideal fluids completely filling a vessel (see Fig. 2);
the proof can be found in [19].

Suppose that a bounded domain Ω ⊂ R
3 is divided into (k+1) parts Ωj, j = 1, . . . , k+1. Here k+1

is the number of fluids, and Ωj is the domain occupied by the j-th fluid in the equilibrium position.
Suppose that

Ω =

k+1
⋃

j=1

Ωj, Ω = intΩ, Ωi ∩ Ωj = ∅ for i �= j, Ωi ∩Ωj = ∅ for j �∈ {i− 1, i, i + 1}. (3.18)

Denote by
Γi = Ωi ∩ Ωi+1, i = 1, . . . , k, (3.19)

the interfaces; let S = ∂Ω be the solid wall of the vessel; let Sj = ∂Ωj ∩S, j = 1, . . . , k+1. We assume
that Ωi ∈ K, i = 1, . . . , k+1, and Γi, i = 1, . . . , k, are smooth two-dimensional surfaces with Lipschitz
boundaries. Let n0(x) be the unit outer normal vector to S at the point x ∈ S; and let nj(x) be the
outer (with respect to Ωj) unit normal vector to Γj at the point x ∈ Γj.

The problem on normal oscillations of a system of the heavy ideal fluids is formulated for a system
of functions {Φj(x)}, j = 1, . . . , k + 1, where Φj is a function in Ωj :

ΔΦj = 0 in Ωj,
∂Φj

∂n0
= 0 on Sj, j = 1, . . . , k + 1,

∂Φj

∂nj
=

∂Φj+1

∂nj
= λ−1aj(x) (ρjΦj − ρj+1Φj+1) on Γj, j = 1, . . . , k,

∫

Γj

aj(x) (ρjΦj − ρj+1Φj+1) dS = 0, j = 1, . . . , k;
∑k+1

j=1

∫

Ωj

ρ−1
j Φj(x) dx = 0.

(3.20)

Here aj ∈ L2(Γj) are real-valued functions such that
∫

Γj
aj(x) dx �= 0. The constants ρj > 0 stand for

the densities of the fluids. (According to the physical meaning, the functions aj(x) must be positive,
and the densities ρj must satisfy the inequalities ρ1 > ρ2 > · · · > ρk+1, but the mathematical problem
can be considered without these restrictions.)
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Problem (3.20) is equivalent to the variational problem on the spectrum of the form ratio
∑k

j=1

∫

Γj
aj(x)|ρjΦj − ρj+1Φj+1|2 dS

∑k+1
j=1 ρj

∫

Ωj
|∇Φj|2 dx

, Φj ∈ H1(Ωj), j = 1, . . . , k + 1;

∫

Γj

aj(x) (ρjΦj − ρj+1Φj+1) dS = 0, j = 1, . . . , k;
∑k+1

j=1

∫

Ωj

ρ−1
j Φj(x) dx = 0.

(3.21)

Proposition 3.1 (see [19]). Under the above assumptions, the spectrum counting functions for ra-
tio (3.21) satisfy the following asymptotics for λ → +0:

N±(λ, (3.21)) ∼ λ−2

4π

∑k

j=1
(ρj + ρj+1)

2
∫

Γj

(aj)
2
± dx.

4. The Spectral Asymptotics of a Nonclassical Steklov-Type Problem.
Application to the Theory of Small Fluid Oscillations

A number of problems in the theory of small fluid oscillations (see [3, 21–23]) leads to the question
of the spectrum of the variational ratio

Re
∫

Γ b(y)(B
−1
Γ u)(y)u(y) dS(y)

AΩ[u]
, u ∈ H1(Ω). (4.1)

Here Ω ⊂ R
3 (see Fig. 1) is the domain occupied by the fluid partially filling a vessel in the equilibrium

position; a smooth two-dimensional surface Γ ⊂ ∂Ω has the meaning of the free surface of the fluid or
the elastic bottom of the vessel. The quadratic form AΩ[u] determines an equivalent metric in H1(Ω).
The nonlocal operator B−1

Γ is the resolving operator of some elliptic boundary-value problem on Γ.
We call the problem of the spectrum of ratio (4.1) a Steklov-type problem, because: (a) the extremals
automatically satisfy the homogeneous elliptic equation Lu = 0 in the domain Ω, where the operator
L corresponds to the form AΩ; (b) the extremals satisfy the equation on Γ, which includes the spectral
parameter. However, this problem differs from the classical Steklov-type problem in that the form
ratio involves a nonlocal operator B−1

Γ .
In this section, we obtain the asymptotics of the spectrum of ratio (4.1). The result is applied to

the question on the spectrum of small oscillations of the capillary ideal fluid, the capillary stratified
fluid, as well as to one auxiliary problem of hydroelasticity. The main difficulty is related to the
nonsmoothness of the boundary ∂Ω (the vessel wall and the free surface of the fluid form an edge at
their intersection). Another difficulty arises from the nonlocal nature of the operator B−1

Γ .

4.1. Statement of the problem. Formulation of the result. Let Ω ⊂ R
m+1 be a bounded

domain such that Ω ∈ K. Suppose that the boundary ∂Ω contains an infinitely smooth m-dimensio
nal surface Γ with a smooth (m− 1)-dimensional edge γ (here Γ and γ are not necessarily connected).
Let n(x) be the interior unit normal vector to ∂Ω at the point x ∈ Γ.

In the domain Ω, we consider a Hermitian quadratic form given by

AΩ[u] :=

∫

Ω

(

∑m+1

i,j=1
aij(x)∂iu(x)∂ju(x) + V (x)|u(x)|2

)

dx, u ∈ H1(Ω). (4.2)

Suppose that the coefficients aij(x) = aji(x) and V (x) are infinitely smooth real-valued functions

in Ω. Assume also that the matrix a(x) = {aij(x)} is positive definite:

〈a(x)η,η〉 =
∑m+1

i,j=1
aij(x)ηiηj ≥ ca|η|2, x ∈ Ω, η ∈ C

m+1, ca > 0, (4.3)

and the function V (x) is positive definite:

V (x) ≥ ca > 0, x ∈ Ω. (4.4)

Under the above assumptions, the formAΩ[u] determines inH1(Ω) the norm equivalent to the standard
one:

ca‖u‖2H1(Ω) ≤ AΩ[u] ≤ Ca‖u‖2H1(Ω), u ∈ H1(Ω). (4.5)
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By L we denote the differential expression corresponding to form (4.2):

L = −
∑m+1

i,j=1
∂jaij(x)∂i + V (x).

Next, let BΓ be a scalar strongly elliptic differential expression on Γ of order 2q; let T1, . . . , Tq be the
differential trace operators acting “from Γ to γ,” ordTj = βj ≤ 2q−1. It is assumed that the coefficients
of the operators BΓ and Tj , j = 1, . . . , q, are infinitely smooth, in general, complex-valued functions.
Suppose that the problem BΓu = f on Γ, Tju = ϕj on γ, j = 1, . . . , q, is a regular elliptic problem, i.e.,
the Shapiro–Lopatinsky condition is satisfied; see, e.g., [2, 4, 28]. By BΓ we denote the operator on
L2(Γ) given by the expression BΓ on the domain DomBΓ = {u ∈ H2q(Γ) : Tju|γ = 0, j = 1, . . . , q}.
Suppose that BΓ is self-adjoint and positive definite. Then B−1

Γ is a compact operator on L2(Γ). Let
B(x, ξ), x ∈ Γ, ξ ⊥ n(x), be the principal symbol of the differential expression BΓ. From the strong
ellipticity and the self-adjointness it follows that B(x, ξ) ≥ c0|ξ|2q, x ∈ Γ, ξ ⊥ n(x), c0 > 0.

Consider the quadratic form BΓ[u] := Re
∫

Γ b(x)
(

B−1
Γ u

)

(x)u(x) dS(x), where b(x) is a real-valued
function on Γ such that

b ∈ Lr(Γ), r > 1 for m = 1;
1

r
=

1

2
+

1

2m
for 1 < m < 4q + 1;

1

r
<

1

2
+

1

2m
for m = 4q + 1; r =

m

2q + 1
for m > 4q + 1.

(4.6)

Consider the ratio of quadratic forms

± BΓ[u]

AΩ[u]
, u ∈ H1(Ω). (4.7)

Let x ∈ Γ, ξ ⊥ n(x). Denote M(x, ξ) :=
(

〈a(x)ξ, ξ〉〈a(x)n(x),n(x)〉 − 〈a(x)ξ,n(x)〉2
)1/2

.
The main result of this section is the following theorem.

Theorem 4.1. Under the above assumptions, the spectrum counting functions for ratio (4.7) satisfy
the following asymptotics for λ → +0:

N±(λ, (4.7)) ∼ λ−θ

m(2π)m

∫

Γ
dS(x)

∫

ξ⊥n(x): |ξ|=1
dS(ξ)

(

b±(x)B−1(x, ξ)M−1(x, ξ)
)θ

, θ =
m

2q + 1
.

4.2. Estimates of the spectrum.

Lemma 4.1. Suppose that b(x) is a real-valued function satisfying conditions (4.6). Then we have
Δ±

θ (4.7) ≤ C‖b‖θLr(Γ)
, θ = m

2q+1 , where the constant C does not depend on b.

Proof. By the trace theorem (see, e.g., [2, 28]), the lower estimate (4.5) implies thatAΩ[u] ≥ ca‖u‖2H1(Ω)

≥ C1‖u‖2H1/2(Γ)
, u ∈ H1(Ω), with some constant C1 > 0. In (4.7), we denote g = B−1

Γ u. By the the-

orem on homeomorphisms (see, e.g., [2, 4, 28]), we have ‖u‖2
H1/2(Γ)

≥ C2‖g‖2H2q+1/2(Γ)
, u ∈ H1/2(Γ),

C2 > 0. Applying Lemma 2.2, we obtain that the functions N±(λ, (4.7)) are estimated from above in
terms of the spectrum counting functions for the ratio

±C
Re

∫

Γ b(x)g(x)u(x) dS(x)

‖u‖2
H1/2(Γ)

+ ‖g‖2
H2q+1/2(Γ)

, {u, g} ∈ H1/2(Γ)⊕H2q+1/2(Γ). (4.8)

By Lemma 2.9, we have Δ±
θ (4.7) ≤ Δ±

θ (4.8) ≤ C‖b‖θLr(Γ)
.

Lemmas 4.1 and 2.5 show that the values Δ±
θ (4.7) and δ±θ (4.7) are continuous functionals of

b ∈ Lr(Γ). Therefore, it suffices to calculate these values for a set of coefficients b(x) dense in Lr(Γ).
As such a set, it is convenient to take C∞

0 (Γ).
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4.3. Comparison with the problem in a smooth domain. Below it is assumed that b ∈ C∞
0 (Γ).

We proceed similarly to Sec. 3.1. Let ˜Ω be a bounded domain with smooth boundary such that ˜Ω ⊂ Ω,

and let supp b lie strictly inside the set ∂˜Ω ∩ Γ. Then there exists an open subset ˜Γ of the boundary

∂˜Ω lying strictly inside ∂˜Ω ∩ Γ and such that supp b ⊂ ˜Γ. We can assume that ˜Γ is an m-dimensional

surface with sufficiently smooth boundary. Let ν(x) be the inner unit normal vector to ∂˜Ω at the

point x ∈ ∂˜Ω. Let ˜b ∈ C∞(∂˜Ω) be the function equal to b(x) for x ∈ ˜Γ and equal to zero outside ˜Γ.

Let B∂˜Ω(x, ξ), x ∈ ∂˜Ω, ξ ⊥ ν(x), be a homogeneous polynomial of ξ of order 2q, whose coefficients

are smooth functions of x, and B∂˜Ω(x, ξ) = B(x, ξ) for x ∈ ∂˜Ω ∩ Γ, ξ ⊥ ν(x), and also the following

strong ellipticity condition is satisfied: B
∂˜Ω

(x, ξ) ≥ c|ξ|2q, x ∈ ∂˜Ω, ξ ⊥ ν(x), c > 0. It is easily seen
that such a “strong elliptic” continuation of the symbol B(x, ξ) is always possible. By B

∂˜Ω
we denote

some differential expression of order 2q on ∂˜Ω with smooth coefficients and the principal symbol
B∂˜Ω(x, ξ).

Let B∂˜Ω be the operator in L2(∂˜Ω) given by the expression B∂˜Ω on the domain H2q(∂˜Ω). By
choosing lower order terms, the expression B∂˜Ω can be chosen so that the operator B∂˜Ω is self-adjoint

and positive definite. The inverse operator B−1

∂˜Ω
is a pseudodifferential operator on ∂˜Ω of order (−2q).

Denote B
∂˜Ω

[u] := Re
∫

∂˜Ω
˜b(x)

(

B−1

∂˜Ω
u
)

(x)u(x) dS(x).

By A
˜Ω
we denote the form A

˜Ω
[u] :=

∫

˜Ω

(

∑m+1
i,j=1 aij(x)∂iu(x)∂ju(x) + V (x)|u(x)|2

)

dx, u ∈ H1(˜Ω).

The coefficients of this form are the same as in (4.2) (restricted to ˜Ω). Our goal is to compare ratio (4.7)
and the ratio

±
B∂˜Ω[u]

A
˜Ω[u]

, u ∈ H1(˜Ω). (4.9)

This comparison is carried out in two steps; they correspond to Lemma 4.2 and Lemma 4.3. Consider
the ratio

±
B
∂˜Ω

[u]

AΩ[u]
, u ∈ H1(Ω). (4.10)

Lemma 4.2. We have

Δ±
θ (4.7) = Δ±

θ (4.10), δ±θ (4.7) = δ±θ (4.10), θ =
m

2q + 1
. (4.11)

Proof. Consider the ratio

± F [u]

AΩ[u]
, u ∈ H1(Ω), (4.12)

where F [u] := B∂˜Ω[u]−BΓ[u]. By Lemma 2.4, relations (4.11) will be proved as soon as we show that

Δ+
θ (4.12) = Δ−

θ (4.12) = 0. Let u ∈ H1(Ω). Denote g = B−1
Γ u, f = B−1

∂˜Ω
u. Then

F [u] = Re

∫

˜Γ
b(f − g)B∂˜Ωf dS = Re

∫

˜Γ
B∂˜Ω(b(f − g))f dS

= Re

∫

˜Γ
b
(

B
∂˜Ω

f −BΓg + (BΓ −B
∂˜Ω

)g
)

f dS +Re

∫

˜Γ

(

B
∂˜Ω

(b(f − g)) − bB
∂˜Ω

(f − g)
)

f dS. (4.13)

We take into account the following: (a) (B
∂˜Ω

f)(x) = (BΓg)(x) = u(x) for x ∈ ˜Γ; (b) (BΓ − B
∂˜Ω

) on
˜Γ is a differential expression of order 2q − 1, since the principal symbols of BΓ and B∂˜Ω coincide for

x ∈ ˜Γ (i.e., B(x, ξ) = B
∂˜Ω

(x, ξ) for x ∈ ˜Γ, ξ ⊥ ν(x)); (c) (B
∂˜Ω

˜b−˜bB
∂˜Ω

) is a differential expression of
order 2q − 1. Then from (4.13) it follows that the form F [u] is represented as

F [u] = Re

∫

˜Γ
(B′g +B′′f)f dS, (4.14)

where B′ and B′′ are some differential expressions on ˜Γ of order 2q − 1 with smooth coefficients.
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Using (4.5), the trace theorem, the homeomorphism theorem for BΓ, and the continuity properties

of the pseudodifferential operators on Sobolev spaces on ∂˜Ω, we conclude that

AΩ[u] ≥ ca‖u‖2H1(Ω) ≥ C3

(

‖u‖2
H1/2(Γ)

+ ‖u‖2
H1/2(∂˜Ω)

)

≥ C4

(

‖g‖2
H2q+1/2(Γ)

+ ‖f‖2
H2q+1/2(∂˜Ω)

)

≥ C5

(

‖B′g +B′′f‖2
H3/2(˜Γ)

+ ‖f‖2
H2q+1/2(∂˜Ω)

)

, u ∈ H1(Ω). (4.15)

Denote B′g + B′′f = ψ. Applying Lemma 2.2 and taking (4.14) and (4.15) into account, we obtain
that the values Δ±

θ (4.12) do not exceed the similar values for the ratio

±C
Re

∫

˜Γ ψ(x)f(x) dS(x)

‖ψ‖2
H3/2(˜Γ)

+ ‖f‖2
H2q+1/2(˜Γ)

, {ψ, f} ∈ H3/2(˜Γ)⊕H2q+1/2(˜Γ). (4.16)

By Lemma 2.9, N±(λ, (4.16)) = O(λ− m
2q+2 ). Hence, Δ±

θ (4.16) = 0 for θ = m
2q+1 . Then also Δ+

θ (4.12) =

Δ−
θ (4.12) = 0.

Now, we compare ratios (4.10) and (4.9).

Lemma 4.3. We have

δ±θ (4.9) ≤ δ±θ (4.10) ≤ Δ±
θ (4.10) ≤ Δ±

θ (4.9), θ =
m

2q + 1
. (4.17)

Proof. By (4.4) and (4.3), we have AΩ[u] ≥ A
˜Ω[u], u ∈ H1(Ω). Applying Lemma 2.2, in which

S : H1(Ω) → H1(˜Ω) is the restriction operator, we obtain

N±(λ, (4.10)) ≤ N±(λ, (4.9)), λ > 0. (4.18)

This implies the right inequality in (4.17).
We fix a cut-off function ϑ ∈ C∞(Ω) such that 0 ≤ ϑ(x) ≤ 1; ϑ(x) = 1 for x ∈ supp b; and ϑ(x) = 0

in some neighborhood of Ω \ ˜Ω. Then

A
˜Ω
[u] ≥ εA

˜Ω
[u] + (1− ε)

∫

˜Ω
ϑ2(x)

(

〈a(x)∇u(x),∇u(x)〉 + V (x)|u(x)|2
)

dx

= εA
˜Ω[u] + (1− ε)A

˜Ω[ϑu] + (1−ε)

∫

˜Ω

(

ϑ2〈a∇u,∇u〉 − 〈a∇(ϑu),∇(ϑu)〉
)

dx, u ∈ H1(˜Ω).

(4.19)

The sum of the first two terms in the right-hand side of (4.19) determines an equivalent metric in

H1(˜Ω), and the last term is a compact form in H1(˜Ω). Next, using that ˜b(x) = ϑ2(x)˜b(x), x ∈ ∂˜Ω, we
obtain

B∂˜Ω[u] = B∂˜Ω[ϑu] +

∫

∂˜Ω

˜b(x)
(

(

ϑB−1

∂˜Ω
−B−1

∂˜Ω
ϑ
)

u
)

(x)ϑ(x)u(x) dS(x). (4.20)

The second term in the right-hand side of (4.20) is the form of a pseudodifferential operator of order
−(2q + 1), i.e., it is a lower order form. According to Lemmas 2.3 and 2.4, the values δ±θ (4.9) do not
exceed the similar values for the ratio

±
B∂˜Ω[ϑu]

εA
˜Ω[u] + (1− ε)A

˜Ω[ϑu]
, u ∈ H1(˜Ω). (4.21)

For u ∈ H1(˜Ω), by ̂Su we denote a function coinciding with ϑu on ˜Ω and equal to zero on Ω \ ˜Ω. Then

the operator ̂S : H1(˜Ω) → H1(Ω) is bounded. For all u ∈ H1(˜Ω), for which ±B∂˜Ω[ϑu] > 0, ratio (4.21)

does not exceed ± B
∂˜Ω

[ ̂Su]
(1−ε)AΩ[ ̂Su] . Then we are under the assumptions of Lemma 2.2, which implies

δ±θ (4.9) ≤ (1− ε)−θδ±θ (4.10). Letting ε tend to zero, we arrive at the left inequality in (4.17).
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4.4. Asymptotics in the smooth case. According to Lemmas 4.2 and 4.3, we have

δ±θ (4.9) ≤ δ±θ (4.7) ≤ Δ±
θ (4.7) ≤ Δ±

θ (4.9), θ =
m

2q + 1
. (4.22)

Now, we establish an asymptotic formula for N±(λ, (4.9)).

Lemma 4.4. For λ → +0, we have

N±(λ, (4.9)) ∼ λ−θ

m(2π)m

∫

∂˜Ω
dS(x)

∫

ξ⊥ν(x): |ξ|=1
dS(ξ)

(

˜b±(x)B−1

∂˜Ω
(x, ξ)˜M−1(x, ξ)

)θ
, θ =

m

2q + 1
.

(4.23)

Here ˜M(x, ξ) :=
(

〈a(x)ξ, ξ〉〈a(x)ν(x),ν(x)〉 − 〈a(x)ξ,ν(x)〉2
)1/2

.

Proof. By H1(˜Ω, L) we denote the subspace in H1(˜Ω) formed by solutions of the equation Lu = 0 in
˜Ω. We have H1(˜Ω) = H1(˜Ω, L)⊕A H1

0 (
˜Ω). Here the orthogonal sum is understood in the sense of the

inner product A
˜Ω[u, v]. Since the form in the numerator of ratio (4.9) vanishes for u ∈ H1

0 (
˜Ω), then

the nonzero spectrum of ratio (4.9) will not change if we consider this ratio on H1(˜Ω, L).

Let G be the “Poisson operator” that takes a function ϕ ∈ H1/2(∂˜Ω) into the solution of the
corresponding Dirichlet problem for the equation Lu = 0: the equality u = Gϕ means that u ∈
H1(˜Ω, L), u|∂˜Ω = ϕ. The operator G is a homeomorphism between the spaces H1/2(∂˜Ω) and H1(˜Ω, L).
The problem on the spectrum of ratio (4.9) is equivalent to the problem on the spectrum of the ratio

±
B
∂˜Ω

[ϕ]

A
˜Ω[Gϕ]

, ϕ ∈ H1/2(∂˜Ω). (4.24)

From the properties of the Boutet de Monvel algebra [14, 17] it follows that

A
˜Ω[Gϕ] = (Pϕ,ϕ), ϕ ∈ H1/2(∂˜Ω), (4.25)

where P is a classical pseudodifferential operator on ∂˜Ω of order 1. Let us calculate the principal
symbol of the operator P, using the recipe from [11]. The principal symbol of the operator L is given

by L◦(x,η) = a(x)η · η =
∑m+1

j,l=1 ajl(x)ηjηl. For each pair (x, ξ), where x ∈ ∂˜Ω, 0 �= ξ ⊥ ν(x), we

should consider the ordinary differential equation L◦(x, ξ + ν(x)Dt)f(t) = 0, t ∈ R+. This equation
takes the form

−〈a(x)ν(x),ν(x)〉d
2f(t)

dt2
− 2i〈a(x)ξ,ν(x)〉df(t)

dt
+ 〈a(x)ξ, ξ〉f(t) = 0.

Let F (x, ξ) be the space of solutions of this equation, vanishing as t → +∞. This space is one-
dimensional. We choose the basis function Y (x, ξ; t) in it satisfying the condition Y (x, ξ; 0) = 1.

Then Y (x, ξ; t) = eκ(x,ξ)t, where κ(x, ξ) = −˜M(x,ξ)+i〈a(x)ξ,ν(x)〉
〈a(x)ν(x),ν(x)〉 . The principal symbol p◦(x, ξ) of the

pseudodifferential operator P is calculated by the rule

p◦(x, ξ) =
∑m+1

i,j=1

∫ ∞

0
aij(x)(ξi + νi(x)Dt)Y (x, ξ; t)(ξj − νj(x)Dt)Y (x, ξ; t) dt.

A calculation shows that
p◦(x, ξ) = ˜M(x, ξ), x ∈ ∂˜Ω, ξ ⊥ ν(x). (4.26)

Obviously, B∂˜Ω[ϕ] = (Qϕ,ϕ), where Q is the pseudodifferential operator on ∂˜Ω of order (−2q) with
the principal symbol

q◦(x, ξ) = ˜b(x)B−1

∂˜Ω
(x, ξ), x ∈ ∂˜Ω, ξ ⊥ ν(x). (4.27)

Thus, ratio (4.24) coincides with the ratio of pseudodifferential forms

±(Qϕ,ϕ)

(Pϕ,ϕ)
, ϕ ∈ H1/2(∂˜Ω). (4.28)

We have proved that

N±(λ, (4.9)) = N±(λ, (4.24)) = N±(λ, (4.28)), λ > 0. (4.29)
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By Lemma 2.10, the spectrum counting functions for ratio (4.28) satisfy the following asymptotics
for λ → +0:

N±(λ, (4.28)) ∼ (2π)−m

∫

∂˜Ω
dS(x)

∫

ξ⊥ν(x)
dξ n±(λ,x, ξ; (4.31)), (4.30)

where n±(λ,x, ξ; (4.31)) are the spectrum counting functions for the ratio of the (one-dimensional)
forms

±q◦(x, ξ)|z|2
p◦(x, ξ)|z|2 , z ∈ C. (4.31)

Taking (4.26) and (4.27) into account, we obtain

n±(λ,x, ξ; (4.31)) =

{

1, λ < ˜b±(x)B−1

∂˜Ω
(x, ξ)˜M−1(x, ξ),

0, λ ≥ ˜b±(x)B−1

∂˜Ω
(x, ξ)˜M−1(x, ξ).

(4.32)

Now, calculating asymptotics of the functions N±(λ, (4.28)) by (4.30), (4.32) and taking (4.29) into
account, we arrive at the required result (4.23).

Completion of the proof of Theorem 4.1. By (4.22) and (4.23), taking into account that ˜b(x) = b(x)

for x ∈ supp b = supp˜b ⊂ Γ and B∂˜Ω(x, ξ) = B(x, ξ), ˜M(x, ξ) = M(x, ξ) for x ∈ supp b, ξ ⊥ ν(x), we
obtain:

Δ±
θ (4.7) = δ±θ (4.7) =

1

m(2π)m

∫

Γ

dS(x)

∫

ξ⊥n(x): |ξ|=1

dS(ξ)
(

b±(x)B−1(x, ξ)M−1(x, ξ)
)θ

, θ =
m

2q + 1
,

for any b ∈ C∞
0 (Γ). By closure, this formula is valid for b ∈ Lr(Γ); see Sec. 4.2. This completes the

proof of Theorem 4.1.

4.5. Application to the study of the spectrum of small oscillations of the capillary ideal
fluid. Application of Theorem 4.1 allows us to solve the problem on the spectral asymptotics of small
oscillations of the capillary ideal fluid (see [3, 23], and also [26, Chap. 4, § 1]). In this case Ω ⊂ R

3 (see
Fig. 1) is the domain occupied by the fluid in a vessel in the equilibrium position; Γ is the equilibrium
free surface of the fluid; S = ∂Ω \ Γ is the solid wall of the vessel; γ = ∂Γ is the wetting line. Let us
first give a classical formulation of the problem assuming that the following condition is satisfied.

Condition 4.1. Ω is a bounded domain in R
3 with piecewise smooth boundary ∂Ω = Γ ∪ S, where

Γ and S are smooth two-dimensional surfaces, the intersection of which is a smooth one-dimensional
edge γ, and the inner angle at the edge is greater than zero and less than 2π (Γ, S and γ are not
necessarily connected).

Let n0(x) be the unit outer normal vector to S at the point x ∈ S, and let n(x) be the unit outer
normal vector to Γ at the point x ∈ Γ. Finally, let l(x) be the unit outer (with respect to Γ) normal
vector to γ lying in the plane tangent to Γ at the point x ∈ γ. Note that, after passing to the variational
formulation of the problem, the smoothness requirement on S can be lifted (see Condition 4.2 below).

Let σ > 0 and let h ∈ C∞(Γ), χ ∈ C∞(γ) be real-valued functions. Here σ is the surface tension
coefficient (see [3]), the function h is related to the normal derivative of the potential of mass forces
and to the principal curvatures of the surface Γ. It is assumed that

∫

Γ

(

σ|∇Γu(x)|2 + h(x)|u(x)|2
)

dS(x) +

∫

γ
σχ(x)|u(x)|2 dγ ≥ c

∫

Γ
|u(x)|2 dS(x),

u ∈ H1(Γ),

∫

Γ
u(x) dS(x) = 0; c > 0.

(4.33)

Condition (4.33) imposes a restriction on the problem data. Physically, it means that the equilibrium

position of the fluid is stable. Denote L2(Γ) � {1} :=
{

u ∈ L2(Γ) :
∫

Γ u dS = 0
}

. Let P be the

orthogonal projection of the space L2(Γ) onto L2(Γ)�{1}. The quadratic form on the left-hand side of
inequality (4.33) corresponds to the self-adjoint positive definite operator BΓ in the space L2(Γ)�{1}.
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The operator BΓ is called the operator of potential energy. Let ΔΓ be the Laplace–Beltrami operator
on Γ. Then BΓ is given by the expression P (−σΔΓ + h) on the domain

DomBΓ =
{

u ∈ H2(Γ) :
∂u

∂l
+ χu = 0 on γ,

∫

Γ
u dS = 0

}

.

The resolving operator B−1
Γ of the corresponding boundary-value problem on Γ is a compact operator

on L2(Γ)� {1}.
The problem of normal oscillations of the capillary ideal fluid is reduced (see [3, Chap. 4, § 2]) to

the spectral boundary-value problem:

ΔΦ = 0 in Ω,
∂Φ

∂n0
= 0 on S,

P (−σΔΓ + h)
∂Φ

∂n
= λ−1Φ on Γ,

∫

Γ
Φ dS = 0,

∂

∂l

(

∂Φ

∂n

)

+ χ
∂Φ

∂n
= 0 on γ.

(4.34)

Here Φ(x) is the amplitude of oscillations of the potential Φ(x, t) of the fluid particles velocity field:

Φ(x, t) = Φ(x)eiωt, where ω−1 =
√
λ and t is the time. The Laplace equation is the continuity

equation, the condition on S is the impermeability condition, the third-type boundary condition on γ
is the linearized condition for maintaining the contact angle during movement.

The boundary-value problem (4.34) is equivalent (see [3, Chap. 4, § 5]) to the problem of finding
the successive maxima of the ratio of quadratic forms

∫

Γ(B
−1
Γ Φ)Φ dS

∫

Ω |∇Φ|2 dx , Φ ∈ H1(Ω),

∫

Γ
Φ dS = 0. (4.35)

The Laplace equation in Ω and the condition on S are natural conditions in the variational problem
on the spectrum of ratio (4.35). We consider ratio (4.35) under the following condition.

Condition 4.2. Ω is a bounded domain in R
3 such that Ω ∈ K; Γ is a smooth two-dimensional surface

with smooth one-dimensional boundary γ and Γ ⊂ ∂Ω.

Proposition 4.1. Suppose that Condition 4.2 is satisfied. Let σ > 0. Suppose that h ∈ C∞(Γ) and
χ ∈ C∞(γ) are real-valued functions satisfying inequality (4.33). Then the spectrum counting function
for ratio (4.35) satisfies the following asymptotics for λ → +0:

N(λ, (4.35)) ∼ λ−2/3meas Γ

4πσ2/3
. (4.36)

Proof. Let ˜BΓ = BΓ +CI be the operator in L2(Γ)� {1} given by the expression P (−σΔΓ + h+C)
on the domain DomBΓ. Let BΓ be the operator on L2(Γ) given by the expression −σΔΓ + h + C

on the domain DomBΓ =
{

u ∈ H2(Γ) : ∂u
∂l + χu = 0 on γ

}

. We assume that the constant C is so

large that the operator BΓ is positive definite. By the Hilbert identity, ˜B−1
Γ = (I + K)B−1

Γ , where

K = −C ˜B−1
Γ is a compact self-adjoint operator in L2(Γ)�{1}, and K commutes with B−1

Γ . Together
with Lemma 2.4, this implies that the values Δ2/3 (4.35) and δ2/3 (4.35) coincide with the similar
values for the ratio

∫

Γ(
˜B−1
Γ Φ)Φ dS

∫

Ω |∇Φ|2 dx , Φ ∈ H1(Ω),

∫

Γ
Φ dS = 0. (4.37)

By Lemma 2.6, the principal term of the spectral asymptotics of ratio (4.37) does not change if we
consider this ratio on a subspace of finite codimension in H = {Φ ∈ H1(Ω) :

∫

Γ Φ dS = 0}, namely, on

the subspace G :=
{

Φ ∈ H1(Ω) :
∫

Γ Φ dS = 0,
∫

ΓB
−1
Γ Φ dS = 0

}

. Note that ˜B−1
Γ Φ = B−1

Γ Φ for Φ ∈ G.
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Further, applying Lemma 2.3, we obtain that the values Δ2/3 (4.37) and δ2/3 (4.37) are the same as
for the ratio

∫

Γ(B
−1
Γ Φ)Φ dS

∫

Ω (|∇Φ|2 + |Φ|2) dx , Φ ∈ G. (4.38)

Finally, by Lemma 2.6, the principal term of the spectral asymptotics does not change if (4.38) is
replaced by the ratio

∫

Γ(B
−1
Γ Φ)Φ dS

∫

Ω (|∇Φ|2 + |Φ|2) dx , Φ ∈ H1(Ω). (4.39)

Applying Theorem 4.1 to ratio (4.39) and taking into account that b(x) = 1, B(x, ξ) = σ|ξ|2 and
M(x, ξ) = |ξ|, we arrive at asymptotics (4.36).

4.6. Small oscillations of the capillary stratified fluid. Theorem 4.1 also allows us to find the
spectral asymptotics of small oscillations of the capillary stratified fluid. In the classical statement,
we assume that Condition 4.1 is satisfied. The constant σ and the functions h and χ satisfy the same
conditions as above. In addition, let ρ ∈ C∞(Ω) be a positive function, which has the meaning of the
fluid density.

The problem of small oscillations of the capillary stratified fluid is reduced to the following spectral
boundary-value problem:

div
(

ρ−1∇Φ
)

= 0 in Ω, ρ−1 ∂Φ

∂n0
= 0 on S,

P (−σΔΓ + h)
(

ρ−1 ∂Φ

∂n

)

= λ−1Φ on Γ,

∫

Γ
Φ dS = 0,

∂

∂l

(

ρ−1 ∂Φ

∂n

)

+ χρ−1∂Φ

∂n
= 0 on γ.

(4.40)

The boundary-value problem (4.40) is equivalent to the variational problem on the spectrum of the
form ratio

∫

Γ(B
−1
Γ Φ)Φ dS

∫

Ω ρ−1|∇Φ|2 dx , Φ ∈ H1(Ω),

∫

Γ
Φ dS = 0, (4.41)

where the operator BΓ is the same as in Sec. 4.5. We consider the variational problem already under
Condition 4.2.

By analogy with the proof of Proposition 4.1, it is easy to deduce the following statement from
Theorem 4.1.

Proposition 4.2. Suppose that Condition 4.2 is satisfied. Let σ > 0. Suppose that h ∈ C∞(Γ) and
χ ∈ C∞(γ) are real-valued functions satisfying (4.33). Let ρ ∈ C∞(Ω), ρ(x) > 0. Then the spectrum
counting function for ratio (4.41) satisfies the following asymptotics for λ → +0:

N(λ, (4.41)) ∼ λ−2/3 1

4πσ2/3

∫

Γ
ρ2/3(x) dS(x).

4.7. An auxiliary problem of the theory of hydroelasticity. Theorem 4.1 finds application
also in the theory of hydroelasticity. In this case, Γ has the meaning of the elastic bottom of the
vessel. The following auxiliary problem of hydroelasticity corresponds to oscillations of the system in
the case where the elastic bottom has zero mass:

ΔΦ = 0 in Ω,
∂Φ

∂n0
= 0 on S,

P
(

Dρ−1Δ2
Γ

∂Φ

∂n

)

= λ−1Φ on Γ,

∫

Γ
Φ dS = 0,

∂Φ

∂n
= 0,

∂

∂l

(∂Φ

∂n

)

= 0 on γ.

(4.42)
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Here Δ2
Γ is the biharmonic operator on Γ, conditions on γ are the rigid fixation conditions. The

constant D > 0 is the coefficient of elasticity, the constant ρ > 0 is the fluid density3.

By ̂BΓ we denote the operator in L2(Γ) � {1} given by the expression PDρ−1Δ2
Γ on the domain

Dom ̂BΓ = H4(Γ)∩H2
0 (Γ)∩ (L2(Γ)�{1}). The operator ̂BΓ is self-adjoint and positive definite. The

boundary-value problem (4.42) corresponds to the variational problem on the spectrum of the ratio
of quadratic forms

∫

Γ(
̂B−1
Γ Φ)Φ dS

∫

Ω |∇Φ|2 dx , Φ ∈ H1(Ω),

∫

Γ
Φ dS = 0. (4.43)

Proposition 4.3. Suppose that Condition 4.2 is satisfied. Let D > 0 and ρ > 0. Then the spectrum
counting function for ratio (4.43) satifies the following asymptotics for λ → +0:

N(λ, (4.43)) ∼ λ−2/5
( ρ

D

)2/5meas Γ

4π
. (4.44)

Proof. Let ̂BΓ be the operator in L2(Γ) given by the expression Dρ−1Δ2
Γ on the domain Dom ̂BΓ =

H4(Γ)∩H2
0 (Γ). The operator

̂BΓ is selfa-djoint and positive definite. It is easily seen that the principal
term of the spectral asymptotics will not change if we replace ratio (4.43) by the ratio

∫

Γ(
̂B−1
Γ Φ)Φ dS

∫

Ω (|∇Φ|2 + |Φ|2) dx , Φ ∈ H1(Ω). (4.45)

Applying Theorem 4.1 to ratio (4.45), we arrive at asymptotics (4.44).

4.8. Oscillations of a system of the capillary ideal fluids. The asymptotic formulas of the
spectrum obtained above for the problems of small oscillations of a single fluid partially filling a vessel
can be generalized to the case of oscillations of a system of immiscible fluids completely or partially
filling a vessel. Let us consider as an example the problem of oscillations of a system of capillary ideal
fluids completely filling a vessel (see Fig. 2).

Condition 4.3. A bounded domain Ω ⊂ R
3 is divided into (k+1) parts Ωj, j = 1, . . . , k+1, and (3.18)

is satisfied. The surfaces Γj, j = 1, . . . , k, are defined in (3.19). We assume that Γi, i = 1, . . . , k, are
smooth two-dimensional surfaces with smooth one-dimensional boundaries γi = ∂Γi, S is a smooth
two-dimensional surface, and the angles between Γi and S are greater than zero and less than 2π.
Moreover, S, Γi, and γi are not necessarily connected.

As in the case of a single fluid, the smoothness requirement on S can be relaxed after the transition
to variational formulation of the problem. Let n0(x) be the unit outer normal vector to S at the point
x ∈ S; let nj(x) be the unit outer (with respect to Ωj) normal vector to Γj at the point x ∈ Γj; and
let lj(x) be the unit outer (with respect to Γj) normal vector to γj at the point x ∈ γj lying in the
plane tangent to Γj at the point x.

The problem of normal oscillations of a system of capillary ideal fluids (see [3, Chap. 4, § 6]) is
formulated for a system of functions {Φj(x)}, j = 1, . . . , k + 1, where Φj is a function in Ωj:

ΔΦj = 0 in Ωj,
∂Φj

∂n0
= 0 on Sj , j = 1, . . . , k + 1,

∂Φj

∂nj
=

∂Φj+1

∂nj
on Γj, j = 1, . . . , k,

Pj

(

−σjΔΓj + hj
) ∂Φj

∂nj
= λ−1 (ρjΦj − ρj+1Φj+1) on Γj, j = 1, . . . , k, (4.46)

∂

∂lj

∂Φj

∂nj
+ χj

∂Φj

∂nj
= 0 on γj , j = 1, . . . , k,

∫

Γj

(ρjΦj − ρj+1Φj+1) dS = 0, j = 1, . . . , k;
∑k+1

j=1

∫

Ωj

ρ−1
j Φj dx = 0.

3Boundary-value problems, in which the order of the operator in the boundary condition is higher than the order of
the equation in the domain were discussed, e.g., in [29].
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Here σj > 0 are constants, hj ∈ C∞(Γj) and χj ∈ C∞(γj) are real-valued functions. The constants
ρj > 0 are the densities of the fluids. The operator Pj is the orthogonal projection of the space
L2(Γj) onto L2(Γj)� {1}. By Bj we denote the self-adjoint operator in the space L2(Γj)� {1} given

by the expression Pj(−σjΔΓj + hj) on the domain DomBj =
{

u ∈ H2(Γj) : ∂u
∂lj

+ χju = 0 on γj ,
∫

Γj
u dS = 0

}

. It is assumed that the operators Bj are positive definite for all j = 1, . . . , k (cf. (4.33)).

Then the operators B−1
j are compact on L2(Γj)� {1}.

Problem (4.46) is equivalent to the variational problem on the spectrum of the form ratio
∑k

j=1

∫

Γj
(B−1

j Ψj)Ψj dS
∑k+1

j=1 ρj
∫

Ωj
|∇Φj|2 dx

, Φj ∈ H1(Ωj), j = 1, . . . , k + 1;

Ψj := ρjΦj − ρj+1Φj+1,

∫

Γj

Ψj dS = 0, j = 1, . . . k;
∑k+1

j=1

∫

Ωj

ρ−1
j Φj dx = 0.

(4.47)

We consider the variational problem under the following condition.

Condition 4.4. A bounded domain Ω ⊂ R
3 is divided by the smooth two-dimensional surfaces Γ1, . . . ,

Γk into (k + 1) disjoint domains Ω1, . . . ,Ωk+1. Suppose that relations (3.18) and (3.19) are satisfied.
Assume that Ωj ∈ K, j = 1, . . . , k+1, and Γj, j = 1, . . . , k, are smooth two-dimensional surfaces with
smooth boundaries γj = ∂Γj .

Proposition 4.4. Under the above assumptions, the spectrum counting function for ratio (4.47) sat-
isfies the following asymptotics for λ → +0:

N(λ, (4.47)) ∼ λ−2/3
∑k

j=1

(ρj + ρj+1

σj

)2/3meas Γj

4π
.

By BΓj we denote the self-adjoint operator in L2(Γj) given by BΓj = −σjΔΓj + hj(x) + Cj on the

domain DomBΓj =
{

u ∈ H2(Γj) :
∂u
∂lj

+ χju = 0 on γj
}

. The constants Cj > 0 are so large that the

operators BΓj are positive definite for all j = 1, . . . , k. For Φ = {Φj}1≤j≤k+1 ∈
∑k+1

j=1 ⊕H1(Ωj), we
put

B[Φ] :=
∑k

j=1
Re

∫

Γj

bj(x)
(

B−1
Γj

Ψj

)

ΨjdS, Ψj := ρjΦj − ρj+1Φj+1,

A[Φ] :=
∑k+1

j=1
ρj

∫

Ωj

(

|∇Φj|2 + |Φj|2
)

dx.

Here bj(x) are real-valued functions on Γj such that bj ∈ L4/3(Γj), j = 1, . . . , k.
By analogy with the reasoning from the proof of Proposition 4.1, it is easy to show that the values

Δ2/3 (4.47) and δ2/3 (4.47) for bj = 1 (j = 1, . . . , k) coincide with the similar values for the ratio

±B[Φ]
A[Φ]

, Φ ∈
∑k+1

j=1
⊕H1(Ωj). (4.48)

Proposition 4.4 now follows from the following statement.

Proposition 4.5. Suppose that the assumptions of Proposition 4.4 are satisfied. Let bj(x) be real-
valued functions on Γj such that bj ∈ L4/3(Γj). Then the spectrum counting functions for ratio (4.48)
satisfy the following asymptotics for λ → +0:

N±(λ, (4.48)) ∼ λ−2/3

4π

∑k

j=1

(ρj + ρj+1

σj

)2/3
∫

Γj

(bj)
2/3
± dS.

Remark 4.1. It would be possible to obtain a generalization of Theorem 4.1 for the case of composite
domains, and then Proposition 4.5 would be a special case. We will confine ourselves to discussing
Proposition 4.5, so as not to go into details of the general formulation of the problem.
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Proposition 4.5 is proved by the same way as Theorem 4.1. We outline the main steps omitting
details (details of the proof can be found in [38]). By analogy with the proof of Lemma 4.1 it is

not difficult to obtain estimates of the spectrum: Δ±
2/3 (4.48) ≤ C

∑k
j=1 ‖bj‖

2/3
L4/3(Γj)

. Together with

Lemma 2.5, this allows us, when calculating the spectral asymptotics of ratio (4.48), to consider only
the case where bj ∈ C∞

0 (Γj), j = 1, . . . , k.
Further, in the case of smooth compactly supported coefficients bj , ratio (4.48) is compared with

similar ratios of forms defined on smooth domains. Let Ω±
j , j = 1, . . . , k, be disjoint domains in

R
3 with smooth boundaries such that Ω−

j ⊂ Ωj, Ω
+
j ⊂ Ωj+1, and supp bj lies strictly inside the set

∂Ω−
j ∩ ∂Ω+

j , j = 1, . . . , k. Then there are open sets ˜Γj ⊂ ∂Ω−
j ∩ ∂Ω+

j such that supp bj ⊂ ˜Γj. It can be

assumed that ˜Γj are two-dimensional surfaces with smooth boundaries.
Let h±j (x) be smooth positive functions on ∂Ω±

j . Consider the operators B∂Ω±
j

given by the ex-

pressions B∂Ω±
j
= −σjΔ∂Ω±

j
+ h±j on the domains DomB∂Ω±

j
= H2(∂Ω±

j ), j = 1, . . . , k. The inverse

operators B−1
∂Ω±

j

are pseudodifferential operators on ∂Ω±
j of order (−2). For ̂Φ = {Φ−

j ,Φ
+
j }1≤j≤k ∈

∑k
j=1⊕

(

H1(Ω−
j )⊕H1(Ω+

j )
)

=: ̂H, we put

̂B[̂Φ] :=
∑k

j=1
Re

∫

˜Γj

bj(x)
(

ρjB
−1
∂Ω−

j

Φ−
j − ρj+1B

−1
∂Ω+

j

Φ+
j

)(

ρjΦ
−
j − ρj+1Φ

+
j

)

dS,

̂A[̂Φ] :=
∑k

j=1

(

ρj

∫

Ω−
j

(

|∇Φ−
j |2 + |Φ−

j |2
)

dx+ ρj+1

∫

Ω+
j

(

|∇Φ+
j |2 + |Φ+

j |2
)

dx

)

.

We consider the form ratio

±
̂B[̂Φ]
̂A[̂Φ]

, ̂Φ ∈ ̂H. (4.49)

By analogy with the proofs of Lemma 4.2 and Lemma 4.3, it can be verified that δ±2/3 (4.49) ≤
δ±2/3 (4.48) ≤ Δ±

2/3 (4.48) ≤ Δ±
2/3 (4.49).

It remains to establish the spectral asymptotics of ratio (4.49). Clearly, the problem decomposes
into the orthogonal sum of k independent problems on the spectra of the ratios

±
̂Bj[̂Φj ]

̂Aj[̂Φj]
, ̂Φj = {Φ−

j ,Φ
+
j } ∈ ̂Hj = H1(Ω−

j )⊕H1(Ω+
j ), (4.50)

where
̂Bj [̂Φj] := Re

∫

˜Γj

bj(x)
(

ρjB
−1
∂Ω−

j

Φ−
j − ρj+1B

−1
∂Ω+

j

Φ+
j

)(

ρjΦ
−
j − ρj+1Φ

+
j

)

dS,

̂Aj[̂Φj] := ρj

∫

Ω−
j

(

|∇Φ−
j |2 + |Φ−

j |2
)

dx+ ρj+1

∫

Ω+
j

(

|∇Φ+
j |2 + |Φ+

j |2
)

dx.

It is clear that the nonzero spectrum of ratio (4.50) will not change if we consider this ratio on the

subspace ̂Hj(L0) := H1(Ω−
j , L0) ⊕H1(Ω+

j , L0), H
1(Ω±

j , L0) := {u ∈ H1(Ω±
j ) : L0u = −Δu+ u = 0}.

By G±
j : H1/2(∂Ω±

j ) → H1(Ω±
j , L0) we denote the Poisson operator solving the corresponding Dirichlet

problem in Ω±
j (cf. the definition of the operator G in Sec. 4.4). Putting Φ±

j = G±
j ϕ

±
j and using the

properties of the Boutet de Monvel algebra, we obtain the representation
̂Aj [̂Φj] = ̂Aj [G

−
j ϕ

−
j ⊕G+

j ϕ
+
j ] = ρj(P−

j ϕ−
j , ϕ

−
j )L2(∂Ω

−
j ) + ρj+1(P+

j ϕ+
j , ϕ

+
j )L2(∂Ω

+
j ), ϕ±

j ∈ H1/2(∂Ω±
j ).

Here P±
j are first-order positive definite pseudodifferential operators on ∂Ω±

j .

Substituting ψ−
j = ρ

1/2
j (P−

j )1/2ϕ−
j , ψ+

j = ρ
1/2
j+1(P

+
j )1/2ϕ+

j , we see that the problem on the spectrum

of ratio (4.50) is equivalent to the problem on the spectrum of the ratio

± Tj[ψj ]

‖ψ−
j ‖2L2(∂Ω

−
j )

+ ‖ψ+
j ‖2L2(∂Ω

+
j )

, ψj = {ψ−
j , ψ

+
j } ∈ L2(∂Ω

−
j )⊕ L2(∂Ω

+
j ), (4.51)
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where

Tj[ψj ] := Re

∫

˜Γj

bj

(

ρ
1/2
j B−1

∂Ω−
j

(P−
j )−1/2ψ−

j − ρ
1/2
j+1B

−1
∂Ω+

j

(P+
j )−1/2ψ+

j

)

×
(

ρ
1/2
j (P−

j )−1/2ψ−
j − ρ

1/2
j+1(P

+
j )−1/2ψ+

j

)

dS.

The problem on the spectrum of ratio (4.51) is reduced4 to the problem on the spectrum of a matrix
pseudodifferential operator of order (−3/2) on ∂Ω−

j ∩ ∂Ω+
j . Therefore, the spectral asymptotics of

ratio (4.51) follows from the results of [8, 10]. This completes the proof of Proposition 4.5.

Remark 4.2. In the same way, one can obtain a result on the spectral asymptotics of small oscillations
of a system of capillary ideal fluids in the case where the vessel is partially filled, as well as in the case
where ρj are positive smooth functions in Ωj (not constants).

5. The Spectral Asymptotics of Small Oscillations of the Heavy Viscous Fluid

In the present and the following sections, we study problems related to viscous fluid oscillations;
for problem statements, see [3, 21–23].

Let Ω ⊂ R
3 be the domain occupied by the fluid in a vessel in the equilibrium position. The problems

are posed for the vector-valued function u(x) having the meaning of the fluid particles velocity field
and the scalar function p(x) having the meaning of pressure. Statements are given in the form of
spectral boundary-value problems in the domain Ω, as well as in the form of variational problems on
the spectra of the ratios of quadratic forms. The functions u and p satisfy a homogeneous system,
which is elliptic in the generalized sense, namely, the Stokes system; the spectral parameter is included
into the boundary condition on the free surface Γ.

5.1. Statement of the problem and formulation of the result for the heavy viscous fluid.
Suppose that Ω satisfies Condition 4.1. (After passing to the variational statement of the problem,
the smoothness conditions on S and γ will be weakened.) Let μ > 0 be a constant having the meaning
of the viscosity coefficient. Consider a sesquilinear form

EΩ[u,v] :=
1

2

∑3

i,j=1

∫

Ω

(∂ui
∂xj

+
∂uj
∂xi

)( ∂vi
∂xj

+
∂vj
∂xi

)

dx, u,v ∈ H1(Ω;C3).

Note that ρμEΩ[u] is the rate of energy dissipation in the entire volume of the fluid.
Let n(x) be the unit outer normal vector to ∂Ω at the point x. By un(x) we denote the normal

component of the vector-valued function u(x) on the boundary: un(x) = 〈u(x),n(x)〉, x ∈ ∂Ω. By
τ(x) = τ(u(x), p(x)) we denote the stress tensor in the fluid:

τik(x) = τik(u(x), p(x)) := −p(x)δik + μ
(∂ui(x)

∂xk
+

∂uk(x)

∂xi

)

, i, k = 1, 2, 3.

Next, on Γ we define a vector field τn(x) with the coordinates τin(x) =
∑3

k=1 τik(x)nk(x), i = 1, 2, 3.
Let τ tn(x) be the vector field tangent to Γ that is the tangent component of the field τn(x). Let
τnn(x) = 〈τ(x)n(x),n(x)〉 be the normal component of the field τn(x).

For any sufficiently smooth functions u, p and v, the Green formula is valid:

μEΩ[u,v] =

∫

Ω
〈−μΔu+∇p,v〉 dx+

∫

Ω
(−μ〈∇ divu,v〉 + p divv) dx+

∫

∂Ω
〈τn(u, p),v〉 dS(x). (5.1)

Below we use the following notation

J1(Ω) := {u ∈ H1(Ω;C3) : divu = 0}, J1
S(Ω) := {u ∈ J1(Ω) : u|S = 0}. (5.2)

4Difficulties related to the fact that ∂Ω−
j ∩ ∂Ω+

j is a manifold with boundary do not arise, since we are dealing with

a negative order pseudodifferential operator.
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The following spectral boundary-value problem is related to small oscillations of the heavy viscous
fluid (see [23]): −μΔu+∇p = 0, divu = 0 in Ω,

u = 0 on S, τ tn = 0 on Γ,

a(x)un(x) = λτnn(x) on Γ.

(5.3)

The real-valued function a ∈ C∞(Γ) is related to the normal derivative of the potential of mass forces.
To proceed to the variational statement, one should multiply the last equation in (5.3) by un and

integrate over Γ. By the Green formula (5.1), taking conditions on u and p into account, from (5.3) we
obtain:

∫

Γ τnnun dS = μEΩ[u]. Problem (5.3) is equivalent to the variational problem on the spectrum
of the ratio of quadratic forms

∫

Γ a(x)|un(x)|2 dS(x)
μEΩ[u]

, u ∈ J1
S(Ω). (5.4)

The first equation in (5.3) and the condition of zero tangential stresses on Γ are natural conditions in
the variational problem on the spectrum of ratio (5.4).

We will study the spectrum of the form ratio (5.4) under the following condition on the domain Ω
and the function a(x).

Condition 5.1. Suppose that Ω ⊂ R
3 is a bounded domain such that Ω ∈ K. Suppose that Γ is a

smooth two-dimensional surface with Lipschitz boundary γ = ∂Γ, and Γ ⊂ ∂Ω. Let a ∈ L2(Γ) be a
real-valued function.

Note that, in contrast to the case of the capillary ideal fluid (see Sec. 4), now the smoothness of γ
is not needed. (In Sec. 3 we did not require the smoothness of γ either.)

General theorems on the conditions of coercivity of differential operators (see, e.g., [5, § 11]) imply
the inequality

EΩ[u] ≥ c‖u‖2H1(Ω) − C‖u‖2L2(Ω), u ∈ H1(Ω;C3), c > 0. (5.5)

Moreover, the requirements on the domain ensuring (5.5) are rather weak. If the sticking condition
u|S = 0 is satisfied, then the Korn inequality holds (see [32]):

EΩ[u] ≥ c‖u‖2H1(Ω), u ∈ H1(Ω;C3), u|S = 0, c > 0. (5.6)

Now, we formulate the result on the spectral asymptotics of ratio (5.4).

Theorem 5.1. Suppose that Condition 5.1 is satisfied. Then the spectrum counting functions for
ratio (5.4) satisfy the following asymptotics:

N±(λ, (5.4)) ∼ λ−2 1

16πμ2

∫

Γ

a2±(x) dS(x), λ → +0.

5.2. Estimates of the spectrum.

Lemma 5.1. Suppose that Condition 5.1 is satisfied. Then

Δ±
2 (5.4) ≤ C‖a‖2L2(Γ)

, (5.7)

where the constant C does not depend on the function a.

Proof. From (5.6) and the trace theorem it follows that EΩ[u] ≥ Č‖u‖2
H1/2(Γ)

≥ Č‖un‖2H1/2(Γ)
, u ∈

H1(Ω;C3), u|S = 0. By Lemma 2.2, the functions N±(λ, (5.4)) do not exceed the spectrum counting
functions for the ratio

±
∫

Γ a(x)|v(x)|2 dS(x)
Čμ‖v‖2

H1/2(Γ)

, v ∈ H1/2(Γ). (5.8)

For Δ±
2 (5.8) the required estimate follows from Lemma 2.8.

From Lemma 2.5 and inequality (5.7) it follows that the functionals Δ±
2 (5.4), δ±2 (5.4) continuously

depend on the coefficient a in L2(Γ). Therefore, it suffices to calculate the principal term of the spectral
asymptotics of ratio (5.4) in the case where a ∈ C∞

0 (Γ).
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5.3. Comparison with a problem in a smooth domain. Below it is assumed that a ∈ C∞
0 (Γ).

Let ˜Ω be a bounded domain with smooth boundary such that ˜Ω ⊂ Ω, and let suppa lie strictly inside

the set ∂˜Ω∩Γ. Then there exists an open subset ˜Γ of the boundary ∂˜Ω lying strictly inside ∂˜Ω∩Γ and

such that suppa ⊂ ˜Γ. We can assume that the boundary of ˜Γ is sufficiently smooth. Let ã ∈ C∞(∂˜Ω)

be the function equal to a(x) for x ∈ ∂˜Ω ∩ Γ and equal to zero for x ∈ ∂˜Ω \ Γ.
To estimate Δ±

2 (5.4) from above, we consider the ratio

±
∫

∂˜Ω ã(x)|uν(x)|2 dS(x)
μE

˜Ω[u] + C‖u‖2
L2(˜Ω)

, u ∈ J1(˜Ω). (5.9)

Here uν(x) is the normal component of the function u on ∂˜Ω, and the constant C is so large that
the form in the denominator determines an equivalent metric in H1(Ω;C3); see (5.5). Let S be the

operator of restriction of functions u ∈ H1(Ω;C3) onto ˜Ω. Then S takes J1
S(Ω) to J1(˜Ω). For any

u ∈ J1
S(Ω) such that ±

∫

Γ a(x)|un|2 dS > 0, we have

±
∫

Γ a(x)|un|2 dS
μEΩ[u] + C‖u‖2L2(Ω)

≤ ±
∫

∂˜Ω ã(x)|(Su)ν |2 dS
μE

˜Ω[Su] + C‖Su‖2
L2(˜Ω)

.

By Lemmas 2.3 and 2.2,
Δ±

2 (5.4) ≤ Δ±
2 (5.9). (5.10)

To estimate N±(λ, (5.4)) from below, we consider the ratio

±
∫

∂˜Ω
ã(x)|uν(x)|2 dS(x)

μE
˜Ω[u]

, u ∈ J1
˜S
(˜Ω). (5.11)

Here ˜S := ∂˜Ω \ ˜Γ and J1
˜S
(˜Ω) := {u ∈ J1(˜Ω) : u|

˜S = 0}. By the Korn inequality, E
˜Ω[u] ≥ c‖u‖2

H1(˜Ω)
,

u ∈ J1
˜S
(˜Ω), c > 0.

Let Π be the operator of extension of functions in ˜Ω by zero to Ω\ ˜Ω. Let us check that Π is a linear

continuous operator from J1
˜S
(˜Ω) to J1

S(Ω). Fix a function ζ ∈ C∞(˜Ω) such that ζ(x) = 1 for x ∈ ˜Γ

and ζ(x) = 0 in some neighborhood of ∂˜Ω \ Γ. Let u ∈ J1
˜S
(˜Ω). Obviously, Π(ζu) ∈ H1(Ω;C3). Next,

(1−ζ)u ∈ H1(˜Ω;C3) and (1−ζ)u = 0 on ∂˜Ω. Then we have Π ((1− ζ)u) ∈ H1(Ω;C3); see [28] or [36].
Thus, Πu = Π(ζu) + Π ((1− ζ)u) ∈ H1(Ω;C3). Obviously, Πu = 0 on S. The condition divΠu = 0

in Ω is satisfied, because divu = 0 in ˜Ω, Πu = 0 in Ω \ ˜Ω, and Πu ∈ H1(Ω;C3). Thus, Πu ∈ J1
S(Ω).

We have

±
∫

∂˜Ω ã(x)|uν(x)|2 dS(x)
μE

˜Ω
[u]

= ±
∫

Γ a(x)|(Πu)n(x)|2 dS(x)
μEΩ[Πu]

, u ∈ J1
˜S
(˜Ω).

Applying Lemma 2.2, we obtain that

N±(λ, (5.11)) ≤ N±(λ, (5.4)), λ > 0. (5.12)

5.4. Asymptotics of the spectrum of the problem for the heavy viscous fluid in the
smooth case. Inequlities (5.10) and (5.12) show that Theorem 5.1 will be proved if we establish the
following lemma.

Lemma 5.2. For λ → +0 the following asymptotic formulas hold:

N±(λ, (5.9)) ∼ N±(λ, (5.11)) ∼ λ−2 1

16πμ2

∫

∂˜Ω
ã2±(x) dS(x). (5.13)

Proof. By inequality (5.5) for the domain ˜Ω, the space

Z0 :=
{

u ∈ H1(˜Ω;C3) : divu = 0, E
˜Ω[u] = 0

}

is finite-dimensional. By Z we denote the set of the traces of functions from Z0 on ∂˜Ω. Then Z is a

finite-dimensional subspace of L2(∂˜Ω;C3). We put W (˜Ω) :=
{

u ∈ J1(˜Ω) : (u,ϕ)
L2(∂˜Ω)

= 0, ∀ϕ ∈ Z
}

.

Note that if u ∈ H1
0 (

˜Ω;C3) and E
˜Ω
[u] = 0, then u = 0. Hence, if u ∈ W (˜Ω) and E

˜Ω
[u] = 0, then u = 0.
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In a standard way, this implies that E
˜Ω[u] � ‖u‖2

H1(˜Ω)
for u ∈ W (˜Ω) (the symbol � is understood as

two-sided estimates with some constants).
Consider the form ratio

±
∫

∂˜Ω ã(x)|uν(x)|2 dS(x)
μE

˜Ω
[u]

, u ∈ W (˜Ω). (5.14)

Applying Lemmas 2.3 and 2.6, we obtain

Δ±
2 (5.9) = Δ±

2 (5.14), δ±2 (5.9) = δ±2 (5.14). (5.15)

We put W0(˜Ω) :=
{

u ∈ H1
0 (

˜Ω) : divu = 0
}

. Let W (˜Ω,L) be the subspace of W (˜Ω) formed by the
solutions of the Stokes system, i.e.,

W (˜Ω,L) :=
{

u ∈ W (˜Ω) : there exists p ∈ L2(˜Ω) such that L{u, p} = 0 in ˜Ω
}

.

Here L{u, p} := {−μΔu +∇p,divu}. The relation L{u, p} = 0 is understood in the sense of distri-
butions.

We have the following orthogonal decomposition: W (˜Ω) = W0(˜Ω)⊕EW (˜Ω,L), where orthogonality
is understood in the sense of the inner product E

˜Ω[u,v]. Since ratio (5.14) vanishes on W0(˜Ω), then

the nonzero spectrum of ratio (5.14) will not change if we consider this ratio on W (˜Ω,L).
Similarly, the nonzero spectrum of ratio (5.11) will not change if we consider this ratio on the

subspace H1
˜S
(˜Ω,L) :=

{

u ∈ H1(˜Ω;C3) : L{u, p} = 0 for some p ∈ L2(˜Ω), u = 0 on ˜S
}

.

Let G be the operator taking a vector-valued function ϕ ∈ H1/2(∂˜Ω;C3), for which
∫

∂˜Ω ϕν dS = 0,
to the solution of the first boundary-value problem for the Stokes system (see [43]): the relation

{u, p} = Gϕ means that the pair of functions u ∈ H1(˜Ω;C3), p ∈ L2(˜Ω) is a weak solution of the

boundary-value problem L{u, p} = 0 in ˜Ω, u = ϕ on ∂˜Ω.

The operator G is a homeomorphism of the space
{

ϕ ∈ H1/2(∂˜Ω;C3) :
∫

∂˜Ω ϕν dS = 0
}

and the

space
{

{u, p} ∈ H1(˜Ω;C3) ×
(

L2(˜Ω)/{1}
)

: L{u, p} = 0
}

. Here L2(˜Ω)/{1} is the quotient space of

L2(˜Ω) by the one-dimensional subspace of constants. As noted in [18], G is a Poisson operator from
the Boutet de Monvel algebra. From the properties of this algebra it follows that

E
˜Ω[u] = (Eϕ,ϕ)L2(∂˜Ω), {u, p} = Gϕ, (5.16)

where E is a matrix first-order pseudodifferential operator. Up to lower order terms, representa-
tion (5.16) can also be obtained from the considerations generalizing the arguments from [11] to the
case of systems elliptic in the sense of Douglis–Nirenberg. Similarly to (5.16), we have

‖u‖2
L2(˜Ω)

= (Q0ϕ,ϕ)L2(∂˜Ω)
, {u, p} = Gϕ, (5.17)

where Q0 is a matrix pseudodifferential operator of order (−1). From (5.16), (5.17) and inequality (5.5)

for ˜Ω it follows that

((E + CQ0)ϕ,ϕ)
L2(∂˜Ω)

≥ c‖ϕ‖2
H1/2(∂˜Ω)

, ϕ ∈ H1/2(∂˜Ω;C3),

∫

∂˜Ω
ϕν dS = 0, c > 0. (5.18)

Inequality (5.18) shows that, changing the lower order terms in the pseudodifferential operator E if
necessary, we can assume that

(Eϕ,ϕ)
L2(∂˜Ω)

≥ c‖ϕ‖2
H1/2(∂˜Ω)

, ϕ ∈ H1/2(∂˜Ω;C3), c > 0. (5.19)

Assuming that (5.19) is satisfied, consider the form ratios

±
∫

∂˜Ω ã(x)|ϕν(x)|2 dS(x)
μ(Eϕ,ϕ)L2(∂˜Ω)

, ϕ ∈ H1/2(∂˜Ω;C3), (5.20)

±
∫

∂˜Ω
ã(x)|ϕν(x)|2 dS(x)
μ(Eϕ,ϕ)

L2(∂˜Ω)

, ϕ ∈ H1/2(∂˜Ω;C3), ϕ|
˜S = 0. (5.21)

Summarizing all that has been said and applying Lemmas 2.3 and 2.6, we obtain that

Δ±
2 (5.14) = Δ±

2 (5.20), δ±2 (5.14) = δ±2 (5.20), (5.22)
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Δ±
2 (5.11) = Δ±

2 (5.21), δ±2 (5.11) = δ±2 (5.21). (5.23)

Ratios (5.20) and (5.21) are ratios of pseudodifferential forms like (2.17) and (2.19), respectively.
The spectral asymptotic formulas for them follow from Lemma 2.10 and Lemma 2.11. We need
to calculate the principal symbols of the corresponding pseudodifferential operators. Denote by Q
the matrix pseudodifferential operator on ∂˜Ω, corresponding to the form in the numerator of (5.20)
and (5.21):

∫

∂˜Ω ã(x)|ϕν(x)|2 dS(x) = (Qϕ,ϕ)L2(∂˜Ω). Locally, in a neighborhood U of some point

x0 ∈ ∂˜Ω, we choose a curvilinear orthogonal coordinate system so that the coordinate lines for the third

coordinate on ∂˜Ω are directed along the inner normal ν = ν(x), and the corresponding Lamé coefficient

on ∂˜Ω is equal to 1. With this choice of the coordinate system, the symbol of the pseudodifferential
operator Q is given by

q◦(x, ξ) =

⎛

⎝

0 0 0
0 0 0
0 0 ã(x)

⎞

⎠ , x ∈ U , ξ ⊥ ν(x). (5.24)

Let e◦(x, ξ) be the principal symbol of the pseudodifferential operator E calculated in the same local
coordinates. Consider the algebraic problem

q◦(x, ξ)z = λμe◦(x, ξ)z, z ∈ C
3. (5.25)

By Lemma 2.10, for λ → +0 we have

N±(λ, (5.20)) ∼ 1

(2π)2

∫

∂˜Ω
dS(x)

∫

ξ⊥ν(x)
dξ n±(λ,x, ξ; (5.25)). (5.26)

Lemma 2.11 implies the following asymptotics for λ → +0:

N±(λ, (5.21)) ∼ 1

(2π)2

∫

˜Γ
dS(x)

∫

ξ⊥ν(x)
dξ n±(λ,x, ξ; (5.25)). (5.27)

We calculate the symbol e◦(x, ξ) according to the rules from [18]. We write down the principal
symbol L◦(x,η) = {L◦

sj(x,η)}1≤s,j≤4 of the operator L: L◦
sj(x,η) = μ|η|2δsj , s, j = 1, 2, 3; L◦

s4(x,η) =

L◦
4s(x,η) = iηs, s = 1, 2, 3; L◦

44(x,η) = 0.

Further, for each point (x, ξ), x ∈ ∂˜Ω, ξ ⊥ ν(x), we consider the following system of ordinary
differential equations on the semiaxis:

∑4

j=1
L◦
sj(x, ξ + ν(x)Dt)fj(t) = 0, s = 1, 2, 3, 4; t ∈ R+. (5.28)

With our choice of the coordinate system, we have ξ3 = 0, ν1 = ν2 = 0, ν3 = 1, and system (5.28)
takes the form

μ
(

|ξ|2 − d2

dt2

)

fj(t) + iξjf4(t) = 0, j = 1, 2,

μ
(

|ξ|2 − d2

dt2

)

f3(t) +
d

dt
f4(t) = 0, iξ1f1(t) + iξ2f2(t) +

d

dt
f3(t) = 0.

(5.29)

By F (x, ξ) we denote the linear space of the solutions of system (5.29) vanishing as t → +∞. The
characteristic determinant of system (5.29) is equal to D(k) = μ2(|ξ|2 − k2)3. The solution vanishing
as t → +∞ corresponds to the threefold root k = −|ξ|. Hence, the space F (x, ξ) is three-dimensional.

We consider a basis in F (x, ξ) consisting of vector-valued functions Y (j)(x, ξ, t) = {Y (j)
i (x, ξ, t)}1≤i≤4,

j = 1, 2, 3, which are the solutions of system (5.29) vanishing as t → +∞ and satisfying the initial

conditions Y
(j)
i (x, ξ, 0) = δij , i, j = 1, 2, 3. Calculations show that Y (j) do not depend on x and are

given by

Y (1)(ξ, t) =

⎛

⎜

⎜

⎜

⎝

− ξ21t
|ξ| + 1

− ξ1ξ2t
|ξ|

−iξ1t
−2μiξ1

⎞

⎟

⎟

⎟

⎠

e−|ξ|t, Y (2)(ξ, t) =

⎛

⎜

⎜

⎜

⎝

− ξ1ξ2t
|ξ|

− ξ22t
|ξ| + 1

−iξ2t
−2μiξ2

⎞

⎟

⎟

⎟

⎠

e−|ξ|t, Y (3)(ξ, t) =

⎛

⎜

⎜

⎝

−iξ1t
−iξ2t
|ξ|t+ 1
2μ|ξ|

⎞

⎟

⎟

⎠

e−|ξ|t.

(5.30)
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The following finite-dimensional sesquilinear form on F (x, ξ) corresponds to the form E
˜Ω
[u,v]:

ex,ξ[f, g] :=
1

2

∑3

k,j=1

∫ ∞

0

(

(ξj + νj(x)Dt)fk(t) + (ξk + νk(x)Dt)fj(t)
)

×
(

(ξj − νj(x)Dt)gk(t) + (ξk − νk(x)Dt)gj(t)
)

dt, f, g ∈ F (x, ξ).

The principal symbol e◦(x, ξ) =
{

e◦jl(x, ξ)
}

1≤j,l≤3
of the pseudodifferential operator E can be calcu-

lated by the formula e◦jl(x, ξ) = ex,ξ[Y
(j)(ξ, ·), Y (l)(ξ, ·)], j, l = 1, 2, 3. Calculations show that

e◦33(x, ξ) = 2|ξ|, e◦j3(x, ξ) = e◦3j(x, ξ) = 0, j = 1, 2. (5.31)

(There is no need to calculate the rest of e◦jl.)
From (5.24) and (5.31) it follows that the algebraic problem (5.25) has the eigenvalues 0, 0 and

ã(x)/2μ|ξ|. Therefore,

n±(λ,x, ξ; (5.25)) =

{

1, λ < ã±(x)/2μ|ξ|
0, λ ≥ ã±(x)/2μ|ξ|

.

By (5.26) and (5.27), for λ → +0 we have

N±(λ, (5.20)) ∼ N±(λ, (5.21)) ∼ λ−2 1

16πμ2

∫

∂˜Ω
ã2±(x) dS(x).

Combining this with (5.15), (5.22), and (5.23), we obtain the required asymptotics (5.13).

Lemma 5.2, and Theorem 5.1 with it, are proved.

5.5. Oscillations of a system of the heavy viscous fluids. Theorem 5.1 can be generalized to
the case of oscillations of a system of the heavy viscous fluids partially or completely filling a vessel.
For definiteness, consider the case of complete filling (see Fig. 2). Here we restrict ourselves to the
statement of the problem and formulation of the result; the proof can be found in [38].

Suppose that Ω ⊂ R
3 is a domain satisfying the assumptions of Sec. 3.2. We consider the following

boundary-value problem for a system of vector-valued functions {uj(x)}, j = 1, . . . , k+1, and a system
of scalar functions {pj(x)}, j = 1, . . . , k + 1:

−μjΔuj +∇pj = 0, divuj = 0 in Ωj , j = 1, . . . , k + 1,

uj = 0 on Sj, j = 1, . . . , k + 1,

uj = uj+1, τ tn(uj) = τ tn(uj+1) on Γj, j = 1, . . . , k,

aj(x)ujn = λ (τnn(uj , pj)− τnn(uj+1, pj+1)) on Γj, j = 1, . . . , k.

(5.32)

Here we use the notation ujn(x) := 〈uj(x),nj(x)〉. The constants μj > 0, j = 1, . . . , k + 1, are
the viscosity coefficients of the fluids; aj(x) are smooth real-valued functions on Γj, j = 1, . . . , k.
Problem (5.32) is equivalent to the problem on the spectrum of the form ratio

±
∑k

j=1

∫

Γj
aj(x)|ujn|2 dx

∑k+1
j=1 μjEΩj [uj]

, uj ∈ H1(Ωj;C
3), j = 1, . . . , k + 1,

divuj = 0 in Ωj, uj = 0 on Sj, j = 1, . . . , k + 1,

uj = uj+1 on Γj , j = 1, . . . , k.

(5.33)

We consider the form ratio (5.33) under the following condition.

Condition 5.2. A bounded domain Ω ⊂ R
3 is divided by smooth two-dimensional surfaces Γ1, . . . ,Γk

into (k + 1) disjoint domains Ω1, . . . ,Ωk+1. Suppose also that relations (3.18), (3.19) are satisfied.
Let Ωj ∈ K, j = 1, . . . , k + 1. Suppose that the curves γj = ∂Γj , j = 1, . . . , k, are Lipschitz. Let
aj ∈ L2(Γj), j = 1, . . . , k, be real-valued functions.
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Proposition 5.1 (see [38]). Suppose that Condition 5.2 is satisfied. Then the spectrum counting
functions for ratio (5.33) satisfy the following asymptotics for λ → +0:

N±(λ, (5.33)) ∼ λ−2

16π

∑k

j=1
(μj + μj+1)

−2

∫

Γj

(aj)
2
± dS. (5.34)

6. The Spectral Asymptotics of Small Oscillations of the Capillary Viscous Fluid

6.1. Properties of solutions of the Stokes system in a domain with edges. In the present
subsection, we establish a number of technical statements needed to solve the problem associated with
oscillations of the capillary viscous fluid. We rely essentially on the results from [30] on the solvability
in weighted Sobolev classes of the first boundary-value problem for the Stokes system in domains with
edges.

Suppose that a domain Ω ⊂ R
3 satisfies Condition 4.1. We need to introduce some notation. Let

l ≥ 0 be an integer number, s ∈ R, and let V l
s (Ω) be the Kondratyev space (the weighted Sobolev

space) with the norm

‖u‖V l
s (Ω) :=

(∫

Ω

(

|∇lu|2r2s + |∇l−1u|2r2(s−1) + · · ·+ |u|2r2(s−l)
)

dx

)1/2

,

where r = r(x) is the distance from a point x ∈ Ω to the edge γ. The symbol ∇ju means the “gradient

of u of order j,” i.e., the set of all derivatives ∂αu of order |α| = j. By V
l−1/2
s (∂Ω) we denote the space

of traces on ∂Ω of the functions from V l
s (Ω) with the induced norm:

‖ϕ‖
V

l−1/2
s (∂Ω)

:= inf
v∈V l

s (Ω):v|∂Ω=ϕ
‖v‖V l

s (Ω).

For s = 0 we write simply V l(Ω) = V l
0 (Ω) and V l−1/2(∂Ω) = V

l−1/2
0 (∂Ω). Let ρ(x) be the regularized

distance on ∂Ω from a point x to γ. In the space V l−1/2(∂Ω), we can define an equivalent norm by

‖ϕ‖2
V l−1/2(∂Ω)

:=

∫

∂Ω

∫

∂Ω
dS(x) dS(y)

|∇l−1ϕ(x)−∇l−1ϕ(y)|2

|x− y|3 +

∫

∂Ω
dS(x) |ϕ(x)|2ρ(x)1−2l,

and in V
l−1/2
s (∂Ω) we consider an equivalent norm given by ‖ϕ‖

V
l−1/2
s (∂Ω)

= ‖ρsϕ‖V l−1/2(∂Ω). By

V l
s (Ω;C

3) and V
l−1/2
s (∂Ω;C3) we denote the corresponding spaces of vector-valued functions.

Let H
1/2
00 (Γ) (see [28]) be the closure of C∞

0 (Γ) in the norm

‖ϕ‖
H

1/2
00 (Γ)

:=

(

∫

Γ

∫

Γ
dS(x) dS(y)

|ϕ(x)− ϕ(y)|2

|x− y|3 +

∫

Γ
dS(x)

|ϕ(x)|2
ρ(x)

)1/2

.

Note that
{

ϕ : ϕ ∈ V 1/2(∂Ω), ϕ|S = 0
}

=
{

ϕ : ϕ|Γ ∈ H
1/2
00 (Γ), ϕ|S = 0

}

. By (H
1/2
00 (Γ))′ we denote

the dual space to H
1/2
00 (Γ) with respect to the duality in L2(Γ) (see [4]).

An important role in the study of the problem for the capillary viscous fluid will be played by the
space

H1 :=
{

{u, p} : u ∈ H1(Ω;C3), p ∈ L2(Ω)/{1},−μΔu +∇p = 0, divu = 0, u|S = 0
}

.

Here L2(Ω)/{1} is the quotient space of L2(Ω) by the one-dimensional subspace of constants; the
equation −μΔu+∇p = 0 is understood in the sense of distributions.

We will need the following statements.

Proposition 6.1. Let v ∈ H1(Ω). Suppose that v = 0 on S. Then v ∈ V 1(Ω) and

‖v‖V 1(Ω) ≤ C‖v‖H1(Ω). (6.1)

Proof. To prove (6.1), it suffices to check the inequality
∫

Ω

|v(x)|2
r2(x)

dx ≤ C‖v‖2H1(Ω), v ∈ H1(Ω), v|S = 0.
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Let ε > 0 be sufficiently small. We put Ωε := {x ∈ Ω : r(x) > ε} . Obviously,
∫

Ωε

|v(x)|2
r2(x)

dx ≤ 1

ε2

∫

Ω
|v(x)|2 dx.

For sufficiently small ε the set Ω \Ωε can be divided into a finite number of parts Uj , 1 ≤ j ≤ N, such

that there exist C1-diffeomorphisms fj mapping Uj onto Uj, where Uj is a subset of the dihedral angle
Uj := {(r, ω, x3) : 0 < r < 1, 0 < ω < ωj, 0 < x3 < 1} , 0 < ωj < 2π, and S ∩ ∂Uj transforms to the
set {(r, ω, x3) : 0 ≤ r ≤ 1, ω = 0, 0 ≤ x3 ≤ 1}. Here (r, ω, x3) are cylindrical coordinates in R

3. Let
v ∈ H1(Uj) and v(r, ω, x3) = 0 for ω = 0. Then

∫

Uj

|v|2r−2 dx =

∫

Uj

|v|2r−2 rdr dω dx3 =

∫

Uj

∣

∣

∣

∣

∫ ω

0

1

r

∂v(r, ω′, x3)
∂ω′ dω′

∣

∣

∣

∣

2

rdr dω dx3

≤ ωj

∫

Uj

∣

∣

∣

∣

1

r

∂v(r, ω′, x3)
∂ω′

∣

∣

∣

∣

2

rdr dω′ dx3 ≤ C

∫

Uj

|∇v|2dx.

Proposition 6.2. The form EΩ[u] determines an equivalent norm in the space H1, i.e.,

EΩ[u] �
(

‖u‖2H1(Ω) + ‖p‖2L2(Ω)/{1}
)

, {u, p} ∈ H1.

Proof. By Proposition 6.1, for {u, p} ∈ H1 we have u ∈ V 1(Ω;C3) and ‖u‖V 1(Ω) � ‖u‖H1(Ω). Let T
be the trace operator taking a pair {u, p} ∈ H1 to the trace of u on ∂Ω: ϕ = T{u, p} = u|∂Ω. By
the theorem on solvability of the first boundary-value problem for the Stokes system (see [30]), we
have ‖u‖V 1(Ω) + ‖p‖L2(Ω)/{1} ≤ C‖ϕ‖V 1/2(∂Ω). Obviously, ‖ϕ‖V 1/2(∂Ω) ≤ ‖u‖V 1(Ω). Combining what

has been said with the Korn inequality (5.6), we obtain the required statement.

Proposition 6.3. The space H2 :=
{

{u, p} : u ∈ V 2
1 (Ω;C

3), p ∈V 1
1 (Ω)/{1}, −μΔu+∇p = 0, divu =

0, u|S = 0
}

is dense in H1.

Proof. From the theorem on solvability in the weighted spaces of the first boundary-value problem for
the Stokes system (see [30]) it follows that T is a homeomorphism of the following pairs of spaces:

H1 → H1/2 :=
{

ϕ ∈ V 1/2(∂Ω;C3) : ϕ|S = 0,

∫

Γ
ϕn dS = 0

}

,

H2 → H3/2 :=
{

ϕ ∈ V
3/2
1 (∂Ω;C3) : ϕ|S = 0,

∫

Γ
ϕn dS = 0

}

.

Note that for ϕ ∈ H1/2 we have ϕ|Γ ∈ H
1/2
00 (Γ;C3). Since C∞

0 (Γ;C3) is dense in H
1/2
00 (Γ;C3), then the

set
{

ϕ : ϕ|Γ ∈ C∞
0 (Γ;C3), ϕ|S = 0,

∫

Γ ϕn dS = 0
}

is dense in H1/2. Hence, a wider set H3/2 is also
dense in H1/2. It follows from what has been said that H2 is dense in H1.

Let z ∈ L2(Γ) and
∫

Γ z dS �= 0. By Pz we denote the (nonorthogonal) projection in L2(Γ) acting as
follows:

(Pzf)(x) = f(x)−
∫

Γ f(y)z(y) dS(y)
∫

Γ z(y) dS(y)
. (6.2)

The operator Pz projects onto the subspace
{

v ∈ L2(Γ) :
∫

Γ vz dS = 0
}

. The adjoint projection

P ∗
z acts by the formula (P ∗

z f)(x) = f(x) − z(x)
∫

Γ
f(y) dS(y)

∫

Γ
z(y) dS(y)

. Note that
∫

Γ(P
∗
z f)(x) dS(x) = 0. The

following statement plays an important role below.

Proposition 6.4. Suppose that {u, p} ∈ H1, z ∈ H
1/2
00 (Γ),

∫

Γ z dS �= 0. Let τnn(u, p) be defined in
Sec. 5.1. Then

‖Pzτnn(u, p)‖(H1/2
00 (Γ))′ ≤ C‖u‖H1(Ω). (6.3)
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Proof. For a function w ∈ H
1/2
00 (Γ) satisfying

∫

Γw dS = 0, let fw(x) denote the vector-valued function

on ∂Ω, equal to w(x)n(x) for x ∈ Γ and equal to zero for x ∈ S. Then fw ∈ V 1/2(∂Ω;C3) and
∫

∂Ω(fw)n dS = 0. Let M be the operator resolving the first boundary-value problem for the Stokes
system. Then

‖Mfw‖V 1(Ω) ≤ C‖w‖
H

1/2
00 (Γ)

. (6.4)

It suffices to prove estimate (6.3) on the set H2, which is dense in H1. Let us apply the Green
formula (5.1) to functions {u, p} ∈ H2 and vw = Mfw (it is easy to check that all expressions in (5.1)
make sense and are finite on these functions). We obtain: μEΩ[u,Mfw] =

∫

Γ τnnw dS. Together
with (6.4), this implies that

∣

∣

∣

∣

∫

Γ
τnnw dS

∣

∣

∣

∣

≤ C ′‖u‖H1(Ω)‖w‖H1/2
00 (Γ)

, w ∈ H
1/2
00 (Γ),

∫

Γ
w dS = 0. (6.5)

Next, let f ∈ H
1/2
00 (Γ). Then P ∗

z f ∈ H
1/2
00 (Γ),

∫

Γ P
∗
z f dS = 0, and ‖P ∗

z f‖H1/2
00 (Γ)

≤ Cz ‖f‖H1/2
00 (Γ)

.

By (6.5), ∣

∣

∣

∣

∫

Γ
Pzτnnf dS

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Γ
τnnP ∗

z f dS

∣

∣

∣

∣

≤ C ′‖u‖H1(Ω)‖P ∗
z f‖H1/2

00 (Γ)

≤ C ′Cz‖u‖H1(Ω)‖f‖H1/2
00 (Γ)

, f ∈ H
1/2
00 (Γ).

(6.6)

By definition of the negative norm, from (6.6) we obtain:

‖Pzτnn‖(H1/2
00 (Γ))′ = sup

0�=f∈H1/2
00 (Γ)

∣

∣

∫

Γ Pzτnnf dS
∣

∣

‖f‖
H

1/2
00 (Γ)

≤ C ′Cz‖u‖H1(Ω).

Corollary 6.1. Let zi∈H
1/2
00 (Γ), i=1, 2,

∫

Γ z1dS �=0. Then the functional I({u, p})=
∫

Γ(Pz1τnn)z2dS
is a linear continuous functional over H1.

Proposition 6.5. Let {u, p} ∈ H1. Suppose that τtn(u) is defined in Sec. 5.1. Then

‖τ tn(u)‖(H1/2
00 (Γ))′ ≤ C‖u‖H1(Ω). (6.7)

Proof. Let us carry out the estimates locally. We choose some finite atlas {Uj , αj}1≤j≤N on the
manifold Γ. Let {ωj}1≤j≤N be a partition of unity subordinate to the covering of Γ by the sets {Uj}.
Let e

(j)
1 (x), e

(j)
2 (x) be smooth tangent vector fields in Uj forming a basis in the tangent plane to Γ for

each x ∈ Uj .

Let w ∈ H
1/2
00 (Γ). Then ωjw ∈ H

1/2
00 (Γ) and ‖ωjw‖H1/2

00 (Γ)
≤ Cj‖w‖H1/2

00 (Γ)
. By gij

w (x) we denote the

vector-valued function on ∂Ω equal to ωj(x)w(x)e
(j)
i (x) for x ∈ Uj and equal to zero for x ∈ ∂Ω \Uj .

Then gij
w ∈ V 1/2(∂Ω;C3) and

∫

∂Ω(g
ij
w )n dS = 0. Let M be the same operator as in the proof of

Proposition 6.4. Then
∥

∥Mgij
w

∥

∥

V 1(Ω)
≤ Cij ‖w‖H1/2

00 (Γ)
, 1 ≤ j ≤ N, i = 1, 2. (6.8)

It suffices to prove inequality (6.7) for {u, p} ∈ H2. Applying the Green formula (5.1) to the functions

{u, p} ∈ H2 and Mgij
w , we obtain μEΩ[u,Mgij

w ] =
∫

Γ〈τ tn(u), e
(j)
i 〉ωjw dS. Together with (6.8), this

implies that
∣

∣

∣

∣

∫

Γ
〈τ tn(u), e

(j)
i 〉ωjw dS

∣

∣

∣

∣

≤ Čij‖u‖H1(Ω) ‖w‖H1/2
00 (Γ)

, w ∈ H
1/2
00 (Γ), 1 ≤ j ≤ N, i = 1, 2. (6.9)

Since ‖τ tn‖(H1/2
00 (Γ))′ ≤

∑N
j=1

∑2
i=1

∥

∥

∥ωj〈τ tn, e
(j)
i 〉

∥

∥

∥

(H
1/2
00 (Γ))′

, then (6.9) and the definition of the nega-

tive norm imply (6.7).

We put Hτ
1 := {{u, p} ∈ H1 : τ tn(u)|Γ = 0} . It is meant that τ tn(u) is the zero element of the space

(H
1/2
00 (Γ))′. The set Hτ

1 is a closed subspace of the space H1. Let ˜H1 := {{u, p} ∈ H1 : un|Γ = 0} .
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Proposition 6.6. The following orthogonal decomposition is true: H1 = Hτ
1 ⊕E

˜H1, where the or-
thogonality is understood in the sense of the inner product EΩ[u,v].

The proof of Proposition 6.6 is preceded by the following considerations. Consider the boundary-
value problem

−μΔu+∇p = 0, divu = 0 in Ω,

u = 0 on S, τ tn = 0, τnn = ψ on Γ,
(6.10)

with ψ ∈ (H
1/2
00 (Γ))′. Suppose that the space J1

S(Ω) defined in (5.2) is endowed with the inner product
EΩ[u,v]. A function u ∈ J1

S(Ω) satisfying the integral identity

μEΩ[u,v] =

∫

Γ
ψvn dS, v ∈ J1

S(Ω). (6.11)

is called a generalized solution of problem (6.10). If u, p, and ψ are smooth functions satisfying (6.10)
in the classical sense, then it is easily seen that u is also a generalized solution of problem (6.10).

Proposition 6.7. For any ψ ∈ (H
1/2
00 (Γ))′ there exists a unique generalized solution of problem (6.10).

Proof. If v ∈ J1
S(Ω), then from Proposition 6.1 it follows that v ∈ V 1(Ω;C3) and ‖v‖V 1(Ω) ≤

C‖v‖H1(Ω). Then v|∂Ω ∈ V 1/2(∂Ω;C3) and v|S = 0. Consequently, v|Γ ∈ H
1/2
00 (Γ;C3) and ‖v‖

H
1/2
00 (Γ)

≤
C‖v‖H1(Ω).

Let ψ ∈ (H
1/2
00 (Γ))′. Then

∫

Γ ψvn dS is an antilinear continuous functional over v ∈ J1
S(Ω). By the

Riesz theorem, there exists a unique function u = u(ψ) ∈ J1
S(Ω) such that

∫

Γ ψvn dS = μEΩ[u,v],

v ∈ J1
S(Ω).

As usual, it can be shown that if u is a generalized solution of problem (6.10), then there exists a
function p ∈ L2(Ω) such that {u, p} is a solution of problem (6.10) in the following weak sense: (a)
u ∈ J1

S(Ω); (b) −μΔu + ∇p = 0 in the sense of distributions; (c) τ tn = 0, τnn = ψ as elements of

(H
1/2
00 (Γ))′. Note that then {u, p} ∈ Hτ

1 .

Proof of Proposition 6.6. Let {v, q} ∈ H1 and {v, q} ⊥ Hτ
1 , i.e., EΩ[u,v] = 0 for any {u, p} ∈ Hτ

1 .

For any function ψ ∈ (H
1/2
00 (Γ))′, we denote by uψ the generalized solution of problem (6.10). Then

EΩ[uψ,v] = 0 for any ψ ∈ (H
1/2
00 (Γ))′. According to (6.11), this means that

∫

Γ ψvn dS = 0 for any

ψ ∈ (H
1/2
00 (Γ))′. Therefore, vn = 0 on Γ, i.e., {v, q} ∈ ˜H1. We have proved that (Hτ

1)
⊥ ⊂ ˜H1.

Now we prove the reverse inclusion ˜H1 ⊂ (Hτ
1)

⊥. Let {v, q} ∈ ˜H1. Then, by the Green formula (5.1),
we have EΩ[u,v] = 0, {u, p} ∈ H2, τ tn(u) = 0. By closure, EΩ[u,v] = 0 for any {u, p} ∈ Hτ

1 , i.e.,
{v, q} ∈ (Hτ

1)
⊥.

6.2. Statement of the problem associated with oscillations of the capillary viscous fluid.
Formulation of the result. The problem was formulated in [26, Chap. 8, § 2]. Suppose that
a domain Ω ⊂ R

3 satisfies Condition 4.1. By BΓ we denote the differential operator given by the
expression BΓ = −σΔΓ + h(x) on the domain DomBΓ = H2(Γ) ∩ H1

0 (Γ). Here σ > 0, h(x) is a
smooth real-valued function on Γ. The coefficients σ and h have the same meaning as in Sec. 4.5. The
operator BΓ is self-adjoint in L2(Γ), its kernel ZB := {v ∈ DomBΓ : (−σΔΓ+h)v = 0} coincides with
the cokernel, is finite-dimensional and consists of infinitely smooth functions. The inverse operator
B−1

Γ is defined on L2(Γ)� ZB ; it is the resolving operator for the first boundary-value problem on Γ:

ϕ = B−1
Γ f with f ∈ L2(Γ)� ZB means that (−σΔΓ + h)ϕ = f on Γ, ϕ = 0 on γ, and ϕ ⊥ ZB.

We assume that the operator BΓ is positive definite on DomBΓ ∩ (L2(Γ)� {1}). This condition is
equivalent to the inequality

∫

Γ

(

σ|∇Γu|2 + h(x)|u|2
)

dS ≥ c

∫

Γ
|u|2 dS, u ∈ H1

0 (Γ),

∫

Γ
u dS = 0; c > 0. (6.12)
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Condition (6.12) imposes a restriction on the problem data. Physically, it means that the equilibrium
position of the fluid is stable in the linear approximation. From (6.12) it follows that dimZB ≤ 1.
Denote by z1 the basis vector in ZB ; in the case where ZB = {0} we put z1 = 0.

Consider the following boundary-value problem in Ω:
−μΔu+∇p = 0, divu = 0 in Ω,

u = 0 on S, τ tn = 0 on Γ,

BΓun = λ−1(τnn + cτ ) on Γ.

(6.13)

Here the constant cτ is not specified, but is searched for together with the solution. The boundary
condition un|γ = 0 is fulfilled automatically due to u|S = 0.

As will be shown below, the boundary-value problem (6.13) corresponds to the variational form
ratio, which defines a nonnegative compact operator in the space Hτ

1 . The main result of this section
is the following theorem.

Theorem 6.1. Under the above assumptions, the spectrum counting function for problem (6.13) sat-
isfies the following asymptotics for λ → +0:

N(λ, (6.13)) ∼ λ−2 μ2

πσ2
meas Γ.

6.3. Variational formulation of the problem for the capillary viscous fluid. On the solu-
tions of problem (6.13), the function τnn + cτ belongs to the range of the operator BΓ, and therefore

∫

Γ
(τnn + cτ )z1 dS = 0. (6.14)

In addition, from the continuity condition (divu = 0) and the adhesion condition u|S = 0 it follows
that ∫

Γ
un dS = 0. (6.15)

We start with the case where ZB �= {0}. Then, by (6.12),
∫

Γ z1 dS �= 0, and the constant cτ is

given by cτ = −
∫

Γ τnnz1 dS
∫

Γ z1 dS
; see (6.14). Hence, τnn + cτ = Pz1τnn, where the projection Pz1 is defined

according to (6.2).
On the solutions of problem (6.13), we have

λun = B−1
Γ Pz1τnn + Cz1. (6.16)

By (6.15), the constant C can be found from the condition
∫

Γ
(B−1

Γ Pz1τnn + Cz1) dS = 0. (6.17)

We multiply (6.16) by τnn and integrate over Γ: λ
∫

Γ unτnn dS =
∫

Γ(B
−1
Γ Pz1τnn + Cz1)τnn dS. Under

conditions from (6.13), using the Green formula (5.1), we obtain
∫

Γ unτnn dS = μEΩ[u]. On the other

hand, by (6.17) and the obvious equality
∫

Γ z1Pz1τnn dS = 0, we have
∫

Γ(B
−1
Γ Pz1τnn + Cz1)τnn dS =

∫

Γ(B
−1
Γ Pz1τnn)Pz1τnn dS.

Let us now consider the case where ZB = {0}. Then on the solutions of problem (6.13) we have

λun = B−1
Γ (τnn + cτ ). (6.18)

By condition (6.15), from (6.18) it follows that
∫

Γ
B−1

Γ (τnn + cτ ) dS = 0, (6.19)

which is equivalent to the relation
∫

Γ(τnn + cτ )z0 dS = 0, z0 := B−1
Γ 1. Note that, in the case under

consideration, we have
∫

Γ z0 dS =
∫

Γ BΓz0z0 dS �= 0. It follows that the constant cτ can be found from

the condition cτ = −
∫

Γ τnnz0 dS
∫

Γ z0 dS
. Then τnn+cτ = Pz0τnn.We multiply (6.18) by τnn and integrate over Γ:

λ
∫

Γ unτnn dS =
∫

Γ(B
−1
Γ Pz0τnn)τnn dS. As before, from the Green formula it follows that

∫

Γ unτnn dS =

μEΩ[u]. On the other hand, by (6.19), we have
∫

Γ(B
−1
Γ Pz0τnn)τnn dS =

∫

Γ(B
−1
Γ Pz0τnn)Pz0τnn dS.
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As a result, we made sure that problem (6.13) is equivalent to the variational problem on the
spectrum of the form ratio

∫

Γ(B
−1
Γ Pzτnn)Pzτnn dS

μEΩ[u]
, {u, p} ∈ Hτ

1 . (6.20)

Here z = z1 if ZB �= {0}, and z = z0 if ZB = {0}. By Proposition 6.2, the form EΩ[u] defines an
equivalent norm in Hτ

1 .
Note that the comparison functions in (6.20) must satisfy the equation −μΔu+∇p = 0, as well as

the condition that the tangential stresses on Γ are equal to zero (in contrast to the spectral problem for
ratio (5.4), in which these conditions were natural). The reason is that the numerator of ratio (6.20)
depends on τnn, and thus on the function p, and the denominator depends only on u (while ratio (5.4)
depends only on u). Therefore, the function p must be linked to u. At a certain step of solving the
problem, the above “links” will be removed after p is expressed in terms of u.

Let us check that the form in the numerator of ratio (6.20) is compact5 in Hτ
1 . By the homeomor-

phism theorem, the operator BΓ is a homeomorphism of the following pairs of spaces:

H2
bc(Γ) := H2(Γ)∩H1

0 (Γ)∩(L2(Γ)�ZB) → L2(Γ)�ZB, H1
bc(Γ) := H1

0 (Γ)∩(L2(Γ)�ZB) → H−1
Z (Γ).

Here H−1
Z (Γ) denotes the dual space to H1

bc(Γ) with respect to the (L2(Γ)� ZB)-duality.
Using the interpolation theory (see [28]), we see that BΓ is a homeomorphism of the spaces

[

H2
bc(Γ),H

1
bc(Γ)

]

1/2
→

[

L2(Γ)� ZB ,H
−1
Z (Γ)

]

1/2
. Here by [H1,H2]1/2 we denote the intermediate

space between the Hilbert spaces H1 and H2, where H1 ⊂ H2, H1 is dense in H2 and continuously
embedded in it; see [28, § 1.2.1].

Using the fact that
[

H2(Γ),H1(Γ)
]

1/2
= H3/2(Γ), it can be shown that

[

H2
bc(Γ),H

1
bc(Γ)

]

1/2
=

H3/2(Γ) ∩H1
0 (Γ) ∩ (L2(Γ)� ZB) =: H

3/2
bc (Γ).

Theorem 1.12.4 from [28] states that
[

L2(Γ),H
−1(Γ)

]

1/2
= (H

1/2
00 (Γ))′, where H−1(Γ) = (H1

0 (Γ))
′.

Taking this fact into account, it is easy to show that
[

L2(Γ)� ZB ,H
−1
Z (Γ)

]

1/2
= H

−1/2
bc (Γ), where

H
−1/2
bc (Γ) is the dual space to H

1/2
bc (Γ) := H

1/2
00 (Γ) ∩ (L2(Γ)� ZB) with respect to the (L2(Γ)� ZB)-

duality. The space H
−1/2
bc (Γ) can be identified with

{

ϕ ∈ (H
1/2
00 (Γ))′ : (ϕ, z1) = 0

}

. Thus, BΓ is a
homeomorphism of the following pair of spaces:

BΓ : H
3/2
bc (Γ) → H

−1/2
bc (Γ). (6.21)

Since H
3/2
bc (Γ) is compactly embedded into H

1/2
bc (Γ), then the operator B−1

Γ is compact from H
−1/2
bc (Γ)

to H
1/2
bc (Γ). Together with Proposition 6.4, this shows that the form in the numerator of (6.20) is

compact in Hτ
1 .

Let b ∈ C∞(Γ), z ∈ H
1/2
00 (Γ), and

∫

Γ z dS �= 0. Denote BΓ,z[ϕ] := Re
∫

Γ b(x)(B
−1
Γ Pzϕ)PzϕdS(x).

Instead of (6.20) we consider the form ratio of more general form

±BΓ,z[τnn]

μEΩ[u]
, {u, p} ∈ Hτ

1 . (6.22)

Theorem 6.1 follows directly from the following theorem.

Theorem 6.2. Suppose that Ω satisfies Condition 4.1. Let b(x) be a smooth real-valued function on
Γ. Then the spectrum counting functions for ratio (6.22) satisfy the following asymptotics for λ → +0:

N±(λ, (6.22)) ∼ λ−2 μ2

πσ2

∫

Γ
b2±(x) dS(x). (6.23)

We will prove Theorem 6.2, using the same scheme as for the previous problems.

5Note that in the case of the third boundary condition on γ, the corresponding form is not even bounded in Hτ
1 ;

see [38, § 8].
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6.4. Estimates of the spectrum of the ratio (6.22).

Lemma 6.1. Let b(x) be a smooth real-valued function on Γ. We have Δ±
2 (6.22) ≤ C‖b‖2L2(Γ)

, where

C does not depend on the function b.

Proof. By Proposition 6.4 and the Korn inequality (5.6), EΩ[u] ≥ C ‖Pzτnn‖2(H1/2
00 (Γ))′

, {u, p} ∈ H1,

C > 0. By Lemma 2.2, this implies that the functions N±(λ, (6.22)) do not exceed the spectrum
counting functions for the ratio

±C
Re

∫

Γ b(B
−1
Γ ψ)ψ dS

‖ψ‖2
(H

1/2
00 (Γ))′

, ψ ∈ (H
1/2
00 (Γ))′. (6.24)

We substitute B−1
Γ ψ = f in (6.24). Then (see (6.21)) f ∈ H3/2(Γ) ∩ H1

0 (Γ) and ‖f‖H3/2(Γ) ≤
C‖ψ‖

(H
1/2
00 (Γ))′ . Applying Lemma 2.2, we obtain that the functions N±(λ, (6.24)) do not exceed the

spectrum counting functions for the ratio

±C
Re

∫

Γ bfBΓf dS

‖f‖2
H3/2(Γ)

, f ∈ H3/2(Γ) ∩H1
0 (Γ). (6.25)

Integrating by parts in the numerator of (6.25) and discarding the lower order terms, we obtain that
the values Δ±

2 (6.25) do not exceed the similar values for the ratio

±C

∫

Γ b|∇Γf |2 dS
‖f‖2

H3/2(Γ)

, f ∈ H3/2(Γ). (6.26)

Substituting ∇Γf =: g and using Lemma 2.8, we arrive at the estimate Δ±
2 (6.26) ≤ C‖b‖2L2(Γ)

.

Lemmas 6.1 and 2.5 allow us, when calculating the principal term of the spectral asymptotics of
ratio (6.22), to consider only the case where b ∈ C∞

0 (Γ).

6.5. Comparison with the problems in a smooth domain. Let us fix a real-valued function
z2 ∈ C∞

0 (Γ) such that
∫

Γ z2 dS = 1. According to Lemma 2.6 and Corollary 6.1, the values Δ±
2 (6.22)

and δ±2 (6.22) coincide with the similar values for the ratio

±BΓ,z2[τnn]

μEΩ[u]
, {u, p} ∈ Hτ

1 , Pzτnn = Pz2τnn. (6.27)

We have
Δ±

2 (6.22) = Δ±
2 (6.27), δ±2 (6.22) = δ±2 (6.27). (6.28)

Thus, let b ∈ C∞
0 (Γ). Suppose that ˜Ω is a bounded domain with smooth boundary such that ˜Ω ⊂ Ω,

supp b and supp z2 lie strictly inside the set ∂˜Ω∩Γ. Let ˜b ∈ C∞(∂˜Ω) be the function that is equal to b(x)

on ∂˜Ω∩Γ and equal to zero outside this set. Similarly, we define a function z̃2 ∈ C∞(∂˜Ω). Let d(x) be a

smooth positive function on ∂˜Ω. Consider the differential expression B
∂˜Ω

:= −σΔ
∂˜Ω

+d(x), where Δ
∂˜Ω

is the Laplace–Beltrami operator on ∂˜Ω. The operator B∂˜Ω (cf. Sec. 4.3) is given by the expression B∂˜Ω

on the domain H2(∂˜Ω). The inverse operator B−1

∂˜Ω
is a pseudodifferential operator on ∂˜Ω of order (−2).

By Pz̃2 we denote a projection in L2(∂˜Ω) acting as follows: (Pz̃2f)(x) = f(x)−
∫

∂˜Ω
f(y)z̃2(y) dS(y),

x ∈ ∂˜Ω.
Let ν(x) be the unit inner normal vector to ∂˜Ω. On ∂˜Ω we define a function τ̃νν = τ̃νν(u, p) (which

is similar to τnn on Γ). We have τ̃νν(x) = 〈τ(x)ν(x),ν(x)〉, x ∈ ∂˜Ω. Note that τ̃νν(x) = τnn(x) for

x ∈ ∂˜Ω ∩ Γ. We put ˜B[ϕ] := Re
∫

∂˜Ω
˜b(x)

(

B−1

∂˜Ω
Pz̃2ϕ

)

Pz̃2ϕdS(x).

Consider the form ratio

±
˜B[τ̃νν ]
μEΩ[u]

, {u, p} ∈ Hτ
1 . (6.29)

The following statement is an analogue of Lemma 4.2.

187



Lemma 6.2. We have

Δ±
2 (6.27) = Δ±

2 (6.29), δ±2 (6.27) = δ±2 (6.29). (6.30)

Proof. According to Lemma 2.6, the values Δ±
2 (6.29), δ±2 (6.29) will not change if we consider the

ratio on the subspace of finite codimension in Hτ
1 distinguished by the condition Pzτnn = Pz2τnn.

Denote Λ[{u, p}] = BΓ,z2 [τnn]− ˜B[τ̃νν ]. Consider the form ratio

±Λ[{u, p}]
μEΩ[u]

, {u, p} ∈ Hτ
1 , Pzτnn = Pz2τnn. (6.31)

By Lemma 2.4, relations (6.30) will be proved as soon as it is shown that Δ+
2 (6.31) = Δ−

2 (6.31) = 0.

Let {u, p} ∈ Hτ
1 and let Pzτnn = Pz2τnn. Denote f = B−1

Γ Pz2τnn and g = B−1

∂˜Ω
Pz̃2 τ̃νν . Suppose

that ˜Γ is an open set lying strictly inside Γ ∩ ∂˜Ω, supp b ⊂ ˜Γ, supp z2 ⊂ ˜Γ. We can assume that ˜Γ
is a two-dimensional surface with sufficiently smooth boundary. Note that Pz2τnn(x) = Pz̃2 τ̃νν(x) for

x ∈ ˜Γ. Consequently, (BΓf)(x) = (B
∂˜Ω

g)(x) for x ∈ ˜Γ. We transform the form Λ[{u, p}] (cf. the proof
of Lemma 4.2):

Λ[{u, p}] = Re

(∫

Γ
bfBΓf dS −

∫

∂˜Ω

˜bgB∂˜Ωg dS

)

= Re

∫

˜Γ
(−σ(Δb)(f − g)g − 2σ∇b · (∇f −∇g)g + b(d− h)fg) dS.

It follows that Λ[{u, p}] = Re
∫

˜Γ(B
′f+B′′g)g dS, whereB′ and B′′ are first-order differential operators.

We have
EΩ[u] ≥ C

(

‖g‖2
H3/2(∂˜Ω)

+ ‖f‖2
H3/2(Γ)

)

, C > 0. (6.32)

Indeed, the inequality ‖f‖2
H3/2(Γ)

≤ CEΩ[u] was obtained in the proof of Lemma 6.1. A similar

inequality for ‖g‖2
H3/2(∂˜Ω)

is only easier to check, because ∂˜Ω ∈ C∞.

From (6.32) it follows that EΩ[u] ≥ C
(

‖g‖2
H3/2(˜Γ)

+ ‖B′f + B′′g‖2
H1/2(˜Γ)

)

, C > 0. By Lemma 2.2,

the functions N±(λ, (6.31)) do not exceed the spectrum counting functions for the ratio

±
Re

∫

˜Γ ψg dS

μC
(

‖ψ‖2
H1/2(˜Γ)

+ ‖g‖2
H3/2(˜Γ)

) , {ψ, g} ∈ H1/2(˜Γ)⊕H3/2(˜Γ). (6.33)

Applying Lemma 2.9, we see thatN±(λ, (6.33)) = O(λ−1), hence, Δ±
2 (6.33) = 0. Then Δ±

2 (6.31) = 0.

Now, our goal is to compare ratio (6.29) with a similar ratio of forms given in a smooth domain ˜Ω.
Direct making such a comparison is hampered by the presence of constraints: the equation −μΔu+
∇p = 0 in Ω and the boundary condition τ tn = 0 on Γ. Let us transform the numerator of ratio (6.29)
in order to “remove” these constraints (see Lemma 6.3 below). For {u, p} ∈ H1 denote ϕ = u|∂˜Ω.
Then we have {u, p} = Gϕ in ˜Ω. The operator G was defined in Sec. 5.4. From the properties of the
Boutet de Monvel algebra it follows that

τ̃νν(Gϕ) = T ϕ+Const, (6.34)

where T is a first-order pseudodifferential operator on ∂˜Ω. Relation (6.34) contains an arbitrary
constant associated with the fact that the function p = p(ϕ) is defined up to an arbitrary constant.

Locally in a neighborhood U of some point x0 ∈ ∂˜Ω we choose an orthogonal curvilinear coordinate

system so that the coordinate lines for the third coordinate at the point x ∈ ∂˜Ω are directed along the

normal ν(x), and the corresponding Lamé coefficient on ∂˜Ω is equal to 1. In this coordinate system,
the principal symbol of the pseudodifferential operator T is a row t◦(x, ξ) = {t◦1(x, ξ), t◦2(x, ξ), t◦3(x, ξ)}
with the entries

t◦j(x, ξ) = −Y
(j)
4 (x, ξ, 0) + 2μ

( d

dt
Y

(j)
3 (x, ξ, t)

)∣

∣

∣

t=0
, x ∈ U, ξ ⊥ ν(x),
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where the functions Y (j) are defined in (5.30). Calculation shows that t◦1(x, ξ) = t◦2(x, ξ) = 0, t◦3(x, ξ) =
−2μ|ξ|. From (6.34) it follows that

˜B[τ̃νν ] = Re

∫

∂˜Ω

˜b
(

B−1

∂˜Ω
T ϕ)T ϕ dS +D[ϕ], (6.35)

where D is a finite-rank form. Let R be a matrix pseudodifferential operator on ∂˜Ω of order zero
corresponding to the first term in the right-hand side of (6.35). The principal symbol of the pseudo-
differential operator R is given by

r◦(x, ξ) =
˜b(x)

σ|ξ|2
(

t◦(x, ξ)
)+

t◦(x, ξ) =

⎛

⎝

0 0 0
0 0 0

0 0 4μ2σ−1
˜b(x)

⎞

⎠ . (6.36)

We put
J1
S(Ω,L) =

{

u ∈ J1
S(Ω) : −μΔu+∇p = 0 for some p ∈ L2(Ω)

}

,

˜J1
S(Ω,L) =

{

u ∈ J1
S(Ω,L) : τ tn(u) = 0 on Γ

}

.

Consider the ratio

±
(Rϕ,ϕ)L2(∂˜Ω)

μEΩ[u]
, u ∈ ˜J1

S(Ω,L), ϕ := u
∣

∣

∂˜Ω
. (6.37)

By Lemma 2.4, representation (6.35) implies that

Δ±
2 (6.29) = Δ±

2 (6.37), δ±2 (6.29) = δ±2 (6.37). (6.38)

Let us show that the principal term of the spectral asymptotics will not change if we remove a part
of constraints and replace (6.37) by the ratio

±
(Rϕ,ϕ)L2(∂˜Ω)

μEΩ[u]
, u ∈ J1

S(Ω), ϕ := u
∣

∣

∂˜Ω
. (6.39)

Lemma 6.3. We have

Δ±
2 (6.37) = Δ±

2 (6.39), δ±2 (6.37) = δ±2 (6.39). (6.40)

Proof. Denote J1
0 (Ω) := J1(Ω) ∩H1

0 (Ω). We have J1
S(Ω) = J1

0 (Ω) ⊕E J1
S(Ω,L), where the orthogonal

sum is understood in the sense of the inner product EΩ[u,v].

Next, we put ̂J1
S(Ω,L) =

{

u ∈ J1
S(Ω,L) : un = 0 on Γ

}

. Proposition 6.6 shows that J1
S(Ω,L) =

̂J1
S(Ω,L)⊕ ˜J1

S(Ω,L). Thus,
J1
S(Ω) = J1

0 (Ω)⊕ ̂J1
S(Ω,L)⊕ ˜J1

S(Ω,L). (6.41)

We put ( ̂Rϕ)(x) = 4μ2σ−1
˜b(x)ϕν(x)ν(x), x ∈ ∂˜Ω, where ϕν is the normal component of ϕ on ∂˜Ω.

Then ̂R is a matrix pseudodifferential operator on ∂˜Ω of order zero with the principal symbol r◦(x, ξ).
Therefore, (R− ̂R) is a pseudodifferential operator of order less than or equal to (−1). Consider the
ratio

±
((R− ̂R)ϕ,ϕ)L2(∂˜Ω)

μEΩ[u]
, u ∈ J1

S(Ω), ϕ := u
∣

∣

∂˜Ω
. (6.42)

Using the inequality EΩ[u] ≥ C‖ϕ‖2
H1/2(∂˜Ω)

, C > 0, by Lemma 2.2 we obtain that the functions

N±(λ, (6.42)) do not exceed the spectrum counting functions for the ratio

±
((R− ̂R)ϕ,ϕ)

L2(∂˜Ω)

μC‖ϕ‖2
H1/2(∂˜Ω)

, ϕ ∈ H1/2(∂˜Ω;C3). (6.43)

Since N±(λ, (6.43)) = O(λ−1), then Δ±
2 (6.43) = 0. Hence, by Lemma 2.4 it follows that the values

Δ±
2 (6.39) and δ±2 (6.39) coincide with the similar values for the ratio

±
( ̂Rϕ,ϕ)

L2(∂˜Ω)

μEΩ[u]
, u ∈ J1

S(Ω), ϕ := u
∣

∣

∂˜Ω
, (6.44)
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and the values Δ±
2 (6.37), δ±2 (6.37) coincide with the similar values for the ratio

±
( ̂Rϕ,ϕ)L2(∂˜Ω)

μEΩ[u]
, u ∈ ˜J1

S(Ω,L), ϕ := u
∣

∣

∂˜Ω
. (6.45)

Note that ̂Rϕ = 0 for u ∈ J1
0 (Ω) ⊕ ̂J1

S(Ω,L). Therefore, from (6.41) it follows that N±(λ, (6.44)) =
N±(λ, (6.45)). In view of the above, this implies relations (6.40).

From Lemma 6.3, Lemma 6.2, and relations (6.28), (6.38) it follows that

Δ±
2 (6.22) = Δ±

2 (6.39), δ±2 (6.22) = δ±2 (6.39). (6.46)

Now, we compare ratio (6.39) with the form ratios in ˜Ω. To estimate Δ±
2 (6.39) from above, consider

the ratio

±
(Rϕ,ϕ)L2(∂˜Ω)

μE
˜Ω
[u] + C‖u‖2

L2(˜Ω)

, u ∈ J1(˜Ω), ϕ := u
∣

∣

∂˜Ω
. (6.47)

Here the constant C is so large that the form in denominator of (6.47) defines an equivalent norm in

H1(˜Ω). We have
Δ±

2 (6.39) ≤ Δ±
2 (6.47). (6.48)

The proof of inequality (6.48) is similar to the proof of inequality (5.10): one should use Lemma 2.2,
in which S is the restriction operator.

To estimate N±(λ, (6.39)) from below, we consider the ratio

±
(Rϕ,ϕ)

L2(∂˜Ω)

μE
˜Ω
[u]

, u ∈ J1
˜S
(˜Ω), ϕ := u

∣

∣

∂˜Ω
. (6.49)

Here ˜S = ∂˜Ω \ ˜Γ and J1
˜S
(˜Ω) = {u ∈ J1(˜Ω) : u|

˜S
= 0}. By analogy with the proof of inequality (5.12),

using Lemma 2.2 and the operator of extension by zero, we obtain that

N±(λ, (6.49)) ≤ N±(λ, (6.39)). (6.50)

6.6. Asymptotic formulas in the smooth case. Using (6.46), (6.48), and (6.50), we conclude
that the spectral asymptotics for ratio (6.22) will be found as soon as the following statement is proved.

Lemma 6.4. For λ → +0 we have

N±(λ, (6.47)) ∼ N±(λ, (6.49)) ∼ λ−2 μ2

πσ2

∫

∂˜Ω

˜b2±(x) dS(x). (6.51)

Proof. By analogy with the proof of Lemma 5.2, it is easy to show that the problem on the spectrum
of ratio (6.47) is equivalent (in the sense of the spectral asymptotics) to the problem on the spectrum
of the ratio

±
(Rϕ,ϕ)L2(∂˜Ω)

μ(Eϕ,ϕ)L2(∂˜Ω)

, ϕ ∈ H1/2(∂˜Ω;C3), (6.52)

and the problem on the spectrum of ratio (6.49) is equivalent (in the sense of the spectral asymptotics)
to the problem of the spectrum of the ratio

±
(Rϕ,ϕ)

L2(∂˜Ω)

μ(Eϕ,ϕ)
L2(∂˜Ω)

, ϕ ∈ H1/2(∂˜Ω;C3), ϕ|
˜S = 0. (6.53)

The pseudodifferential operator E is defined in Sec. 5.4. As before, by changing the lower order terms
in E , we assume that inequality (5.19) holds. Consider the algebraic problem

r◦(x, ξ)z = λμe◦(x, ξ)z, z ∈ C
3. (6.54)

Lemma 2.10 and Lemma 2.11 imply the following asymptotic formulas for λ → +0:

N±(λ, (6.52)) ∼ 1

(2π)2

∫

∂˜Ω
dS(x)

∫

ξ⊥ν(x)
dξ n±(λ,x, ξ; (6.54)), (6.55)

N±(λ, (6.53)) ∼ 1

(2π)2

∫

˜Γ
dS(x)

∫

ξ⊥ν(x)
dξ n±(λ,x, ξ; (6.54)). (6.56)
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According to the expressions for r◦(x, ξ), e◦(x, ξ) (see (5.31) and (6.36)), we have

n±(λ,x, ξ; (6.54)) =

⎧

⎨

⎩

1, λ < 2μ˜b±(x)
σ|ξ| ,

0, λ ≥ 2μ˜b±(x)
σ|ξ| .

Calculating by formulas (6.55) and (6.56), we get (6.51).

Relations (6.46), (6.48), (6.50), and Lemma 6.4 imply (6.23) in the case where b ∈ C∞
0 (Γ). By

closure, the asymptotics is valid for any b ∈ C∞(Γ). Theorem 6.2, and Theorem 6.1 with it, are
proved.

6.7. Oscillations of a system of the capillary viscous fluids. Theorem 5.1 allows generalization
to the case of oscillations of a system of the capillary viscous fluids, partially or completely filling a
vessel. For definiteness, consider the case of complete filling. We restrict ourselves to the statement
of the problem and formulation of the result.

Suppose that a domain Ω ⊂ R
3 satisfies Condition 4.3. We consider the following boundary-value

problem for a system of vector-valued functions {uj(x)}, j = 1, . . . , k + 1, and a system of scalar
functions {pj(x)}, j = 1, . . . , k + 1:

−μjΔuj +∇pj = 0, divuj = 0 in Ωj , j = 1, . . . , k + 1,

uj = 0 on Sj, j = 1, . . . , k + 1,

uj = uj+1, τ tn(uj) = τ tn(uj+1) on Γj, j = 1, . . . , k,
(

−σjΔΓj + hj(x)
)

ujn = λ−1
(

τ (j)nn − τ (j+1)
nn + cj

)

on Γj, j = 1, . . . , k.

(6.57)

Here ujn(x) := 〈uj(x),nj(x)〉, τ (j)nn := τnn(uj , pj); μj > 0, σj > 0 are constants; hj ∈ C∞(Γj) are
real-valued functions. The constants cj are searched along with the solution.

By Bj we denote the operator in L2(Γj) given by the expression −σjΔΓj + hj(x) on the domain

DomBj = H2(Γj) ∩H1
0 (Γj).

Let us give a variational statement of problem (6.57) in the case where the operators Bj are

invertible (the general case can be considered by analogy with Sec. 6.2). Let zj = B−1
j 1 and let Pzj

be a projection in L2(Γj) defined similarly to (6.2).
Problem (6.57) is equivalent to the problem on the spectrum of the form ratio

±

∑k
j=1

∫

Γj

(

B−1
j Pzj

(

τ
(j)
nn − τ

(j+1)
nn

)

)

Pzj

(

τ
(j)
nn − τ

(j+1)
nn

)

dS
∑k+1

j=1 μjEΩj [uj ]
,

uj ∈ H1(Ωj ;C
3), pj ∈ L2(Ωj), j = 1, . . . , k + 1,

−μjΔuj +∇pj = 0, divuj = 0 in Ωj , uj = 0 on Sj, j = 1, . . . , k + 1,

uj = uj+1, τ tn(uj) = τ tn(uj+1) on Γj, j = 1, . . . , k.

(6.58)

Proposition 6.8. Under the above assumptions, the spectrum counting function for ratio (6.58) sat-
isfies the following asymptotics for λ → +0:

N(λ, (6.58)) ∼ λ−2
∑k

j=1
(μj + μj+1)

2meas Γj

πσ2
j

.
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