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ABSTRACT. In Lo (Rd; C™), we consider a wide class of matrix elliptic operators A. of order 2p (where
p > 2) with periodic rapidly oscillating coefficients (depending on x/e). Here € > 0 is a small parameter.
We study the behavior of the operator exponential e ™" for 7 > 0 and small . It is shown that the
operator e <7 converges as € — 0 in the operator norm in Lo (R?; C™) to the exponential e~ AT of the
effective operator A°. Also we obtain an approximation of the operator exponential e™**¢” in the norm
of operators acting from L2(R%; C™) to the Sobolev space H?(R% C™). We derive error estimates for
these approximations depending on two parameters: € and 7. For a fixed 7 > 0, the errors are of the
sharp order O(g). The results are applied to study the behavior of the solution of the Cauchy problem
for the parabolic equation d;u.(x,7) = —(A-u.)(x,7) + F(x,7) in R%.
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1. Introduction

The paper concerns homogenization theory for periodic differential operators (DOs). This theory
studies the behavior of solutions of differential equations with periodic rapidly oscillating coefficients.
It is a wide area of theoretical and applied science. An extensive literature is devoted to homogenization
problems; first of all, we mention the monographs [1, 2, 14, 26].

1.1. Operator error estimates for elliptic and parabolic homogenization problems in R?.
In a series of papers [3—-6] by Birman and Suslina, an operator-theoretic approach to homogenization
problems was suggested and developed. By this approach, a wide class of matrix second-order self-
adjoint DOs acting in Ly(R% C") and admitting a factorization of the form

A =b(D)*g(x)b(D), D=—iV, ordbD)=1, (1.1)

was studied. Here g(x) is a bounded and uniformly positive definite matrix-valued function of size
m x m, periodic with respect to some lattice I' € R%. Let © be the elementary cell of the lattice I.
Next, b(D) is an (m x n)-matrix homogeneous first-order DO. It is assumed that m > n and the
symbol b(€) has rank n for any 0 # & € R? Under these assumptions, the operator A is strongly
elliptic. The simplest example of operator (1.1) is the scalar elliptic operator A = —div g(x)V (the
acoustics operator); the operator of elasticity theory also can be written in form (1.1). These and
other examples were considered in [3, 5, 6] in details.

Let € > 0 be a small parameter. For any I'-periodic function ¢(x), we denote ¢°(x) := ¢(e71x).
Consider the operator A, = b(D)*¢°(x)b(D), whose coefficients oscillate rapidly for € — 0.

In [3], it was shown that, as ¢ — 0, the resolvent (A, + I)~! converges in the operator norm in
Ly(R%; C™) to the resolvent of the effective operator A° = b(D)*¢°b(D). Here ¢° is a constant positive
matrix called the effective matriz. The following estimate was obtained:

1(Ae + D)7 = (A + D)7 ey Lo ray < Ce, € > 0. (1.2)

In [4, 5], a more accurate approximation of the resolvent (A +I)~! in the operator norm in Ly(R%; C™)
with an error of order O(£?) was found. In [6], an approximation of the resolvent (A. + I)~! in the
norm of operators acting from Ly(R%; C") to the Sobolev space H'(R% C") with the following error
estimate was obtained:

||(AE + I)_l — (AO + I)_l — EK(E)HLQ(Rd)—}Hl(Rd) S 05, > 0. (13)

Here K (¢) is the so-called corrector; this operator contains a rapidly oscillating factor and thus depends
on &; we have ||K ()|, g = O(e™h).

The operator-theoretic approach was also applied to parabolic problems of homogenization theory.
In [18, 19], it was shown that for fixed 7 > 0 and € — 0 the operator exponential e~4<7 converges
in the operator norm in Ly(R% C") to the exponential of the effective operator A°. The following
estimate holds:

e — A iy € o . >0, 720 (14)
T2 €
A more accurate approximation of the exponential e=“<7 in the operator norm in Lg(Rd; C™) with an
error of order O(¢?) was found in the paper [23]. In [20], approximation of the operator exponential
e~“T in the norm of operators acting from Ly(R% C") to the Sobolev space H!(R? C") with the
following error estimate was obtained:

C
_ AT _ EK(E,T)||L2(Rd)_>H1(Rd) < 16 , €¢>0, 7>0. (1.5)

||€—A5T
T2(T2 4 €)

Here K (e, 7) is the corresponding corrector.
Estimates (1.2)—(1.5) are sharp with respect to the order of the parameter ¢; the constants are
controlled explicitly in terms of the problem data. Such results are called the operator error estimates
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in homogenization theory. The method in [3-6, 18-20, 23] is based on the scaling transformation,
the direct integral expansion for the operator A (on the basis of the Floquet-Bloch theory), and
the analytic perturbation theory. It was found that the resolvent and the exponential for A. can
be approximated in terms of the threshold characteristics of the operator A at the bottom of the
spectrum. In this sense, the homogenization procedure is a manifestation of the spectral threshold
effect.

We also mention paper [21], in which analogs of estimates (1.2), (1.3) for the resolvent (A, — ¢I)~!
at an arbitrary regular point ¢ € C\ R, were obtained (i.e., two-parametric error estimates depending
on ¢ and ().

A different approach to obtaining operator error estimates (the so-called modified method of the
first-order approzimation or the shift method) was suggested by Zhikov [25] and developed by him
together with Pastukhova [27, 28]. In the mentioned papers, the operator error estimates were obtained
for the acoustics and elasticity operators. For further results, see the survey [29].

The homogenization problem for periodic elliptic DOs of higher even order is of particular interest.
In papers [24] by Veniaminov and [8] by Kukushkin and Suslina, the operator-theoretic approach was
developed for such operators. In [24], an operator of the form B, = (DP)*¢®(x)D? was studied; here
g(x) is a symmetric uniformly positive definite tensor of order 2p that is periodic with respect to the
lattice I'. For p = 2, such an operator arises in the theory of elastic plates (see [26]). In [24], the
following analog of estimate (1.2) was obtained:

I(B: +1)~" — (B° + D7 py®a)sra®ey < Ce, &> 0.

In [8], a more general class of higher-order DOs similar to operators (1.1) was studied:

A =bD)*g(x)b(D), ordb(D) =p > 2.

Here g(x) is a bounded and uniformly positive definite matrix-valued function of size m x m that is
periodic with respect to the lattice I, and b(D) is an (m x n)-matrix homogeneous DO of order p.
Assume that p > 2. It is supposed that m > n and the symbol b(£) has rank n for any 0 # & € RY.
Under these assumptions, the operator A is strongly elliptic. Let A. = b(D)*¢*(x)b(D). In [8], the
behavior of the resolvent (./Zl\E — ¢I)~! at an arbitrary regular point ¢ € C\ R, was studied. It was
shown that, as € — 0, the resolvent (.ZE — ¢I)7! converges in the operator norm in Lg(R? C") to the
resolvent of the effective operator A° = b(D)*g°b(D). The following error estimate was obtained:

(A = ¢I)™t = (A° - (D)7 i) Lorey < C1(Q)e, &> 0.

Also, approximation of the resolvent in the norm of operators acting from Lo (]Rd; C™) to the Sobolev
space HP(R?; C™) with the following error estimate was found:

(A = ¢ = (A° = ¢I) ™ = 2K (e, O)ll y (raty s v (ray < C2(Q)e, £ > 0.

Moreover, the dependence of the values C1(¢), C2(¢) on the parameter ¢ was tracked, so that the
estimates were two-parametric.

We also mention recent papers [15-17], in which a more accurate approximation of the resolvent
(A. 4+ I)~! in the operator norm in Ly(R%; C") with an error of order O(¢%) was found by using the
operator-theoretic approach.

The shift method was applied to higher-order elliptic operators in papers [10-13] by Pastukhova.

1.2. Statement of the problem. Main results. In this paper, we continue to study homoge-
nization problems for the operators A, of the order 2p in R? described above. We also study more
general operators of the form

As = (f) A f* = (£°(x))"b(D)"¢" (x)b(D) f* (x), (1.6)

where f(x) is a periodic matrix-valued function of size n x n such that f, f~! € Lo (R?).
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Our goal is to approximate the operator exponential e <7 for fixed 7 > 0 and small ¢ in different
operator norms. R
Our first main result is the following: it is shown that for a fixed 7 > 0 and € — 0 the operator e~ AT
converges in the operator norm in Lo (]Rd; C™) to the operator e=A°T. The following error estimate is

proved:
Ce

1 210
He_.AgT _ e—.A T <
Lo (Ra)— Lo (R4) T g

, >0, 7>0. (1.7)

This inequality is a generalization of estimate (1.4) to the case of higher-order operators. It turned out
that for more general operators of form (1.6), a similar result is true for the “sandwiched” operator
exponential fee~AT(f)*:

Here fj is some constant matrix (see (9.1)) and A° = fo A fo.
Next, we distinguish a condition on the operator, under which these results can be improved. Under
this condition, instead of (1.7) we have

C
< . c , >0, 7>0.
Ly(RY)—=La(RY) " rop 4 ¢

AT — o

Ce?

e <
LQ(Rd)%LQ(Rd) TP +€2

7 _ 0
HeAET— AT , >0, 7>0.

The condition mentioned above is formulated in terms of the spectral characteristics of the operator
at the bottom of the spectrum; it is automatically satisfied for the scalar operator .ZE (i.e., in the case
where n = 1) with real-valued coefficients. Thus, a new effect characteristic for higher-order operators
is discovered: in the “scalar real” case it is possible to approximate the exponential of the operator
A: by the exponential of the effective operator with error O(¢?) without taking any correctors into
account. There is no such effect for the second-order operators. Note that the same effect for higher-
order operators is also observed when approximating the resolvent or the exponential of the form
e AT see [12, 15, 16, 22].

The same improvement occurs for the operator fee™A<7(f¢)*,

The second main result is the following: approximation for the exponential e~<™ in the “energy”
norm is found. The following estimates are proved:

Ce
< . , €>0, 7>0,
LaRO=L2RY) 73 (120 4 ¢)

1
C(l+71~

< ( TT 2)6, e>0, 7>0.
L2(Rd)_>Hp(Rd) 7—2p _|_ £

HD” (e_ﬁET e AT EPI/C\(E,T)) ‘

He‘AsT e AT PR (e, T)‘

Also, approximation for the operator g°b(D)e™4<™ (corresponding to the “flux”) in the (Ly — Lo)-
norm is found. Here IE(E,T) is the corresponding corrector. It contains a rapidly oscillating factor
and therefore depends on e; we have ||K (e, 7)|| Ly—mr = O(e7P). Similar results are obtained for the
sandwiched exponential fee™AT(f¢)*.

The results formulated in operator terms are then applied to study the behavior of the solution of
the Cauchy problem for the parabolic equation. Let u.(x,7) be the solution of the problem

Ju.(x,7)
or
w(x,0) = p(x), xR

= —b(D)* ¢ (x)b(D)u.(x,7) + F(x,7), xeR% 7>0,
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We have

-
u.(,7)=e A"+ / e AR, T) dF.
0
Based on this representation, we derive the results on approximations of the solution u. from the
results on approximation of the operator exponential.
It turns out that for a fixed 7 > 0 the solution converges in Ly(R% C") to the solution ug of the
homogenized problem
8110 (Xv 7-)
or
uo(x,0) = p(x), x € R

= —b(D)*¢"b(D)uo(x,7) + F(x,7), x€R’ 7>0,

An error estimate, as well as approximation of the solution in the norm of HP (Rd; C™), are obtained.
A more general Cauchy problem is also considered (see (15.31) below); the results for it can be
deduced from the results about the behavior of the operator fée™A7(f)*.

1.3. Method. We rely on the operator-theoretic approach. Let us explain the method by the
example of the proof of estimate (1.7). By the scaling transformation, we have

—Ae—2r7 _ e—.,zlhs_QpT

He—ﬁsr _ AT _ He .
LQ(Rd)%LQ(Rd) LQ(Rd)%LQ(Rd)
Therefore, estimate (1.7) is equivalent to the inequality
n n C
He_AT — AT < , 17>0.
LQ(Rd)—)LQ(Rd) 7'217 + 1

Next, we apply the Floquet—Bloch theory. Using the unitary Gelfand trzlnsform, we expand the
operator A with periodic coefficients in the direct integral of the operators A(k) acting in the space
L5(€; C") and depending on the parameter k (the quasimomentum). The operator A(K) is given by
the differential expression b(D +k)*g(x)b(D +k) with periodic boundary conditions. The family A(k)
is an analytic operator family with discrete spectrum. We put k = t0, where t = |k| and 6 = K|’
and study the family .,Zt\(k) =: A(t,0) by means of the analytic perturbation theory with respect to
the one-dimensional parameter t. The role of the unperturbed operator is played by ./Al(O) The point
Ao = 0 is an isolated eigenvalue of the operator ,Z(O) of multiplicity n; the corresponding eigenspace
M consists of constant vector-valued functions in Ly (Q; C™). Then for ¢ <tV the operator A(t,6) has
exactly n eigenvalues (counting multiplicities) on the interval [0,4], while the interval (,39) is free
of the spectrum. The numbers § and t° are controlled explicitly. It turns out that only the selected
part of the spectrum is essential for our problem. By the analytic perturbation theory, there exist
real-analytic (in t) branches of the eigenvalues \;(¢,0) and the branches of the eigenelements (¢, 0)
of the operator A(t,0),l=1,...,n. Theset {¢;(t,0)}, 1 =1,...,n, forms an orthonormal basis in the
eigenspace of the operator A(t,0) corresponding to the interval [0, §]. These analytic branches satisfy
the following power series expansions:

>\l(t70) :71(0)t2p+:ul(0)t2p+1 t ’71(0) >0, I=1,...,n,
oi(t,0) = wi(0) +toN (@) +..., I=1,...n
The set {w;(0)},1 = 1,...,n, forms an orthonormal basis in the subspace 9. The coefficients of

these power series expansions are called the threshold characteristics of the operator family A(¢,0)
at the bottom of the spectrum. In their terms, the so-called spectral germ S(0) is defined. This is a
self-adjoint operator in the n-dimensional space 91 such that

S(@)w(0) =v(0)wi(0), 1=1,...,n.
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(t,0)7

Our main technical result is approximation of the exponential e~ in terms of the spectral germ:

C

< ., T>0, t<t
La(@)—=L2() ~ rop 4 1

He—A(t,B)T _ e—t2PS(0)TP‘

Here P is the orthogonal projection of the space Lo(€2; C™) onto 1. It is possible to calculate the germ:
we have

5(8) = b(6)*g%0(8),
where ¢° is the effective matrix. It turns out that the effective operator has the same spectral germ.
This gives us the opportunity to switch to the approximation of the exponential e AtO)T by e~ AN (t.O)T
As a result, we arrive at the required estimate (1.7).
It is convenient to study the family A(¢,0), which is a polynomial operator pencil, within the
framework of an abstract operator-theoretic scheme proposed in [8, 24]. In the abstract setting, we

p
study a polynomial pencil of operators of the form A(t) = X (¢)*X(t), where X (t) = ) t/ X}, acting
5=0

in some Hilbert space. A pencil A(t) models the family ./Al(k) = A(t,0), but the parameter 6 in the
abstract setting is absent. In Chap. 1, we further develop the abstract scheme and obtain the required
approximations of the operator exponential e AT

1.4. Plan of the paper. The paper consists of three chapters. Chap. 1 (Secs. 2-4) contains the
necessary abstract operator-theoretic material. Here the main results are obtained on the abstract
level. Chap. 2 (Secs. 5-11) is devoted to the study of periodic DOs acting in Ly(R% C"). In Sec. 5,
the class of operators A is introduced, the lattices and the Gelfand transform are described. Sec. 6 is
devoted to the expansion of the operator A in the direct integral of the operators A(k). In Sec. 7, the
effective characteristics of the operator A (the case where f = 1) are described, the effective operator is
introduced. In Sec. 8, using the abstract results, we find an approximation of the exponential e =A%,
In Sec. 9, we consider a more general family A(k) and find an approximation for the sandwiched
exponential fe_AA(k)T f*. In Sec. 10, by direct integral expansion, we deduce approximation of the
exponential =7 from the results of Sec. 8. Similarly, in Sec. 11 we derive approximation for the
sandwiched exponential fe™A7 f* from the results of Sec. 9. Chap. 3 (Secs. 12-15) is devoted to
homogenization problems. The operators A, and ,Zg, and also the scaling transformation are described
in short Sec. 12. In Secs. 13 and 14, we deduce main results on approximations for the exponential
e~A<7 and the sandwiched exponential fee_AET( f9)*. Finally, in Sec. 15, we apply the results to
homogenization of solutions of the Cauchy problem. In Appendix (Sec. 16), we discuss another way
to obtain the results on homogenization of the operator exponential.

1.5. Notation. Let $ and $). be complex separable Hilbert spaces. The symbols (+,-)g and || - ||
stand for the inner product and the norm in ), respectively; the symbol || - || 4, denotes the norm of
a linear continuous operator from §) to .. Sometimes we omit the indices. By I = I we denote the
identity operator in $). If X : $§ — 6, is a linear operator, then Dom X denotes its domain and Ker X
denotes its kernel. If 9t is a subspace of §, then the symbol 9+ denotes its orthogonal complement.
If P is the orthogonal projection of the space $ onto M, then P+ = I — P is the orthogonal projection
onto N-+.

The inner product and the norm in C™ are denoted by (-,-) and | - |, respectively; 1 = 1,, is the
unit matrix of size n x n. If a is a matrix of size m x n, then |a| denotes the norm of a viewed as an
operator from C" to C™.

The classes Ly of C"-valued functions in a domain O C R? are denoted by Ly(0;€C™), 1 < g < oo.
The Sobolev classes of order s of C™-valued functions in a domain O are denoted by H*(O;C"), s € R.
If n = 1, we write simply Lq(O), H*(O), but sometimes we use such simple notation also for the spaces
of vector-valued or matrix-valued functions.
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We denote x = (z1,...,24) € RY, D; = —i0; = —i0/0xj, j =1,...,n; D = =iV = (Dy,...,Dyg).

If o = (a1,...,0q) € Z% is a multiindex and k = (k1,...,ks) € R, then |a| == a1 + -+ + ag,
k* = k- kg?, D := D - .- DY For two multiindices «, 8, we write § < aif f; < o, j = 1,...,d;
the multibinomial coefficients are defined by (OB‘) = (%i) (%Z) We use the notation Ry = [0, 00).

By C,C, €, ¢, ¢ we denote various constants in estimates.

CHAPTER 1

ABSTRACT OPERATOR-THEORETIC SCHEME

2. Abstract Scheme for Polynomial Operator Pencils

In this section, we briefly describe the results of the abstract scheme borrowed from [8, 17, 24].

2.1. Polynomial pencils of the form A(t) = X(¢)*X(¢). Let $ and . be complex separable
Hilbert spaces. Consider the following family of self-adjoint operators:

A)=X{t)'X(t): H—H, teR, (2.1)

where X (t) : § — $. is a polynomial operator pencil of the form
P
X(t)=) t/X;, teR, peN, p>2.
§=0

The case where p = 1 has been studied in details in [3, 4, 6]. We assume the following about the
operators X; : $ — 94, j = 0,...,p. Suppose that Xy is densely defined and closed, X, is bounded,
and the domains of the operators Xo, ..., X, satisfy the following additional condition.

Condition 2.1. Suppose that
Dom X (t) = Dom Xg C Dom X; C Dom X, =, j=1,...,p—1, teR.
Moreover, suppose that the operators X; with j =1,...,p—1 are subordinate to the operator Xj.
Condition 2.2. For j =0,...,p—1 and any u € Dom Xy we have
[ Xjulls, < CollXoullg, , (2.2)
where Cy is some constant (obviously, Cy > 1).

From the above assumptions it follows that the operator X (¢) is closed on the domain Dom X (t) =
Dom X if [t| < (2(p — 1)Cp)~L. Condition 2.2 also yields the following relation for the kernels of the
operators X;:

KerXg CKerX;, j=1,...,p—1.

Operator (2.1) is generated by the following nonnegative and closed quadratic form in $):

a(t)u,u] = HX(t)uH% ,  u € Dom Xj.
We denote: A(0) = X;Xo =: Ao;
N = Ker Ag = Ker Xp; 9, := Ker Xj.

Let P and P, be the orthogonal projections of the space £ onto 91 and of the space $, onto .,
respectively. We impose the following condition.

Condition 2.3. \g = 0 is an isolated point of the spectrum of the operator Ay, and

n:=dimN <oo; n < n, :=dimM, < oo.
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Let F(t,0) be the spectral projection of the operator A(t) for the interval [0, 0]. Denote §(t,0) :=
F(t,0)9. We fix a number § > 0 such that

01
5§min{§6,4}, (2.3)

where d° is the distance from the point \g = 0 to the rest of the spectrum of the operator Ag. Next,
we choose a positive number t° such that

0 <V6(C°)7Y,  where C° = max{(p —1)Co, | X}, (2.4)

and Cj is the constant from Condition 2.2. Note that t° < 1/2. Automatically, the operator X (t) is
closed for [t| < t°, because t° < (2(p — 1)Cp)~!. In [24, Proposition 3.10] it was checked that

F(t,0) = F(t,30), rankF(t,0) =n, [t|<t’. (2.5)

This means that for |t| < t° the operator A(t) has exactly n eigenvalues (counting multiplicities) at
the interval [0, §], while the interval (d,30) is free of the spectrum. For brevity, denote

F(t) .= F(t,6);  §(t) :=3(t,9).

2.2. The operators Z, R, and S. We put D = Dom X, NO*. Note that the set D with the inner
product

(f1, f2)p = (Xof1,Xof2)5,» [f1,f2 €D,

is a Hilbert space.
Let v € $.. Consider the equation Xj(Xoy —v) = 0 for the element 1) € D understood in the weak
sense:

(X01/}7X0C),6* = (U7X0<)f)* , VCeD. (2.6)

The right-hand side in (2.6) is an antilinear continuous functional of ¢ € D. Consequently, by the
Riesz theorem, there exists a unique solution ¥ € D, and [|Xo¢|ls, < ||v]lg,. Now, let w € 9N and
v = —X,w. In this case, the solution of Eq. (2.6) is denoted by 1 (w). We define a bounded operator
Z : 5 — D by the relation

Zu = 1(Pu), u€S9h. (2.7)
From the definition of Z it follows that PZ =0 and Z*P = 0. In [8, (1.11)], it was checked that
1 Xl
Z < . 2.8
12155 < 177 28)

Next, we define a bounded operator R : 9t — I, by
Rw = Xop(w) + Xpw, weMN (2.9)

Another representation for the operator R is given by R = P, X,|n. A self-adjoint operator S = R*R :
M — N is called the spectral germ of the operator family A(t) at ¢ = 0. In other words,

S = PX:P.X,|n.

Clearly, we have
ISIF < 1 X117 (2.10)
The germ S is called nondegenerate if Ker S = {0}.
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2.3. Analytic branches of eigenvalues and eigenvectors. According to the general analytic
perturbation theory (see [7]), for |t| < t° there exist real-analytic functions \;(¢) (the branches of
eigenvalues) and real-analytic $-valued functions ¢;(t) (the branches of eigenvectors) such that

At)pi(t) = X(Dp;(t), j=1,...,n, |t <1,
and the set {;(t)}7_; forms an orthonormal basis in F(t). It t. < t0 is sufficiently small, then for
|t| < t. we have the convergent power series expansions (see [24, Theorem 3.15])
Nj(t) =t gt e >0, u R, j=1,...,n, (2.11)
pilt) =wj+ et + P4 j=1,..n. (2.12)
The set {%’}?:1 forms an orthonormal basis in 1. The numbers v; and the vectors w; are eigenvalues
and eigenvectors of the spectral germ S5, i.e.,

S(,Uj = YW, ] = 1, cee, N (213)

This allows us to write down the following representations for the operators P, SP, F(t), and
A(t)F(t):

n

P=> (,wjw;, (2.14)
j=1
SP =%, wj)w;, (2.15)
j=1
()= (oi)pi (1), ] <t (2.16)
j=1
AWDFE) =Y N0 o 0))pi(t), [t <t (2.17)
j=1

Comparing (2.11), (2.12), and (2.14)—(2.17), we obtain the following power series expansions for |t| < ¢,
(see [17, Sec. 1.3] for details):

Ft)=P+tF +...,
A(t)F(t) = t?SP + PTG + ...
2.4. Threshold approximations. In [24, Sec. 4.2] (see also [8, Sec. 2.2] and [17, Sec. 3]), for
|t| <t approximations for the operators F(t) and A(t)F(t) in terms of the operators S and P (the

so-called threshold approzimations) have been found. We present them here in the form of a theorem.
In what follows, by ¢(p) we denote various constants depending only on p.

Theorem 2.1. Suppose that A(t) is the operator family introduced in Sec. 2.1. Let § > 0 be a
fized number subject to (2.3). Let F(t) = F(t,6) be the spectral projection of the operator A(t) for
the interval [0,0], and let P be the orthogonal projection of § onto the subspace 9N = Ker A(0). Let
SO — N be the spectral germ of the family A(t) at t = 0. Then we have

[F(t) = Plyss < Ciltl, [t <1, (2.18)
JAGE () — 7S Pl < ColtH, 1] <0, (2.19)
where the number t° satisfies condition (2.4). The constants Cy, Cy are given by C1 = ¢(p)Cr and
Cy = c(p)C’r_zppH, where
Or :=pCs + || X,|%07 1, (2.20)
and Cy 1is the constant from (2.2).
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We also need more accurate approximations for the operators F(t) and A(t)F'(t) obtained in [17,
Theorem 3.2].

Theorem 2.2. Suppose that the assumptions of Theorem 2.1 are satisfied. We put
F,:=7ZP+ PZ", (2.21)
G := (RP)*X1Z + (X1Z)"RP, (2.22)

where the operators Z and R are defined in Sec. 2.2. In terms of expansions (2.11) and (2.12), the
operator G has the form

j:l j:l

We have
IF(t) =PIl < Csltf?,  |t] < °, (2.23)
|A(t)F(t) — t??SP — t?*71q|| < Cut?P 2, |t < . (2.24)
The following representation and estimate are true:
F(t) =P +t"F, + F.(t), (2.25)

IFc ()55 < CsltPT, ] < 2.
The constants Cs,Cy, Cs are given by
C13 = C(p)CgU 04 = C(p)c’?‘p+27 05 = C(p)C:Z;+1,
where Cr is defined by (2.20).
We also need the estimate
IA@G)E ()55 < EPIS| + ot < Cot™, |t <17,
where Cg = || X,||> + Cs. It follows directly from (2.10), (2.19), and the inequality t° < 1. Thus, for
|t| < t° the eigenvalues \;(t) of the operator A(t) satisfy the inequalities \;(t) < Cgt??, j = 1,...,n.
Hence,
1A PF(O)ll59 < VColt,  [t] < . (2.26)

Moreover, we have

JA@®) P Fu(t)lln0 < ColtPH, ] < 1% Cr = c(p)CHH. (2.27)
(See [8, (3.52)] and the proof of [17, Theorem 3.2].)

3. Approximation of the Operator Exponential ¢~4(®)7

3.1. The principal term of approximation. Our goal in this section is to approximate the
operator e~ A7 for large values of 7 > 0 in terms of the spectral germ S. As compared with the
assumptions of Sec. 2, we need an additional assumption.

Condition 3.1. There exists a constant ¢, > 0 such that for |t| < t° we have
A(t) > e t?P1. (3.1)

Condition 3.1 is equivalent to the following inequalities for the eigenvalues \;(t) of the operator

A(t):

N(t) > et®, j=1,....n, |t| <t (3.2)
By (2.11), from (3.2) it follows that v; > ¢,. By (2.13), this implies
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This ensures that the spectral germ is nondegenerate. Further considerations are carried out under

the assumption that [¢t| < t°. Obviously,
e—A(t)T _ e—A(t)TF(t) + e_A(t)TF(t)J_.

(3.4)

By (2.5), the operator F(t)* is the spectral projection of the operator A(t) for the interval [34, +-00),

whence
e~ AO7 Pt g < 7, 72 0.
Obviously,
e AOTR(t) = PemANOTF(t) + PLemAOT R (1).
From the relation P-F(t) = (F(t) — P)F(t) and (3.1) it follows that
1PEe= 207 (1) |55 = [(F(t) — P)e O F(t) g5 < e 7| F(t) - P|.

We put

S(t,7) := Pe A0 R (1) — e "STp,

E(t,T) = et2pSTZ‘(t,7') = etQPSTPe_A(t)TF(t) - P.
Differentiating (3.9) with respect to 7, we obtain

E't,T) = dgc(;”) = PSTP(PSP — A(HF(t)e AT F(1).

T

Hence,
E(t,T) = E(t,0) + /5’(1&,%) dr
0
_ PRt — P — / PSTP(AW)F(t) — 12PSP)e AT p(1) 47
0

Then

S(t, 1) = e 5TE W, 7)

T

— e "STP(F(t) - P) — / ST P(A()F(t) — 1S P)e AT F (1) dF.

0
Together with (3.1) and (3.3), this implies

—cyt?Pr
ISt 7)lln—ss < e (|F() = P+ 7A@ F(t) — t7SP]) .
Combining (3.6)—(3.8) and (3.10), we arrive at the inequality
le O F(t) = e ST Pl g < e T (2] F(1) - Pl + TIA@)F (1) — 'SP
Together with (2.18) and (2.19), this yields
”e—A(t)TF(t) . e—tzpsrpuﬁ_)y) < (201“/‘ + Cg‘t‘2p+17') e—C*tQPT.
We put « = [t|P\/c,7. Then estimate (3.12) takes the form
leAOTF(t) — e TP < 7721 (a), T >0,

where
1

— 1 —1— 1 1
D () := <2C’1c>k Par + Cohe, P a2+P> e,

(3.5)

(3.6)

(3.10)

(3.11)

(3.12)
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Estimating the maximum of the function ®;(«), a > 0, we arrive at the inequality

lemAOTB(t) — e STP g g < COr 7%, T >0, (3.13)
where
1 -1
O§ = 2C ¢cs ? 4 Cyes . (3.14)
It is easily seen that e=397 < (357‘)_2113. Combining this with (3.4), (3.5), and (3.13), we obtain
le™AOT — TSPy g < Cgr 4 e < (CRH(30) 2 ) T, T>0. (315)

For 7 > 1 we use (3.15), and for 0 < 7 < 1 we estimate the left-hand side of (3.15) by 2. Combining
these estimates and putting

Cs := 2max {2, Cg + (35)_211’} , (3.16)
we arrive at the following result.

Theorem 3.1. Suppose that A(t) is the operator family introduced in Sec. 2.1. Suppose that Condi-
tion 3.1 is satisfied. Let P be the orthogonal projection of the space $) onto the subspace 90 = Ker A(0),
and let S : M — N be the spectral germ of the family A(t) at t = 0. Then we have

C,
|e=ADT _ = t"STp| o< 78 E >0, |t|<O. (3.17)
T2 4

The number t9 satisfies condition (2.4). The constant Cg is defined according to (3.14), (3.16) and
depends only on p, §, the constant Cy from (2.2), || X,||, and c.

In the case where G = 0, the result can be improved.

Theorem 3.2. Suppose that the assumptions of Theorem 3.1 are satisfied. Let G be the opera-
tor (2.22). Suppose that G = 0. Then we have

|e=ADT _ =57 p|| o< 109 , T>0, [t <t (3.18)
Tr 4+ 1
The constant Cyg is defined below according to (3.20), (3.22) and depends only on p, 6, the constant Cy
from (2.2), || X,||, and c,.

Proof. Using inequality (3.11), estimates (2.23), (2.24), and the condition G = 0, we obtain
He—A(t)rF(t) . e_tQPSTP”y)_m < (203|t|p + C4t2p+27') e—c*tzl’q— < (2C3t2 + C4t2p+27') e—c*t2pr.

In the last passage we have taken into account that |t|P < ¢2 for |t| < t°, since p > 2 and t° < 1.
Putting again o = |t|P\/c,T, we rewrite the resulting inequality in the form

1
leAO7 () — e Pllg 5 < 77 pda(a), T3>0,
where
_1 2 —1— 1 24 2 2
Dy(a) := (2C3¢ Par + Cyee "™ p e .
Estimating the maximum of the function ®2(«), a > 0, we arrive at the inequality

=4O F(t) = S Pllg g < C7 e, 7> 0, (319)
where 1

_1 1=
Cg =2C3¢, 7 +Cycy, 7. (320)
Using (3.4), (3.5), (3.19) and taking into account that e™3°" < (3(57')_11’, we obtain

_1

|e=AMT _ e—t2‘75Tp||ﬁ_>yJ < 057-_11) +e T < (Cg + (39) P) 7-_113, 7> 0. (3.21)
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For 7 > 1 we apply (3.21), and for 0 < 7 < 1 we estimate the left-hand side of (3.21) by 2. Putting
Cy := 2max {2, cS+ (35)‘i} , (3.22)
we arrive at (3.18).

3.2. Approximation of the operator exponential in the “energy” norm. In this subsection,
we obtain another approximation of the operator e=4®7 (in the “energy” norm). Namely, we study
the operator A(t)Y/2e=4M7. Our goal is to prove the following theorem.

Theorem 3.3. Let A(t) be the operator family (2.1) satisfying the assumptions of Sec. 2.1 and also
Condition 3.1. Let P be the orthogonal projection of the space £ onto the subspace M = Ker A(0). Let
Z be operator (2.7), and let S be the spectral germ of the family A(t) at t = 0. Then for T > 0 and
It| < t° we have

||A(t)l/2 (e—A(t)T —(I+ tpz)e—t2PS7-P) g < CroT 21;;_%' (3.23)

The number t° is subject to condition (2.4). The constant Cyg is defined below according to (3.30),
(3.37), (3.38) and depends only on p,d, the constant Cy from (2.2), || Xp||, and c,.

Proof. We put
At, 7)== A(t)Y/2e AT (3.24)
and represent this operator as
A(t,7) = AL, 7)F () +A(t, 7)F(t)(F(t) — P) + F(t)2(t,7)P. (3.25)

1 1
By the spectral theorem, taking (2.5) into account and using the elementary inequality awtzer <1
for x > 0, we have

AL, TVE () |lgos < sup Aze T < (36 _21177'_2117_5, >0, |t| <. 3.26
H—=H
A>36
Next, by (3.2), for 7 > 0 and 0 < [¢| <t we have

11 1 -1 11
AT F Ol < sup (MR NOT) < 77573 sup (05 <er e H

1<j<n 1<j<n
Together with (2.18), this implies
1
I90(£, TV E () (F(t) — P)|lgog < Cres #7272, 7> 0, |t < (3.27)
The last term in the right-hand side of (3.25) can be represented in the form
FOAE,T)P = A®)YV2F ) (e AOTF(t) — e 'STPYP 4+ A()2F(t)e 5P, (3.28)

From (2.26) and (3.12) it follows that for 7 > 0 and |t| < ¢°
— __ 42
IA@) 2 (@) (e AT (t) = e TP) Pl
< VG|t (201]t] + Colt|PH17) e = 272720y (a),
where o = [t|P\/c,T and
—27p 1+l 52 3+l 2
By(a) :=/Cs (201 2 Pa'Te +Coc 2 #a’tr ) e,
Estimating the maximum of the function ®3(«), a > 0, we arrive at the estimate
JA@®) 20 AT E(t) — eI P) Pl < Clor 72, (3.29)

where

_1_ 1 _3_1
Cho = /Cs <201c* 2% 4 (O, ? 21’) . (3.30)
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From (3.24)—(3.29) it follows that for 7 > 0 and [t| < t°
HA(t)l/2 (e—A(t)T _ (I + th)e—tQPSTP> ”.V)—>f)

L L r » (3.31)
<72 <(35) 2+ Cre, ™ + C{0> + A Y2(F(E) — P =t 2)e "5 P|ls s
Denote
2t 7)=e "5TP, (3.32)
It remains to estimate the norm of the operator
I(t,7) = A)V2(F(t) — P — tP2)2(t, 7). (3.33)
By (2.21), (2.25), and the identity Z*P = 0, we have (F(t) — P —t?Z)P = F,(t)P, whence
I(t, ) = A(t)AE(0)E(t, 7). (3.34)
From (3.3) it follows that
IEGE D55 =l Plsp < e (3.35)

To estimate operator (3.34), we use estimates (2.27) and (3.35). Taking into account the elementary

1 1
inequality z2» " 2¢~% < 1 for z > 0, we have

1 1
IZ(t, )55 < ColtPHle T < Clir~ 2 2, 7>0, [t| <t (3.36)

where
1 1

Oy = Cre, ™ 2. (3.37)
As a result, combining relations (3.31)—(3.33) and (3.36), we arrive at the required estimate (3.23)
with the constant

1
Cro = (36) "2 + Ciex ¥ + Cly + Ol (3.38)

Remark 3.1. We have tracked the dependence of the constants in estimates on the problem data.
Below, when applying abstract results to differential operators, the following is essential. The constants

Cg, Cy, Cig from Theorems 3.1, 3.2, 3.3, after a possible overestimation, become polynomials in the
1

1 —
variables Cy, || X,|, 6 2, ¢, * with positive coefficients depending only on p.

o~

4. The Operator Family of the Form A(t) = M*A(t)M.
Approximation of the Sandwiched Operator Exponential

4.1. The operator of the form A(t) = M*X(t)M Let § be yet another complex separable
Hilbert space. Suppose that M : ) — ) is an isomorphism.
Let X(t) : $ — $. be an operator pencil of the form

p
X(t)=> ¥X;, teR,
j=1

satisfying all the assumptions of Sec. 2.1. The space $), remains the same. Assume that
MDom X; =Dom X;, X;=X;M, j=0,1,...,p. (4.1)

Then X () = X (¢)M. In the space 9, we consider the family of self-adjoint operators Alt) = X)X ().
Then N

A(t) = M™A(t)M.
Below all the objects corresponding to the family X(t) are marked by “hat”. Note that N =M N,
n =n, and N, = N,.
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In the space 5%, consider the operator
Q:=(MM)":5 -9 (4.2)
The operator Q is bounded and positive definite together with Q~!. Let Qs be the block of the
operator () in the subspace 9 = Ker X'o:

Qg = ﬁQ\ﬁ (4.3)

Obviously, Qg is an isomorphism in N.
It is easily seen that the orthogonal projection P of the space $) onto the subspace 91 and the
orthogonal projection P of the space $) onto 91 satisfy the following relation:

P =M (Qg)  P(MY) (1.4)
cf. [19, Proposition 1.2], where this identity was checked in the case where p = 1.
For A(t) we define the operator Z by analogy with (2.7). For each @ € 9, define the solution
O = z/p\(@) of the problem
Xt (Xo + X,@) =0, ¢ LN
Then
Zu=(Pu), UeSH. (4.5)
Along with Z , we need the operator 2@. Let @ € M and let 12@ = ”(ZQ((,AU) be the solution of the
problem

)?8(5(:012)\@ + )?p@) =0, QKZJ\Q 19
The operator ZQ is defined by the relation
Zoti = hg(Pu), uef.
Clearly, z/p\Q = z/p\ + Wg, where the element g € N is determined from the condition QzZQ 1 M. Then
Gq = ~(Qs) "' P(QY).
Thus,
Zog=27-(Qz) 'PQZ. (4.6)
In particular, this implies that
[ A (47)
We have taken into account that 9 = Ker )A(O C Ker X 1.
It is easily seen that
Zg=MZM P, (4.8)
where Z is given by (2.7); cf. [4, Lemma 6.1]. The operator R for the family /Al(t) is defined by analogy
with (2.9):
R:=(XoZ + Xp)lg = (XoZg + Xp)lg-
Here the second relation follows from (4.7). The operator R defined by (2.9) and the operator R
satisfy the following relation:
R = RM|y. (4.9)

Finally, the spectral germ S :=R*R: M — N of the operator family /Al(t) and the germ S of the
family A(t) satisfy

S = PM*SM]|y. (4.10)
For A\(t), we introduce the operator G by analogy with (2.22). Then, by (4.7),
G := (RP)*X,Z + (X12)*RP = (RP)*X,Z¢o + (X1Z9)*RP. (4.11)
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By (4.1), (4.8), and (4.9), the operator G defined by (2.22) and operator (4.11) satisfy the following
relation: R
G = PM*GMP. (4.12)

Remark 4.1. Since the operator G acts nontrivially only in the subspace 91, using (4.4) and (4.12),
it is easy to check that the relations G = 0 and G = 0 are equivalent.

4.2. Approximation of the sandwiched operator exponential Me 4®7A*, Under the as-
sumptions of Sec. 4.1, we find an approximation of the operator

Me—ADOT pr* — Me_M*Z(t)MM* : 5 - 5

in terms of the spectral germ S of the family X(t) and the isomorphism M.
Let Qg be operator (4.3). We put

My = (Qg) 7Y% : 91— 9. (4.13)
Let S be the spectral germ of the family A(t). Using (4.4) and (4.10), it is easy to check that
Me"STPA* = Mye=t"MoSMoT [ Bt 5 9, (4.14)

cf. [19, Proposition 2.3], where this identity was checked in the case where p = 1.

Theorem 4.1. Let A(t) and A\( t) be the operator families satisfying the assumptions of Sec. 4.1.

Suppose that C’ondztwn 3.1 is satzsﬁed Let P be the orthogonal projection of the space 53 onto the
subspace N = Ker A(O), and let S : N — N be the spectral germ of the family A( ) att =0. Let My be
the operator defined by (4.13). Then we have

C8||M||
YJ—>5§ 7—2p +1

The number tV is subject to condition (2.4). The constant Cy is defined according to (3.14), (3.16)
and depends only on p, §, the constant Cy from (2.2), || X, and c..

HMe‘A(t)TM* — Mye

, 720, [t < (4.15)

Proof. Multiplying the operators under the norm sign in (3.17) by M from the left and by M* from
the right, we obtain

CsHMH2

HMe—A(t)TM* — Me —t2pSTPM*
53—>YJ sz +1

>0, [t| <.

Together with identity (4.14), this implies the required inequality (4.15).

Similarly, from Theorem 3.2 and Remark 4.1 we deduce the following result.
Theorem 4.2. Suppose that thi assumptions of Theorem 4.1 are satisfied. Let G be the operator
defined by (4.11). Suppose that G = 0. Then we have

2

< 091||M |
5997 o4
The number tV is subject to condition (2.4). The constant Cy is defined according to (3.20), (3.22)
and depends only on p, §, the constant Cy from (2.2), || X, and c..

HMe‘A(t)TM* — Mye

>0, |t| <t

Y

Next, Theorem 3.3 yields the following result.

Theorem 4.3. Suppose that the assumptions of Theorem 4.1 are satisfied. Let 7 be the operator
defined by (4.5). Then we have

Hﬁ(ze)l/2 (Me‘A(t)TM* — (I 4 t°Z) Myt MoSMor P) H < Opr e, T>0, |t <t
(4.16)
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The number t° is subject to condition (2.4). The constant Cyy depends only on p, 6, S, the constant
CO from (22)7 HXP”7 HXPHJ Cx,s HM”7 ”M_l”

Proof. By (4.8) and (4.14),

Hfl(t)l/z (Me_A(t)TM* —(I+ tpr)Moe_tQPMogMOTMOJS) Hfﬁﬁ

H—=H

<M | A@V? (407 — (1 + )P

= |[Roar (407 — (1 4 w215 P) A

Combining this with estimate (3.23), we obtain

| A (aem2Omar — (1 41 Zg) Mo MSMTMGP) || < Cuoll Ml 72, 7> 0, <

(4.17)

~

It remains to show that, within the margin of the error, it is possible to replace ZQ by Z in the
left-hand side of (4.17). By (4.6), we have

X(t)Zg—Z) =t"Xp(Zg — Z) = 1" X,(Q5) " PQZ.

s

We have taken into account that 0 C Ker X'j, 7=0,...,p—1. Hence,
Hﬁ(t)l/? (tP(EQ - Z)Moe—t2"M0§MOTMOﬁ)

H—H
= %) (#(Za - Dt an B
= 2| R,(Qg) T PQZMe™ " MoSMoT a1 P
H—H

<X MM PIZ] e, 7> 0, Jt < 2.

In the last passage, we used identity (4.14), inequality (3.3), and also the estimate ||(Q§t)_1ﬁ|| <
| M]|?, which follows from the identity (Q&)_lﬁ = MPM* (see (4.4)). According to (2.8), we have

. 1~ 1 ~ . .
1Z] < 65_éHXpH, where § is the analog of 0 for the operator A(t). Now, using the elementary

1 1
inequality x2 2o <1 for x > 0, we obtain

‘fT(lt)l/2 (#(Zq — Z)Mge " 05M07 a g, P) H% L < Crr 272, 7>0, |t| <t (4.18)
—
where ) L
Cra = (872 | Xl M| M~ P > 2 (4.19)

We took into account that t° < 1.
Relations (4.17) and (4.18) imply the required estimate (4.16) with the constant

C11 = Crol|[ M| + Cha. (4.20)

Remark 4.2. From Remark 3.1 and relations (4.19), (4.20) it follows that, after possible overestima-
tion, the constant Cy; from Theorem 4.3 becomes a polynomial in the variables Cy, || X,||, [ Xpl/, 52,

1 !
20, ¢, P, |M||, | M~ with positive coefficients depending only on p.
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CHAPTER 2

PERIODIC DIFFERENTIAL OPERATORS IN R%
APPROXIMATION OF THE OPERATOR EXPONENTIAL

5. Periodic Differential Operators in Ly(R% C")

5.1. Factorized operators of order 2p in R?. In the space Lg(]Rd; C™), we consider differential
operators formally given by

A= f(x)b(D)*g(x)b(D)f(x). (5.1)
Here g(x) is a uniformly positive definite and bounded measurable matrix-valued function of size
m x m (in general, g(x) is a Hermitian matrix with complex entries):

A1, <g(x) <1, xecRY 0<d<d <o (5.2)

A matrix-valued function f(x) of size n x n (with complex entries) is assumed to be bounded together
with the inverse matrix:

£ fh e Loo(RY). (5.3)
An operator b(D) is given by
b(D) = > 3D, (5.4)
|81=p
where bg are (m x n)-matrices with constant (in general, complex) entries. Assume that m > n and
the symbol

b(€) = Y bsg”, EeR,
|B1=p
of the operator b(D) has maximal rank, i.e.,

rankb(&) =n, 0#¢eRY
The last condition is equivalent to the estimates
aol, < b(0)D(0) < ail,, 0eSTl 0<ap<al <o, (5.5)

with some positive constants ag, ;. Without loss of generality, we assume that the norms of the
matrices bg do not exceed the constant ,/ov:

bg| < Veu, |B]=p. (5.6)
The precise definition of the operator A is given in terms of the quadratic form. From condi-
tions (5.2) it follows that the matrix ¢g(x) can be written in a factorized form:

9(x) = h(x)"h(x),

where h, h=! € Lo (R%). For instance, we can put h(x) = g(x)/2.
Consider the operator X : Ly(R?%; C") — Lo(R%; C™) acting as follows:

(Xu)(x) = h(x)b(D)(f(x)u(x)), DomX = {u e Ly(R%:C"): fue HP(REGCM)},

and the quadratic form

alu,u] = ||Xu||%2(Rd) = /(g(x)b(D)f(x)u(x), b(D)f(x)u(x))dx, u€ Doma=Dom&Xx. (5.7)

Rd
Let us check that
o / IDP(f(x)u(x))|? dx < a[u,u] < ¢ / IDP(f(x)u(x))|?dx, u€ DomX, (5.8)
R4 R4
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where |DPv(x)|? := 3 |DPv(x)|2. First, by the Parseval identity,
|Bl=p

||9_1||Z;/|b(£)9(£)|2d£ <alu,u] < IIQIILw/Ib(E)G(E)Izd& v = fue H'(R:C"),
R4 Rd

where V() is the Fourier image of the function v(x). Combining this with (5.5), we see that

aollg ML / €779 (€))? d€ < alu,u] < a1]g||r.. / EPP[V(€)*d¢, v = fue H'(R)C"). (5.9)
Rd Rd

Finally, using the elementary inequalities

> PR < g <) D 1€, geRr?, (5.10)

18|=p 18]=p
where the constants c]’D and c]’D’ depend only on d and p, we arrive at the required relations (5.8) with
the constants
co = chaollg 2L, e = djoullgllLn- (5.11)

Consequently, form (5.7) is closed and nonnegative. By definition, A is a self-adjoint operator in
Ly(R%; C") corresponding to form (5.7).

5.2. The lattices I and I'. In what follows, the functions g, h, and f are assumed to be periodic

with respect to some lattice I' C R Let ai,...,aq be a basis in R4 generating the lattice I', i.e.,
d
I'= {aERd:a:Zyjaj, vj EZ},
j=1

and let € be the elementary cell of the lattice I':
d
Q:{xeRd: x:z,‘ijaj, O</£j<1}. (5.12)
j=1
The basis by, ...,by in R% dual to ay, ..., ay is defined by the relations (b;,a;) = 2md;;. The lattice
d
F={ber:b=3 ¢b; ez}
j=1

generated by this basis is called the dual lattice to I'. The cell of the lattice I can be defined similarly
to (5.12), however, it is more convenient to consider the central Brillouin zone of the dual lattice:

ﬁ::{keRd:|k|<|k—b|,O#bef}. (5.13)

The domain Q is a fundamental domain of the lattice I'. Denote 1] = meas (2, \§~2| — meas (2, and note
that |Q||Q] = (27)?%. Let ry be the radius of the ball inscribed in clos 2. Note that

k+b|>r, keclosQ 0#bel. (5.14)

We put B(r) == {keR?: k| <r}, r > 0. Let H3(€;C") be the subspace of functions from
H#(£2;C") whose I-periodic extension to R? belongs to Hy (R%;C").
The discrete Fourier transform {Vi,}, i + Vv is associated with the lattice I":

v(x) = Q72 el®¥ xeq.
bel
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This transform is a unitary mapping of lo(I'; C™) onto Lo(€2; C™):
[IvePdx =3 ol
Q bel’

5.3. The Gelfand transform. Initially, the Gelfand transform U is defined on functions of the
Schwartz class S(R%;C") by the following relation:
V(k,x) = Uv)(k,x) = Q72 emkxtay(x +a), veSRLCT), xkeR”
acl
Next, U extends by continuity up to the unitary mapping:

U : Ly(R%C) — /@L2(Q;(C”)dk = K. (5.15)
0

The relation v € HP(R% C") is equivalent to the fact that v(k, -) € HP(€; C") for almost every k €
and

// (1 (D + 1) 5(k, %)[2 + [¥(k, %)|?) dxdk < oo.
Q Q

Under the Gelfand transform, the operator of multiplication by a bounded I'-periodic function
in Ly(R% C") turns into multiplication by the same function on the fibers of the direct integral K
from (5.15). Action of the operator b(D) on the function v € HP(RY; C") turns into action of the
operator b(D + k) on the function v(k,-) € HP(Q;C").

6. Direct Integral Expansion for the Operator 4. The Operators A(k)

6.1. The forms a(k) and the operators A(k). We put $ = Lo(©2;C") and . = Lao(2;C™).
Consider the operator X(k) :  — 9., k € R?, given by

(X (K)u)(x) = h(x)b(D +k)(f(x)u(x)),
Dom X (k) = {u € Ly(;C") : fue HP(Q;C")} =: D.
Consider the quadratic form
a(k)[u, u] = || X (k)ul7,q) = /(g(X)b(D +k)f(¥)u(x),b(D + k) f(x)ux))dx, ued. (6.2)
Q
Using the discrete Fourier transform and relations (5.2) and (5.5), it is easily seen that

(6.1)

aollg ™ I72 ax (k) [u,u] < a(k)[u, u] < aif|gl|r. a.(k)[u,u], ueD, (6.3)
for any k € R where
a(K)uu] =Y [b+k*[Fpl°, v=fueH(Q;C). (6.4)
bel

Combining this with (5.10), we obtain

CO/|(D—|—k)p(fu)|2dxga(k)[u,u] §01/|(D—|—k)p(fu)|2dx, ueo,
Q Q

where the constants cg, ¢; are defined by (5.11). Hence, the operator X (k) is closed, and the form (6.2)
is closed and nonnegative. The self-adjoint operator in L9(€2; C™) corresponding to the form a(k) is
denoted by A(k). Formally, we can write

Ak) = f(x)*b(D + k)*g(x)b(D + k) f(x). (6.5)
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6.2. The direct integral for the operator .A. The operators A(k) allow us to partially diago-
nalize the operator A in the direct integral IC (see (5.15)). Let u = Uu, u € Doma. Then

t(k,-) € Doma(k) = D for almost every k € €0, (6.6)
afu, u] = / a(k)[fi(k, -), f(k, )] dk. (6.7)
Q

On the contrary, if u € K satisfies (6.6) and the integral in (6.7) converges, then u € Dom a and (6.7)
is satisfied. Thus, under the action of the Gelfand transform, the operator A turns into multiplication
by the operator-valued function A(k), k € €2, in the direct integral K. All this can be briefly expressed
by the following relation:

UAU = / ®A(k) dk. (6.8)
a

6.3. Incorporation of the operators A(k) in the abstract scheme. For k € R? we put
k
k|’
and consider ¢ as the perturbation parameter. At the same time, all constructions will depend on the
parameter @ € S, and we should take care about the uniformity of estimates with respect to this
parameter.

Applying the method described in Sec. 2, we put $ = Lo(Q2;C") and $, = L2(Q2; C™). According
to (5.4) and (6.1), we have

XK)=hY bs(D+K)’f=n> bz (f)kﬁ"YD"’f

k=10, t=|k, 6=

|Bl=p IBl=p <B
=h Z bs Z <ﬁ>tlﬁ—vlgﬁ—'yD7f'
B=p <8 '

Hence, the operator X' (k) can be written as

P
X(k)=X(t,0)=Xo+ Y _ t/X;(0).
j=1
Here the operator

Xo=h > bgD’f=nbD)f

18l=p
is closed on the domain
Dom X = {u € Ly(%C") : fue HP(Q;C")} =D, (6.9)
the “intermediate” operators X;(0), j =1,...,p — 1, are given by
X;0)=h> bg > (f > 6°"D7f (6.10)

1Bl=p <8, [rl=p—j
on the domains o
Dom X;(0) = {u € Ly(;C") : fue HP7/(Q;C")}, (6.11)
and the operator
Xp(0) =h Y bs6”f = hb(6)f
18|=p
is bounded from Lo(€2; C™) to La(€2; C™).
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From (6.9) and (6.11) it follows that Condition 2.1 is satisfied:
Dom Xy C Dom X;(0) C Dom X,(0) = L2(;C"), j=1,...,p—1

By (5.5),
1 1
[ Xp(O)]] < af gl | Loo- (6.12)
It is easily seen that the kernel of the operator Xj is given by
N := Ker Xg = {u € Ly(2;C") : f(x)u(x) =c e C"}, (6.13)

whence dim 9t = n; cf. [8, Proposition 5.1], where this fact was checked in the case where f = 1,,.
Let n, = dim Ker X. The relation m > n implies that n, > n. Moreover, since

N, = Ker X = {q € Ly(Q;C™) : h*q € HP(Q;C™) : b(D)*(h*q) = 0},

then the following alternative is implemented: either n, = oo (if m > n), or n, =n (if m = n).
From [8, Proposition 5.2] it follows that Condition 2.2 is satisfied, namely, for j = 1,...,p — 1 we
have

1 ()l () < CjlXoulliyi0), weD, (6.14)

where

G =atay ol o i (X S (7)) (6.15)

1Bl=pv<B, |vl=p—j 7

Note that the constants 6’]- do not depend on the parameter 8 € S*!, but depend only on d, p, j,
Hg”Loo7 Hg_l”Low o, a1, and 7.

By the compactness of the embedding of Dom a(0) = ® in L9(€2; C"), the spectrum of the operator
A(0) is discrete. The point A\g = 0 is an isolated eigenvalue of the operator A(0) of multiplicity n, the
corresponding eigenspace 1 is given by (6.13).

Using variational arguments, by the lower estimate (6.3) and (6.4), it is easy to estimate the distance
d° from the point \g = 0 to the rest of the spectrum of .A4(0):

d® > aollg L I HIE (2r0) %P (6.16)

Cf. [3, Chap. 2, Sec. 2.2], where such estimate was obtained for the second-order operators, and also [8,

(5.17)], where the case f = 1,, was considered.
0

Following the abstract scheme, we fix a positive number § < min{ 26’ 4

1
}. Taking (6.16) into

account, we put

0 = min ozorgp L (6.17)
g e llf 7, 4

Inequalities (6.14) allow us to choose the constant Cj from (2.2) as follows:
Co = max{1,C1,...,Cp 1}, (6.18)

where the constants 6’]- are defined by (6.15). The constant Cy depends only on d, p, ||lgllz.., 197 | Le 5
ap, a1, and 7. (Note that the constant Cjy does not depend on f.)

The constant C° = max {(p — 1)Cy, || X,(0)]|} (see (2.4)) now depends on €. Taking (6.12) into
account (and overestimating the constant), we take the value

1 1
co = max{<p —1)Co,at gl zwnfan} ,
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which does not depend on 6. According to (2.4), we put

0 =vs(Cco)t = Vo : (6.19)

- 1 1
max {<p ~1)Co,af ngzmumw}

Note that t° < 1, since (p — 1)Cp > 1 and 6 < 1. Hence,

1 . 1 1 1 g1 1 o 1 1
< () <dway Tlgl AL <47 ag"ay T Ngl 2 g™ I 2 A2 L 2o < ro.

1 f el f 1|z > 1. Thus, the ball B(t°) lies inside the ball B(rp) and is thus entirely contained
in Q.

In the last passage, we have used the obvious inequalities a9 < a1, |gllz..[lg” L. > 1, and

6.4. Nondegeneracy of the spectral germ. From the lower estimate (6.3) and (6.4), tak-
ing (5.13) into account, we deduce that

a(Ofu,u) = aollg LI M2 kP ul?, . ueD, ke cosh,

Thus,
A(K) > ¢, |k[*I, k€ clos (), (6.20)
where
e. = aollg T 17712 (6.21)
This verifies that Condition 3.1 is fulfilled.
Thus, we have made sure that the operator family A(k) =: A(¢, 0) satisfies all the assumptions of
the abstract scheme. It is essential that d, ¢, and ¢, do not depend on 0 (see (6.17), (6.19), (6.21)).
Now the analytic (in t) branches of the eigenvalues \;(¢, @) and the analytic branches of the eigen-
functions ¢;(t,0), j = 1,...,n, [t| < t° of the operator family A(t,0) (see Sec. 2.3) depend on 6.
From (6.20) it follows that

Ni(t,0) > et j=1,....n, t=k <t (6.22)
Expansions (2.11), (2.12) take the form
Ni(t,0) = v (0P 4+ (0P 4. j=1,...,n, (6.23)
0i(t,0) = w;(0) + (@)t +..., j=1,....n.

From (6.22) and (6.23) it follows that v;(@) > ¢4, j = 1,...,n. This implies (see (2.13)) that the germ
S(0) of the family A(t, ) is nondegenerate independently of € and

S(6) > e, In. (6.24)

7. The Effective Characteristics in the Case where f =1,

7.1. The operator A. The case where f = 1, is basic for us. In this case, we agree to mark all
objects by “hat”. Then the operator A acting in Ly(R%; C") is given by

~

A= bD)"g(x)b(D), (7.1)
and the corresponding operators fl(k) = X(t, 0) acting in Ly (€2; C") take the form
A(k) = b(D + k)*g(x)b(D + k) (7.2)

(with periodic boundary conditions).
If f =1,, kernel (6.13) consists of constant vector-valued functions:

N ={ue Ly(%C") : u(x) =c € C"}. (7.3)



The orthogonal projection of the space L2(€2; C™) onto the subspace N acts as averaging over the cell:

Pu= Q| /u(x) dx, ue€ Ly(Q;C"). (7.4)
Q
Now parameters (6.17), (6.19), and (6.21) take the form

5 = min { 207 1} , (7.5)

gz 4
~ 1
5
70 = (9)2 AN (7.6)
wax{ (o~ Cavaf ol |
& = aollg Iz (7.7)
By (6.20) with f = 1,,, we have
AKK) > & k[*I, ke closQ. (7.8)

7.2. The operators 2(0), ]:?(0), and §(0) For the operator family /T(t,@), the operators Z, R,
and S introduced in abstract terms in Sec. 2.2 depend on the parameter 8. They were constructed
in [8, Sec. 5.3].

To describe these operators, we introduce the matrix-valued function A(x) of size n x m, which is
a I'-periodic solution of the problem

b(D)* g(x) (HDIA(X) + 1) = 0, / Ax) dx = 0. (7.9)
Q

Here the equation is understood in the weak sense: for each C € C™ we have AC € HP (€;C™) and
/(Q(X)(b(D)A(X)C +C),b(D)n(x)) dx =0, € H(Q;C).
Q
According to [8, Sec. 5.3]), the operator Z (0) takes the form
Z(0) = [A]b(6)P, (7.10)

where [A] is the operator of multiplication by the matrix-valued function A(x). The operator R(6) is
given by
R(6) = [h(b(D)A + 1,,)]6(8)|5- (7.11)

Then (see [8, Sec. 5.3]) the spectral germ §(0) = ]?2(0)*]:?(0) acts in the subspace 9N (see (7.3)) and is
represented as

5(8) = b(8)*¢°b(6), 6 c S (7.12)
Here ¢° is the so-called effective matriz. The constant matrix ¢° of size m x m is defined by
8 =197 [ G dx. G0 i= 9(x) (DIAGK) + 1), (713)
Q

It turns out that the effective matrix ¢° is positive definite. This implies once again that the spectral
germ S(0) is nondegenerate, which has been already discussed in Sec. 6.4.
Let us mention some properties of the effective matrix; see [8, Propositions 5.3-5.5].
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Proposition 7.1. Let ¢° be the effective matriz defined by (7.13). Denote

-1

g=10 [gtdx o= (101t [ g6t ax
Q Q
We have
0
g<g <g. (7.14)

In the case where m = n we have ¢° = g.

Estimates (7.14) are known in homogenization theory for particular DOs as the Voigt—Reuss brack-
eting. Inequalities (7.14) imply the following estimates for the norms of the matrices g° and (¢°)~!:

19° < llgllews 16" < llg Hlpe.- (7.15)

Proposition 7.2.

1°. Let gp(x), k = 1,...,m, be the columns of the matriz g(x). The identity ¢° = g is equivalent to
the relations

b(D)'gu(x) =0, k=1,...,m. (7.16)

2°. Let Iy(x), k= 1,...,m, be the columns of the matriz g(x)~'. The identity ¢° = g is equivalent
to the representations

L,(x) =10 + b(D)vi(x), 19eC™ v, e H(Q:CY); k=1,...,m. (7.17)
Remark 7.1. In the case where ¢° = g, the matrix g(x) is constant: g(x) = ¢° = g.

Below we will need the following estimates for the periodic solution A of problem (7.9), which can
be easily checked:

1 1
1Rb(D)A (e < 1212 9l17.. (7.18)
I _ 1 o1 1
1Al a0y < 1903ag * (2r0) Pllgll?_llg™ 7. = 1913Ca, (7.19)
1 1 1 1 ! 1~
1Ay < 1903aq 2 lgll7_llg™ 1 (3 @ro) 20 )* —jQ3Ch. (7:20)
1BI<p

7.3. The effective operator. Using (7.12) and the homogeneity of the symbol b(k), we have
S(k) :==t5(8) = b(k)*¢°b(k), k€ R% (7.21)
Expression (7.21) is the symbol of the DO
A° = p(D)*¢°b(D), Dom A° = H?(R? C™), (7.22)

which is called the effective operator for the operator A.

Let A°(k) be the operator family in Ly(€; C") corresponding to the operator A°. Then A°(k) is
given by the differential expression b(D +k)*¢b(D +k) on the domain H2?(Q; C™). Similarly to (7.8),
using (7.15), we check that

A°(k) > &, kI, ke closQ. (7.23)
By (7.4) and (7.21),
t*?S(0)P = S(k)P = A°(k)P. (7.24)
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7.4. The operator G (0). For the operator family /T(t, 0), the operator G that is defined in abstract
terms by (2.22) depends on the parameter 6 and takes the form

G(0) = (R(0)P)*X1(0)Z(0) + (X1(0)Z(0))*R(6)P.
Denote by By (8;D) the DO of order p — 1 such that X;(6) = hB1(6;D) (see (6.10) with f = 1,,).
Then
D)= by > <B>05_7D‘*.

1Bl=p  y<B:lyl=p—1 7
Using (7.10) and (7.11), we obtain

G(6) = b(8) g™ (6)b(6) P, (7.25)
where g1 (@) is the Hermitian matrix of size m x m given by
gV(0) =19 1/( (x)"B1(0; D)A(x) + (B1(0; D)A(x))"g(x)) dx. (7.26)

Q
We distinguish some cases where the operator (7.25) is equal to zero (see [22, Proposition 3.3]).

Proposition 7.3.
1°. Suppose that relations (7.16) are satisfied. Then A(x) = 0, whence ¢ (6) = 0 and G(8) =
for any 6 € S,
2°. Suppose that representations (7.17) are satisfied. Then g™ (8) = 0 and 6(0) = 0 for any
6 e siL.
3°. Let n = 1. Suppose that the matrices g(x) and bg, || = p, have real entries. Then @(0) =0
for any 6 € S,

Remark 7.2. In the general case, the operator 6(0) may be nonzero. In particular, it is easy to give
examples of the operator A = b(D)*¢(x)b(D) in the case where n = 1 and ¢(x) is a Hermitian matrix
with complex entries such that the corresponding operator G(8) is not zero.

8. Approximation of the Operator Exponential e AT

8.1. Approximation of the operator exponentlal AT The principal term. We apply
Theorems 3.1, 3.2, 3.3 to the operator family A(t,0) = A(k). By (7 24),

18O B _ ~A )T (8.1)

It remains to specify the constants in estimates. The constants g, Cp, 1, and ¢, are defined by (7.5),
(6.18), (7.6), (7.7) and do not depend on 6. They depend only on the following set of parameters:

d, p, ag, a1, |91z g7 1., the parameters of the lattice T, (8.2)

which for brevity is called the problem data. Next, according to Remark 3.1, the constants 68, 59, 610
from Theorems 3.1, 3 2, 3.3 (as applied to A(t 0)) are majorated by the polynomials of the variables

Co, HX Il, 5 2P, e 2 with positive coefficients depending only on p. Now the operator X' depends

on 6, but its norm is estimated by the value al I gH i..» which is independent of ; see (6. 12) with

f = 1,. Thus, after possible overestimation, the constants C’g, Cg, Cio (for the operator family A(t 0))
depend only on parameters (8.2).

Applying Theorem 3.1 to the operator family A\(t,B) = ./Zl\(k) and using (8.1), we obtain the in-
equality
Cs

<, . T>0, |kl <P (8.3)
L2(Q)—>L2(Q) 7'2p +1

He—ﬁ(k)f _ e—ﬁO(k)Tﬁ‘
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Let us show that, within the margin of the admissible error, we can get rid of the projection Pin (8.3)
(replace P by the identity operator). From (6.24) (with f = 1,), (7.12), and the homogeneity of the
symbol b(€) it follows that

b(€)*g°b(€) > G.|€|*P1,, €€ R (8.4)

1
Hence, using the discrete Fourier transform, by (5.14) and the elementary estimate (x2» + 1)e™* < 2
for x > 0, we obtain

He—ﬁO(k)T(I_Ig)‘ < sup o—Cx[b+k|?PT < e—E*TSPT
Lo(Q2)—L2(2) O#be‘
2 2max{1 E_zlpr_l} (8:5)
< . < 0 >0, kecosQ.
(@rePr) 41 T2 +1
Now from (8.3) and (8.5) it follows that
N . A
[e-tor — =200 < B0 M2 (3.6)
LQ(Q)—)LQ(Q) T2p _|_ 1
~ ~ _ 1
where C} = Cg + 2max {1,8* 2pr0_1}.
For |k| >tV the estimate is trivial. By (7.8) and (7.23),
He—ﬁ(k)T _ e—-ZO(k)T S 26—8*|k‘2p7' S 26—8*(?0)2177” T 2 07 k c C].OSQ \ B(?O)
LQ(Q)—)LQ(Q)
Combining this with the elementary estimate (x 2 + 1)e™® < 2 for z > 0, we obtain
!
He—ﬁ(k)T o Ar < 4 _ 4max{l,e, ()"}
Lo (Q)—L2(Q) — (E*(ZO)sz)glp +1 Tzlp +1 (8.7)

>0, keclosQ)\B(E).
As a result, estimates (8.6) and (8.7) imply the following result.

Theorem 8.1. Suppose that A(K) is the operator family of form (7.2) and A°(K) is the effective
operator family defined in Sec. 7.3. Then we have

G

; < , 7>0, keclos Q. (8.8)
2()=L2(2) r2p 4]

He—ﬁ(k)f _ AT

The constant Cy depends only on the problem data (8.2).

Under the additional assumption that 6(0) = 0, we can apply Theorem 3.2 to the operator family

A(t,0) = A(K). This yields

~

Cy

He—f?(kﬁ - e—ﬁ°<k>713( < 7 r>o0, [k <iO (8.9)
Lo(Q2)—L2(2) TP 4+ 1
By analogy with (8.5),
1
~p -2 _
He‘ﬁo(k)T(I— P)‘ < 2max{11,c* "o }, 7>0, keclos. (8.10)
LQ(Q)—}LQ(Q) TP + 1

Next, by analogy with (8.7), we have

_1
_ 4max{1,e P ()2}

1 , >0, kecosQ\B(tY). (8.11)
LQ(Q)—)LQ(Q) TP + 1

He—ﬁ(k)f _ AT
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Combining estimates (8.9)—(8.11), we arrive at the following result.

Theorem 8.2. Suppose that the assumptions of Theorem 8.1 are satisfied. Let 6(0) be the operator
defined by (7.25), (7.26). Suppose that G(0) = 0 for any 6 € S*~1. Then we have

Co

He_“z(k)T _ AT < , 7>0, keclos. (8.12)
Lo(Q)=L2(Q)  7p 41

The constant Cs depends only on the problem data (8.2).

8.2. Approximation of the operator exponential e~AM)7 in the “energy” norm. Now, we

apply Theorem 3.3 to the operator family A(t,8) = A(k). By (7.4), (7.10), and (7.24),
([ + tpé(o)) eSO P _ (I + [A]b(k)ﬁ) e~ 0T B — ([ 4 [A]p(D +k)) e~ W7 B,
Using this identity and applying Theorem 3.3, we obtain
Hj(k)m (e_“z(k)T — (I +[A]B(D + k) e Ak )TP)‘ <Cior 272, 7>0, [k <i°
. (8.13)
Next, we show that, within the margin of the admissible error, the operator ./Al(k)l/ 2e=AM)T P ip (8.13)
can be replaced by A(k)Y/2e~A" 87 Similarly to (8.5), using (5.5), (5.14), (8.4), and the elementary

1 1
estimate x2 T 2p e <1 for x > 0, we obtain

H,Z(k)l/“é’e—ﬁ()(kﬁu - P) = ||nb(D + k)= A0 (1 - P)|

Lo(Q2)—L2(2)

L2(Q)—La(Q) L2 (2)—L2(2)

_ (8.14)

~ 1 1 _1_1 11
< al HgHL sup |b+ k\pe_c*‘bJrk'QpT <aflgl}_c* ProtrT2Tw >0, keclosQ.
0#£bel’

Together with (8.13) this implies
HﬁwyﬂQfﬂwr_QquMD+kﬁﬁeﬂmwﬁ

<Gr 2w, r>0, k<P
LQ(Q)—)LQ(Q)
(8.15)

~ -~ 1 1 _1_ 1
where C}, = 010 +atlglz e gl
For |k| > t° estimates are trivial: each term under the norm sign in (8.15) is estimated separately.

By the spectral theorem and inequality (7.8),

— 1 ~
< sup Ve M <E (%\0)_17'_;_211’, >0, kecosQ)\ B#).

g
Lo (Q)—)LQ(Q) )\26‘* (20)217

(8.16)
Similarly, using (7.23), we obtain
— 1 ~
Hﬁo(k)l/%—«@(kﬁ <E T@EY 2w, 7> 0, ke cosQ\ B(EY).
Lo(Q2)— L2 ()
Combining this with (7.15), we see that
Hﬁ(k)l/%—ﬁ“(kﬁ — th(D 4 k)e A0
LQ(Q)—>L2
— _ _ O
<Yl g~ M7 " 1%®+m A < gliz gz, [y e A0 | (37)
1 ~
< gl _llg ME e ), 7> 0, ke dos@\ BE°),
It remains to estimate the operator
AK)2[AI(D + k)e X 07P = (j( )1/2[A ]ﬁm) (b(D +k)e—ﬁ°<k>fﬁ) . (8.18)
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Here ﬁm is the orthogonal projection of ), = Ly(£2; C™) onto the subspace of constants. From (5.5),
(7.18), and (7.19) it follows that

—~ ~ ! 1 1
IA) (Al Pl L () o) = 12172 [BB(D + k) Al ) < ll9ll7 (1 + afoCA> ; (8.19)
where 2r = diam . Similarly to (8.17), we have

o~ 1 _
(D + k)07 || < g7z _|(6")/20(D + kgm0

1 1 Lo _ (8.20)
< Hg_lem’c\* PEO 72T >0, kecosQ )\ B(t0).
Combining (8.18)—(8.20), we obtain
~ ~ —~ 1 1 1 _1
| A< 2 a76(D + K)e= A7 B < llgliz_llg ™17, (1 T afrch) BETE

>0, k € closQ\ B(?).
As a result, from (8.15)—(8.17) and (8.21) it follows that

H.,Zt\(k)l/2 (e‘ﬁ(k)T - (I + [A]b(D + k)ﬁ) e_“zo(k)T) < (/%’7'_%_21?, >0, k € clos(,

Lo2(2)—L2(22) (8 22)

where L
— 1 1 L
& — max {@,A 2 (70) 1 (1 Flglz_llgt 7 (2+ afri’CA>> } -

Inequality (8.22) is interesting for 7 > 1. For 0 < 7 < 1 trivial estimates give the best order: each
term under the norm sign in (8.22) is estimated separately. By the spectral theorem,

H.Z(k)lme_ﬁ(kﬁ < sup A\/2e™ < 7'_5, >0, k € closQ. (8.23)

La()—L2(2) x>0

Similarly, by (7.15), we have
H ,Z(k)l/Q e—ﬁO(k)T

- th(D +K)e AT
L2 (Q)—)LQ (Q)

A\O(k)l/2e—ﬁ0(k)7

1 1 -
< ||g||iw||9_1||2w7_5, >0, k € closQ.

1 1
1
<ol o ™13 | L@ La(@)

To estimate the operator A(k)/2[A]b(D + k)e_ﬁo(k)Tﬁ, we apply (8.18), (8.19), and the inequality

Hb(D 4 K)e AT

13 _A0x)r
) < Hg l”[z/oo HA\O(k)l/Qe A° (k)

-1 ! _1
y S gl

Lo(Q)—La(Q La(Q)— L2 (2 (8.25)
>0, ke clos Q.
We obtain
o~ —~ 1 1 1 1
Ak1/2AbD+ke—fT°<k>TP( ERrE <1+a2rpc >T—2,
| A< 72(a76(D + ¥ ooy < IolE o™ E (140 riC 520

>0, ke clos Q.
Together with (8.23) and (8.24) this implies
H.%T(k)l/2 (e_j(k)T - (I + [AJo(D + k)ﬁ) e_“zo(k)T) < @,”7'_%, >0, keclosQ,

. (8.27)

L2 (Q)—)LQ (Q)

where
S é -1 é % p
Cs' =1+ gl _llg 17 {2+ afriCx .
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Applying (8.22) for 7 > 1 and (8.27) for 0 < 7 < 1, we arrive at the inequality
2max{C cy
L) La(@) ri(ra 4 1) (8.28)
7>0, ke clos .

[ A0)1/2 (74097 — (14 [AJp(D + k) P) e~ A"07)

Let us summarize the results.

Theorem 8.3. Suppose that the assumptions of Theorem 8.1 are satisfied. Let A be the I'-periodic
solution of problem (7.9), and let P be projection (7.4). Then for 7 >0 and k € clos Q we have

| A2 (74097 — (14 [AJp(D + K) P ) e=A"097) e < (ng oy (8.29)
Hﬁ(k)l/2 (e—f“k)f — (I + [AJB(D + k) e—ﬁ‘)(kﬁﬁ) ‘ Cy (8.30)

La(Q)—L2(9) — 7—%(7—21;) +1)
The constant C3 depends only on the problem data (8.2).

Proof. Inequality (8.28) implies (8.29) with the constant Cs = 2max{CY,CY
Inequality (8.30) is proved by analogy with the proof of estimate (8.28): 1t follows from (8.13), (8.16),
(8.17), (8.21), (8.23), (8.24), and (8.26).

We also need to estimate the operator e =A™ — (I + [A]b(D + k)ﬁ) e~ A0 in the operator norm
in Ly(Q2; C™).
Proposition 8.1. Suppose that the assumptions of Theorem 8.3 are satisfied.

1°. For 7> 0 and k € clos Q we have

He—fﬂkﬁ - (I +[A]p(D + k)ﬁ) e AT < b (8.31)
LQ(Q)—)LQ(Q) 7—2p + 1
The constant Cy depends only on the problem data (8.2).
. In addition, suppose that G(B) = 0. Then for 7 > 0 and k € clos Q we have
n ~ n C:
He—*“(kﬁ - (I +[A]b(D + k)P) e~ A ) < . (8.32)
Lo(Q)—L2(Q2) T 4 1
The constant Cs depends only on the problem data (8.2).
Proof. Similarly to (8.18), we have
[AJB(D + k)e X 07p = ([A]ﬁm> (b(D + k)e‘ﬁo(k)7ﬁ> . (8.33)
By (7.19),
~ 1
APl o) La(e) = 12172 1ALy 0) < Ca- (8.34)
Combining this with (8.25) and (8.33), we deduce
1
~ N 1 20 —1j|2 -
IAIBD +10 207 Pl 0y ey < Callg 1273 < X M s ke aos, (839)
T2 41
For 0 < 7 < 1, using the identity b(D + k)e_“ZO(k)T]3 = b(k)e‘“‘TO(k)T]3 and (5.5), we obtain
1 204;7“]” ~
|b(D + k)e™ TP||L2 Qoo < ofr] < 7 P 0<7<1, keclosQ. (8.36)
T2 41
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From (8.33), (8.34), and (8.36) it follows that
1
20 oy ~
HABD + k)e O P ooy < - 2T 0<r <1, kedos. (8.37)
T2 41

As a result, relations (8.8), (8.35), and (8.37) imply the required estimate (8.31) with the constant
~ ~ 1
Cy = Cy + 2C\ max {Hg_lHiw afr’f}

To check statement 2°, we should estimate operator (8.33) differently. Instead of (8.35) we use the
inequality

1
2CAllg~ 7

—~ - 1 .
IIAJB(D + K)e ™07 Pl )0y < CA||9_1||ZOOT_é < . , 721 kecosQ. (838
Tr +1
Instead of (8.37) we apply the estimate
1
L 2C afr] 5
IABMD +X)e A" O P 1) o) < Crodry < T2 0<r <1, kedosQ. (8:39)
Tr +1

As a result, inequality (8.12) (which is valid under the condition G(8) = 0) and (8.38), (8.39) imply
~ -~ 1 1
estimate (8.32) with the constant Cs = Cy + 2C max{Hg_lem,af Tf}.

9. Approximation of the Operator fe_A(k)Tf*

9.1. Incorporation of the operator family A(k) in the framework of Sec. 4. We return to
consideration of the operator famlly (6.5) in the general case where f # 1,. Now the assumptions of
Sec. 4 are satisfied with § = § = Ly(2;C™) and $H. = Lo(2;C™). The role of the operator A( ) is
played by A(t,0) = A(k) and the role of the operator A(t) is played by A(t,0) = A(k) (where k = t6).
The isomorphism M acts as the operator of multiplication by the matrix-valued function f(x). The
operator @ (see (4.2)) is the operator of multiplication by the matrix-valued function

Q(x) = (f(x).f(x)") 7"
By (5.3), the matrix-valued function Q(x) is positive definite and bounded. The block Qg of the

operator () in the subspace N (see (7.3)) is the operator of multiplication by the constant matrix

Q=(ff) =10 / (F(0)£()7) " dix.

Q
Next, My (see (4.13)) is the operator of multiplication by the constant matrix
fo= (@72 = (FF)"2. (9-1)
Obviously, we have
ol < M fllzw 11 < 1 lwe- (9:2)
Let A° be the effective operator for A; see (7.22). We put
A’ = fo & fo = fob(D)"3°b(D) fo. (9:3)
Let A%(k) be the corresponding operator family in Ly(2; C*). Then
A (k) = fo (k) fo = fob(D +k)*¢°b(D + L) fo (94)

(with periodic boundary conditions). From (7.23), (9.2), and the relation ¢, = || f _lHEi it follows
that
AY(k) > ¢, |k|?PI, ke closQ. (9.5)
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9.2. Approximation of the operator f e~ AT f*. The principal term. We apply Theorems 4.1,
4.2, and 4.3 to the operator family A(¢,60) = A(k). By (7.24),

1 £05(0) foP = fo A (k) foP = A°(k)P,
whence
foe TS ONT (P = foem 0T )P, (9.6)
It remains to specify the constants in estimates. The constants 6, Cp, t°, and ¢, are defined by (6.17),
(6.18), (6.19), (6.21) and do not depend on 6. They depend only on the following set of parameters:
d, p, ao, a1, |9z 19 N zes Iflees I Iz, the parameters of the lattice T, (9.7)

which for brevity is called the problem data. Next, according to Remarks 3.1 and 4.2, the constants
from Theorems 4.1, 4.2, 4.3 (as apphed to A(t,0)) are majorated by polynomials of the variables Cp,

HX I, 1Xpll, 572, 6" 2P and ¢, 2 with positive coefficients depending only on p. Now the operators

Xp, X, depend on 6, but their norms are estimated by the values al HgHLOO and al HgHLOOHfHLOO,
respectlvely, which do not depend on 6; see (6.12). Thus, after possible overestimation, the constants
from Theorems 4.1, 4.2, 4.3 (applied to the operator family A(¢,0)) depend only on parameters (9.7).

Applying Theorem 4.1 to the operator family A(t,0) = A(k) and taking identity (9.6) into account,
we obtain the inequality

CstHLm

, 720, [k <t (9-8)
Q)—>L2(Q) o +1

er—A(k)Tf* _

Let us show that, within the margin of the admissible error, the projection Pin (9.8) can be replaced
by the identity operator. From (8.4) and (9.2) it follows that

fob(€)"9°b(€)fo = cul€[F1n, & €RY (99)
Hence, using the discrete Fourier transform, similarly to (8.5), we obtain

Hfoe—AO(k)TfO(I _ ﬁ)‘

— 2 _ 2p
<|FIlE.. sup_e o PHRT < | e

L2 (Q)—)LQ (Q)

0¢beF
(9.10)

2(| f]2 U2 2 Le, ryt ~

< 1117 /1] maX{ e } £50 ke dosd.

(c*ro )2P+1 T 41
Now, from (9.8) and (9.10) it follows that
C’

er—.A(k)Tf* _ foe—AO(k)TfO‘ SHfHLoo’ >0, |k < ny (9.11)

LQ(Q)_)LQ(Q) o T 2p _|_ 1

!
where C% = Cs + 2max{1, ¢, *r;'}.
For |k| > t° the estimate is trivial. By analogy with (8.7), from (6.20), (9.2), and (9.5) it follows
that

< 2 2 e—C*|k‘2pT < 2 2 e—C*(t0)2pT
iy < < 2|fIl3..

4 1 * to Q
< AIE max{lea )7 e BEO)

T2P—|—1

er—A(k)Tf* — foe —A°(Kk) £ ‘

(9.12)

As a result, estimates (9.11) and (9.12) imply the following statement.
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Theorem 9.1. Let A(k) be the operator family of form (6.5). Suppose that the matriz fo is given
by (9.1) and the operator family A°(k) is defined by (9.4). Then we have

< 161 , 7>0, ké€clos Q. (9.13)
LQ(Q)—)LQ(Q) 7—2p + 1

| fema00r pr— poem A0 g,

The constant C; depends only on the problem data (9.7).
Similarly, from Theorem 4.2 we deduce the following result.

Theorem 9.2. Suppose that the assumptions of Theorem 9.1 are satisfied. Let @(0) be the operator
defined according to (7.25), (7.26). Suppose that G(8) =0 for any 6 € S*1. Then we have

Ca

< , 7>0, keclos. (9.14)
Lo(Q2)—L2(2) TP + 1

er—A(k)Tf* ~ foe —A°(Kk) £ ‘

The constant Co depends only on the problem data (9.7).

9.3. Approximation of the operator fe_“z(k)T f* in the “energy” norm. Now, we apply
Theorem 4.3 to the operator family A(¢,0) = A(k). By (7.4), (7.10), and (9.6),

(1+°2(0)) foe " SOR [P = (1 -+ [AJp(K)P) foe™ 409" fo P
= (I +[AJ(D + k)) foe ¥ fy P.

Using this identity and applying Theorem 4.3, we obtain

< 0117'_;_ 2 ;
L2 (2)—L2(Q) (9.15)

>0, |k <O

| &)1 /2 (fem A0 p* = (1 + [AIB(D + K)) foe 4" foP)

Next, we show that, within the margin of the admissible error, the operator .,Zt\(k)l/ 2 foe_AO(k)T foﬁ
in (9.15) can be replaced by A(k)Y/2 foe=A M7 £y Similarly to (8.14), from (5.5), (9.2), and (9.9), it
follows that

"A\(k)l/QfOe—AO(k)TfO(I _ ]3)‘

- th(D + k) foe 0T f (1 - 13)‘

La(Q)—La () La(Q)—L2(2)

1 9 1 -l 11
<a2||g||Lw||f||Lm sup [b + k[PecPHT < 2 gl _NFIF e ® rgtr 272
0#£bel’

for 7 > 0 and k € clos Q. Together with (9.15), this implies

[A00!7% (e 07y = (1 4+ WO +10P) foe o) | SCE

>0, k| <,

1 1 _1_ 1
— 2 —1
where C3 = Cui +of llgll7_IfII7cex® *rg
Estimates for |k| > t? are trivial: each term under the norm sign in (9.16) is estimated separately.

By the spectral theorem and estimate (6.20),

b

- th(D Y K)fe

_ HA(k)l/ze—A(k)

Lo2(2)—L2(22)
4 _ - (9.17)

<|IfllLe sup Ve M < I fll Do cs 27 (to)_17_2_2p, >0, ke closQ\B(tO).

A>cy (89)2P
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By analogy with (8.17), using (9.5), we have
HA 1/2fe—A(ka‘

a2+ 1o 05|

< llgllz llg™ 11 [ 4°00) 2200 gy | (9.18)
1 1 _1 _1_ 1 ~
<lghz Mg 17 N lwes ()7 272, 7> 0, k€ clos )\ B(t°).
It remains to estimate the operator
AK)Y2[AJ(D + k) foe AW £, P = (ﬁ(k)l/2 [A]ﬁm> (b(D + k) foe A0 foﬁ) . (9.19)
Similarly to (9.18),

5D 1) poe 2007 gy | < g7 || 4000y 24007 o |
(9.20)

_1n: o 0n—] —1_1 ~ 0
< g M e () 275, 750, k€ clos @\ B(E)).

Combining (8.19), (9.19), and (9.20), we obtain
~ 1 11
A0 241D + 10 foe 207 P | < gl _llg™ 1711 ln.e (1+ach> (1) 1r "2 e,

>0, k € closQ\ B(t?).
(9.21)

As a result, from (9.16)-(9.18) and (9.21) it follows that
| A)2 (fem A0 = — (14 [AI(D + K)P) foe™ 4097 £y )|

La(Q)—L2(Q) (9.22)
7> 0, k €clos{,

where
ol - max{cg,ufuLch o (10)- <1+ lglZ_llg M2 (24 a? r@))}

Inequality (9.22) is interesting for 7 > 1. For 0 < 7 < 1 trivial estimates have better order. By
analogy with (9.17), using the spectral theorem, we obtain

“A\(k)l/2fe—¢4(k)

_ HA(k)1/2e—A(k)

L2(Q)—=La(Q) La(Q)—L2(2)

1 ~ (9.23)
<l sup AY2e™ < || fllooT"2, T3>0, k € clos Q.
A>0

Similarly, by (7.15) and (9.2),

| A1) 72 foe 409 1, <Nl llg™ 11, [ 400072400 |

L2(2)=L2() La(Q)—L2 () (9.24)
1 ~
< ||9||im||9_1||ioo||f||LooT_27 7> 0, k€ closQ.

To estimate the operator fl(k)l/z [A]b(D+K) foe=A"®)7 £, P we apply (9.19), (8.19), and the inequality

D + 10 s0e 40 |

<||g_1||2 HAO k)2 —.A(krf‘

Q)—L2(02) Lo(Q2)—L2(2) (925)

< ||g—1||zw||f||Lmr—%, 7>0, k € clos ).
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Hence,

4002 AJB(D + 16) foe =407 o P < llglz g™ 1311w (1 +af nOA>

>0, ke clos Q.
(9.26)

‘ ‘ L2 (Q)—>L2 (Q

Together with (9.23) and (9.24) this implies

| &)1 /2 (fem A0 p* — (14 [AI(D + K)P) foe™ 4097 £y )| <t

La(Q)—L2(2) (9.27)
7> 0, k € clos,

where
Cy' = I fllLe + ||9||Loo||g_1||Loo||f||Loo (2 +af CA> :

Combining (9.22) for 7 > 1 and (9.27) for 0 < 7 < 1, we arrive at the inequality
2max{C cy’
L@@ ) (r» +1)  (9.28)
7>0, ke clos .

H/T(k)l/2 ( Fem AT pr _ (1 +[A(D + k)ﬁ) foe AT fo) ‘

Let us summarize the results.

Theorem 9.3. Suppose that the assumptions of Theorem 9.1 are satisfied. Let A be the I'-periodic
solution of problem (7.9), and let P be projection (7.4). Then for 7 >0 and k € clos Q we have

| A0)"/2 (e 4097+ — (1 + [AB(D + K)P) foe 097 fy )| Pt S 3 (Tflj 1y (9.29)
| A)"/2 (fe= 4097 £+ — (1 4 [A]B(D + K)) foe ™07 £y P)| < 5 (930

La(Q)—=L2() — 7_;(72,, +1)
The constant C3 depends only on the problem data (9.7).

Proof. Inequality (9.28) implies (9.29) with the constant C3 = 2max{C¥,C}’
Inequality (9.30) is checked similarly to the proof of estimate (9.28): it follows from (9.15), (9.17),
(9.18), (9.21), (9.23), (9.24), and (9.26).

We also need to estimate the operator fe= AT f*— ( + [A]b(D + k)P > foe= A7 fo in the operator
norm in Ly(€2; C™).
Proposition 9.1. Suppose that the assumptions of Theorem 9.3 are satisfied.

1°. For 7> 0 and k € closQ we have

C

—Ak)T px I (k)T 4
e + [A]b(D + k e” < . 9.31
Hf / ( [AJe( P >f0 fo Lo(@)=L2(9) ~ rap 4 ] (9:31)

The constant C4 depends only on the problem data (9.7). N
2°. In addition, suppose that G(0) = 0. Then for T > 0 and k € clos Q we have

C

H fem AT pr (I+ [A]b(D + k)P ) foe Ak < . (9.32)

The constant Cs depends only on the problem data (9.7).
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Proof. Similarly to (9.19), we have
[AJB(D + K) foe ™07 foP = (IA]Pn ) (b(D + k) foe ™07 fy P). (9.33)

Together with (8.34) and (9.25), this implies

1
A e S 1y S 20977 I

IAJBD + k) foe ™ M7 fo Pl Ly no@) < Callg  IE N2 < ;e )

) (9.34)
T2 4+ 1

7>1, ke closfl.

For 0 < 7 < 1, using the identity b(D+k)foe_AO(k)Tf0ﬁ = b(k)foe_AO(k)Tfoﬁ and relations (5.5), (9.2),
we obtain

1
—AY(K)T £ D 207 1| f1I7 3
I 30 foe 1Py < oprfflh < 0 <<t e dosf (035)
T2 4
From (8.34), (9.33), (9.35) it follows that
C é p 2
~ 2Cpafr ~
D +10) foe "M Pl ) ey < - I e g r 1 ke o (930)
T2 +1

As a result, relations (9.13), (9.34), and (9.36) imply the required estimate (9.31) with the constant

1 1
Ci=C\ 120, max{ug-lu ioonHLoo,afoHfH%m} -

To check statement 2°, we should estimate operator (9.33) differently. Instead of (9.34), we use the
inequality

1
_ 5 1y 1 2G|l I Il
IAIBD + %) foe ™ ®7 6Pl 1,00 100 < Callg Z Il ™2 < L :

T>1, ke clos Q.

Instead of (9.36), we apply the estimate

1
~ 1 QCAQQTP 2

”[A]b(D + k)foe_AO(k)TfOPHLQ(Q)—)LQ(Q) S CAafrf”f”%oo S 11 1HfHLoo7
Tr +1 (9.38)

0< 1<, k € clos Q.

As a result, estimate (9.14) (which is valid under the condition G(0) = 0) and (9.37), (9.38) imply
1
inequality (9.32) with the constant C5 = C2 + 2C) max { g7 ||]‘"||Loo,oz1 I IfI2 }

— At

10. Approximation of the Operator Exponential e

10.1. Approx1mat10n of the operator exponential e in the operator norm in Lg(Rd c™).

Consider the operator A of form (7.1) acting in the space Lo (Rd ; C™). By expansion (6.8) (with f = 1,,),
we have

—Ar _ -1 / e~ AT gk | y. (10.1)

Q
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Let A° be the effective operator (7.22). The operator e satisfies expansion similar to (10.1).
Hence,

He—ﬁf _ oA —AR)r _ —A(K)T

= ess-sup He
ke
Combining this with Theorems 8.1 and 8.2, we obtain the following results.

Lo (R4)— Lo (R?) La(Q)—=La(Q)

Theorem 10.1. Let A be operator (7.1) and A® be the effective operator (7.22). Then we have
Ci

, T72>0.
LyR)—SLa(RY) o 4

_ _ 720
He .AT_e AT

The constant C; depends only on the problem data (8.2).

Theorem 10.2. Suppose that the assumptions of Theorem 10.1 are satisfied. Let @(0) be the operator
defined according to (7.25), (7.26). Suppose that G(8) = 0 for any 6 € S*'. Then we have

~

Co

< , 7=>0.
LQ(Rd)—)LQ(Rd) TP + 1

[e-dr = o s

The constant Cs depends only on the problem data (8.2).

10.2. Approximation of the operator exponential e=A in the energy norm. Now, we

obtain approximation of the exponential e~7 in the “energy” norm relying on Theorem 8.3 and
expansion (10.1). Recall that, under the Gelfand transform, the operator b(D) expands into the direct
integral of the operators b(D + k), and the operator of multiplication by the periodic matrix-valued
function A(x) turns into multiplication by the same function on the fibers of the direct integral K
(see (5.15)). We also need the operator I := U~ [P)U acting in Ly(R% C"). Here [P] is the operator
in K acting on the fibers as the operator P. It is easily seen (cf. [5, (6.8)]) that IT is the pseudodifferential

operator with the symbol xg(§), where g is the characteristic function of the set , i.e.,

(Ilu)(x) = (2r)~ %2 / e85 () de. (10.2)

Q
It follows that the operator A/2 (e_“KT — (I + [A]p(D)ID) e_“KOT) expands into the direct integral of the

operators standing under the norm sign in (8.29), the operator A/2 (e‘ﬁT — (I +[A]p(D)) e_“‘TOTH)

expands into the direct integral of the operators from (8.30). Combining this with Theorem 8.3, we
deduce the following result.

Theorem 10.3. Let A be operator (7.1) and let AY be the effective operator (7.22). Let A be the
I-periodic solution of problem (7.9). Suppose that the matriz-valued function g is defined by (7.13).
Let 11 be operator (10.2). Then we have

Hﬁl/z (e_“ZT — (I + [AJb(D)TD) e—ﬁOT) < S is0 (03
L@ L2 © ph(rd 4 1)
H gb(D)e AT — gb(D)e—fT‘)Tn( Co r>0.  (10.4)

Lo La®D) © (23 4 1)
The constants Cs and Cg depend only on the problem data (8.2).
Proof. Inequality (10.3) follows from (8.29) and the direct integral expansion.
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Now, let us check inequality (10.4). By the direct integral expansion, from (8.30) it follows that
Cs

_Ar _ A0
[ 272 (e — (1 + [app(D)) A H)‘L2(Rd)%2(w) S ed a1 7> 0.
This estimate can be rewritten as
Jr . Cs
|9/26(D) (747 = (1 + [AJo(D)) e~ H)‘LQ((RdHL2<Rd> S tpbay 70
which implies
AME
Hgb(D e AT _ gb(D) (I + [A]b(D))e—fTOTH( < Gldlie (10.5)

L2 L2 3 (ra 4 1)
Using (5.4) and (7.13), we have
gb(D) (I + [AJp(D)) e ™41 = Gb(D)e AT+ > by > <ﬁ> (D’ A)Db(D)e AL

1Bl=p  v<B:]v[>1
(10.6)

Denote the second term on the right by G(7). Obviously, G(7) can be written as
=93 b 3 (5 > DA~V AJIL,D7b(D)e A 11, (10.7)
Bl=p  A<BRI>1 )

where II, is the pseudodifferential operator with the symbol xg(€) in Ly(R% C™). The operator
[DA=YAJIL,, is unitarily equivalent to the direct integral of the operators [D?~VA]P,,, whence

H[Dﬁ YA m‘ = H [DPYAP m‘ =~ 2||DB A Ly < Cy. (10.8)

Lo( ]Rd — Lo ]Rd Lo(Q2)—L2(2)
We have taken estimate (7.20) into account. Next, by the Fourier transform, using (5.5), (8.4), (10.2),

1 1
and the elementary inequality a:2+2p e~ <1 for x > 0, we obtain

HDVb(D)e_“‘TOTH‘ <af sup g|Ptle —ClEPT < a2 M e : 21”7'_%_2117, lv| >1, 7> 0.
LQ(Rd)—)LQ(Rd) - ﬁGQ -
(10.9)
Similarly, using estimate z2e® <1 for x > 0, we arrive at the inequality
HD‘Yb(D)e—fTOTH‘ <ozl 1o (10.10)
LQ(Rd)%LQ(Rd)
Applying (10.9) for 7 > 1 and (10.10) for 0 < 7 < 1, we find that
o)
HD%(D e—ﬁ‘)fn‘ >0, (10.11)

TSI 2 (ra 4 1)
where .
1 —
CY) = 202 max {7“17_15* 2 r'ﬁ'ak 2 } .
Now, relations (10.7), (10.8), (10.11), and (5.6) imply that
Gy

L1 , T>0,
T2(120 + 1)

1G(T Ly (rt) > Loay <
where

Ci = v D)o gl Ca max €O,
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Together with (10.5) and (10.6), this yields the required estimate (10.4) with the constant Co =
~ 1 ~
Csllglz.. +Ce-

By the direct integral expansion, Proposition 8.1 implies the following statement.

Proposition 10.1. Suppose that the assumptions of Theorem 10.3 are satisfied.
1°. We have

He—ﬁT — (I + [Ap(D)IT) e~ A < b Lo (10.12)
LQ(Rd)—)LQ(Rd) 7’217 + 1
The constant Cy depends only on the problem data (8.2).
2°. In addition, suppose that G(6) = 0. Then we have
He—ﬁf — (I + [A]p(D)IT) e~ A < & o0 (10.13)
LQ(Rd)—)LQ(Rd) TP 4+ 1

The constant Cs depends only on the problem data (8.2).

10.3. Removing of the operator Il in the corrector for 7 > 1. Now, we show that for 7 > 1
the operator II in estimates (10.3), (10.4), (10.12), (10.13) can be removed (i.e., in the margin of the
admissible error, the operator II can be replaced by the identity operator).

Proposition 10.2. For any s > 0 and 7 > 0 the operator b(D)e_“@T(I — 1II) is continuous from
Ly (R4 C™) to H*(RY;,C™), and we have

Hb(D)e—fT‘)T(I - H)( <& 27m, >0, (10.14)

Lo(R4)—Hs(R4) —

The constant () depends only on s, p, ag, a1, ||g” L., and ro.

Proof. We need the elementary inequality
1 s

2t heT Se(s,p), w20, clsp)=gle g = 4 (10.15)
p

By the Fourier transform, using (5.5), (8.4), (10.2), and (10.15), we obtain

L _ < é 2\ 3 o P —/c\*|§\2p7'
Hb(D)e (I H)(LQ(RdHHS(Rd)_al gseu]lgl(ﬂrlﬁl )2 (1 — xg(£))[€[Pe

~ 11
where €®) = ¢(s, p)aic, °

Proposition 10.3.
1°. Let s > p+d/2 and 7 > 0. Then the operator AY2[A] is continuous from H*(R%C™) to
Ly (R4 C™), and
Hﬁl/Q[A]H <l r>o. (10.16)
H5(R4)— Ly (RY)
The constant ¢gs) depends only on s and the data (8.2).
2°. Let s > d/2 and 7 > 0. Then the operators [A] and [g] are continuous from HS(Rd;(Cm) to
Lg(]Rd;(C”), and

A g7+ () Loy < €55 7> 0, (10.17)
1G] e ety Lo mety < €5, 7> 0. (10.18)
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The constants 6&8) and Q(,,S) depend only on s and data (8.2).
Proof. We start with the proof of statement 1°. By (5.4) and (5.6),

1/2 _ < > 8
AL Np Y Lyl P
=p
(10.19)
Next, let u € H*(R%; C™) with some s > p + d/2. Then
DA (A(x)u(x)) = Z <ﬂ> (DP~YA(x))D u(x). (10.20)
Y
Y<B

We estimate the Ly-norm of each term in (10.20) separately:

/\DB"YA( PPDTu(x)? dx =Y / IDAYA(x) 2D u(x)[? dx

R aGFQ+a

/ DA dx Y ID )2 -
Q aEF

(10.21)

We have taken into account that the matrix-valued function A is periodic. Next, we use the continuous
embedding H*7P(Q;C™) C Loo(;C™); let cs—p(2) be the norm of the corresponding embedding
operator. Then

HD’YUHLOO(Q—i-a) < cs—p(2) ||D’yu||HS—P(Q+a) < cs—p(€2) ||u||Hs(Q+a) , ael, Y[ <p (10.22)
From (10.21), (10.22), and (7.20) it follows that

/ DA P DT u(x) | dx < € (Q) Al (e Il ray < & p(QIQUCK [allFre gy
Rd
<8, 1Bl =p.
Comparing this with (10.19) and (10.20), we arrive at the required inequality (10.16).
Statement 2° is proved similarly (and even simpler). Let u € H*(R?;C™) with some s > d/2. By

analogy with (10.21),
/ IAG)Pla(x)P dx < / AR dx S ul? s,
acll

/ G PP dx < / G002 dx S Jul? -

acl

Hence, using the embeddlng H3(Q;C™) C Loo(;C™) and estimates (7.18), (7.19), we obtain the
required inequalities (10.17) and (10.18).

Now, we deduce the following result from Theorem 10.3 and Propositions 10.2, 10.3.

Theorem 10.4. Let A be operator (7.1) and let AC be the effective operator (7.22). Suppose that A
is the I'-periodic solution of problem (7.9) and g is the matriz-valued function defined by (7.13). Then
we have

Hﬁl/z (e_“ZT — (I + [A]b(D)) e—*‘TOT) <Cr 2w, 721, (10.23)

Lo (]Rd)—>L2 (]Rd)

—Ar ~ _A0r 50
Hgb(D)e A= gh(D)e L3 (R9)— Ly (R9) sCr s, 721 (1024)

The constants 55 and (?g depend only on the problem data (8.2).
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Proof. We start with the proof of estimate (10.23). From (10.14) and (10.16) it follows that

E]

| A2 A7 (1~ )| <@eflran, 1>, (10.25)

L2 (Rd)—)LQ (Rd)

for any s > p+d/2. We fix s = p+ d/2 + 1 and note that PR < 7727 for 1 > 1. Then (10.3)
and (10.25) imply (10.23).
Similarly, relations (10.14) and (10.18) yield

E]

H[g]b(D)e‘“‘TOT(I _ H)( <@@eWr2mn, >0, (10.26)

Lo (Rd)—>L2 (Rd)

s

for any s > d/2. We fix s = d/2 + 1 and note that T < 7727 for 7 > 1. Then from (10.4)
and (10.26) we deduce the required estimate (10.24).

Similarly, Propositions 10.1, 10.2, and 10.3 imply the following statement.

Proposition 10.4. Suppose that the assumptions of Theorem 10.4 are satisfied.
1°. We have

~ 1
<Cjt 2w, T>1.

A _ior
He (I + [A]b(D)) e e

The constant CAZ depends only on the problem data (8.2).
2°. In addition, assume that G(0) = 0. Then we have

He—ﬁT — (I + [A]p(D)) e

~

1
<Cgt r, T2>1
LQ(Rd)—)LQ(Rd)

The constant 550 depends only on the problem data (8.2).

11. Approximation of the Operator fe A7 f*

11.1. Approximation of the sandwiched exponential fe~7f* in the operator norm in
Ly(R%; C™). Now, we consider the operator A of form (5.1) acting in Ly (R%; C™). Similarly to Sec. 10.1,
using the direct integral expansion (6.8), we deduce the following results from Theorems 9.1 and 9.2.

Theorem 11.1. Let A be the operator (5.1) and let A° be the operator (9.3). Suppose that the matriz
fo is given by (9.1). Then we have

C1
< 5 ;
LQ (Rd)%LQ (Rd) T 2p + 1

|fe 7 = foe™ fo|

7> 0.

The constant C1 depends only on the problem data (9.7).

Theorem 11.2. Suppose that the assumptions of Theorem 11.1 are satisfied. Let @(0) be the operator
defined according to (7.25) and (7.26). Suppose that G(8) =0 for any 6 € S*~1. Then we have

Co

< , 172>0.
LQ(Rd)—)LQ(Rd) TP + 1

e = Joe™ 7 gy

The constant Co depends only on the problem data (9.7).
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11.2. Approximation of the operator fe " f* in the energy norm.

Theorem 11.3. Suppose that the assumptions of Theorem 11.1 are satisfied. Let A be the I'-periodic
solution of problem (7.9), and let g be the matriz-valued function defined by (7.13). Let II be opera-
tor (10.2). Then we have

0 C

|2 (e r =+ ) foe o) | ( 13+1>’ T>0, (111
2 — L2 T2(12P

|gp(D) fe=47 £ = GoD) foe= 4" fo1| < % aso0

Lo®)—=La(®Y) ~ 75 (120 4 1)

The constants C3 and Cg depend only on the problem data (9.7).

Proof. Inequality (11.1) follows from (9.29) with the help of the direct integral expansion.
By the direct integral expansion, (9.30) implies that

Hﬁl " (f AT F* — (I + [A]B(D)) foe " fOH)‘ Cs

< ., , 17>0.
LR LB b (el | 1)

Similarly to the proof of estimate (10.4), this yields estimate (11.2); see the proof of Theorem 10.3.
Using the direct integral expansion, we deduce the following statement from Proposition 9.1.

Proposition 11.1. Suppose that the assumptions of Theorem 11.3 are satisfied.

1°. We have
Cy

—AT px AOr
— I+ H < , . 11.
[rersm = @+ MO foe 7 h S 2" 720 (11.3)
The constant C4 depends only on the problem data (9.7).
2°. In addition, suppose that G(0) = 0. Then we have
- - C
| £em A7 = (1 + [AJp(D)II) foe fOH 5. r>0. (11.4)

< ,
(RH)—>La(RY) ~ 1, 41
The constant Cs depends only on the problem data (9.7).

11.3. Removing of the operator Il in the corrector for 7 > 1. Now, we show that for 7 > 1
it is possible to remove the operator II in estimates (11.1)—(11.4).

Proposition 11.2. For any s > 0 and 7 > 0 the operator b(D)foe_AOTfo(I —1II) is continuous from
Ly(R%;C") to H*(R% C™), and

Hb(D)fOe_AOTfO(I - n)‘ . 7>0. (11.5)

Lo(RE)—Hs(R4) —
The constant € depends only on s, p, ao, a1, |g7 W rws 1 Fllies |1f 1w, and ro.

Proof. By the Fourier transform, using (5.5), (9.2), (9.9), (10.2), and (10.15), we obtain

oo o~ L <R o (1-+[€1)3 (1 = x(€)lelre "

Sien2 T2 op —io N T
<c(s,p)af || fllz.cs T2 % \§S|up (L+[g7)2 <7 272, 7>0,
>70

1 1 s .
where €)= (s, p)ag | fI7 er ¥ (1+75%)3.
Next, we deduce the following result from Theorem 11.3 and Propositions 10.3, 11.2.
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Theorem 11.4. Let A be operator (5.1) and let A° be operator (9.3). Suppose that fo is the matriz
given by (9.1). Let A be the I'-periodic solution of problem (7.9), and let g be the matriz-valued
function defined by (7.13). Then we have

[ A2 (£em 475" = (1 + [AIBD)) foe™"fo )|

o 1.1
<C37’ 2 2

< >, (11.6)
Lo (]Rd)—>L2 (]Rd)

Y

o —1_1
§CGT 2 2p’

> 1. (11.7)
Lo (R4)— Lg (R%)

|b(D) e £ Go(D) foe ™" 1y

The constants C3 and Cg depend only on the problem data (9.7).

Proof. We start with the proof of estimate (11.6). Relations (10.16) and (11.5) imply that
1
2

<e@Wel¥r 27 50, (11.8)

T1/2 —A%7 -
|2y it 10

for any s > p +d/2. We fix s = p+ d/2 + 1 and note that T2 < 7727 for 1 > 1. Then (11.1)
and (11.8) yield (11.6).
Similarly, from (10.18) and (11.5) it follows that

H[g]b(D)fOe—AOTfO(I _ H)( <e@eWr2mn, >0, (11.9)

Lo (Rd)—>L2 (Rd)

1 s 1 1
for any s > d/2. We fix s = d/2+ 1 and note that 7~ 2 2» <7 2 2 for 7 > 1. Then (11.2) and (11.9)
imply the required estimate (11.7).

Similarly, we deduce the following result from Propositions 10.3, 11.1, and 11.2.

Proposition 11.3. Suppose that the assumptions of Theorem 11.4 are satisfied.
1°. We have

H Fe AT (1 + [A]B(D)) foe= AT fo‘ <Corw, > 1.

L2 (Rd)—>L2 (Rd)

The constant C3 depends only on the problem data (9.7).
2°. In addition, suppose that G(6) = 0. Then we have

| fermsr = 1+ 816D foe o |, <Gre, T2l

2 (Rd)—)LQ (Rd)

The constant Cg depends only on the problem data (9.7).

CHAPTER 3
HOMOGENIZATION OF PARABOLIC EQUATIONS

12. The Operator A.. The Scaling Transformation

12.1. The operators A. and .ZE. We proceed to the problems of homogenization in the small
period limit for periodic DOs in Ly(R%; C"). For any I-periodic function ¢(x) in R? denote

%), e>o0.

@ (x) = (e
In Ly (R4, C"), we consider the operator A., ¢ > 0, formally given by

A = (f7(x))"b(D)"g"(x)b(D) f*(x), &> 0. (12.1)
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As usual, the precise definition of the operator A. is given in terms of the corresponding closed
quadratic form

ac[u,u] = /(ga(x)b(D)fE(X)u(X%b(D)fE(X)u(X» dx, fue HP(R%;C").
Rd
This form satisfies the following estimates similar to (5.9), (5.8):

aollg™ Ll / €[V (&) d€ < ac[u,u] < ailglr.. / €17V (€)]* d€, v = fu e HP(RCT), (122)
Rd Rd

o / |DPv(x)|? dx < a.[u,u] < ¢; / IDPv(x)|?dx, v = ffue HP(R%C"). (12.3)
R4 R4

In the case where f = 1, operator (12.1) is denoted by A

~

A:. =b6(D)*¢°(x)b(D), &> 0. (12.4)
For small e the coefficients of operators (12.1) and (12.4) oscillate rapidly. Our goal in Chap. 3 is

to approximate the operators e™*<™ and ffe~7(f¢)* for small € and to apply the results to study
the behavior of the solutions of the Cauchy problem for parabolic equations with rapidly oscillating
coefficients.

12.2. The scaling transformation. Let 7. be the unitary scaling transformation in Ly(R%; C")
given by
(Tou)(x) := 7 u(ex).

It is easy to check the following identities:

A = e PTFAT., A, = e 2PTF AT, (12.5)
where A and A are operators (5.1) and (7.1), respectively. By (12.5), we have
eAT = Tre AT, et e AT (12.6)
Similar identities are valid for operators (9.3) and (7.22):
AT = re AT, AT e AT (12.7)

These relations allow us to deduce the results on homogenization of the operator exponential from the
results of Secs. 10 and 11.

13. Homogenization of the Operator Exponential e AT

13.1. Approximation of the operator ¢=A" in the operator norm in Ly(R%; C"). Using (12.6),
(12.7), and the fact that 7; is unitary, we have

1 10
HE—AET o e—A T _

. (13.1)
Lo (Rd)—>L2 (Rd)

Lo(R4)— Lo (R%)

_ A-—2p _ A0_.—2p
He Ae T_e.As T

Applying Theorems 10.1, 10.2 (with 7 replaced by e 2P7) and using identity (13.1), we obtain the
following results.

Theorem 13.1. Let A. be operator (12.4) and let AC be the effective operator (7.22). Then for™ >0
and € > 0 we have N
616

< (13.2)
Ly(RY)—=La(RY) " op 4 o

7 _ 20
He AET—E AT

The constant C; depends only on the problem data (8.2).
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Theorem 13.2. Let A. be operator (12.4) and let AL be the effective operator (7.22). Suppose that
G(0) is the operator defined according to (7.25), (7.26). Assume that G(8) = 0 for any 6 € S,

Then for 7 > 0 and € > 0 we have
5252

o der — e
€ — € ~ 1 .
Lo (Rd)—>L2 (Rd) D _|_ €2

(13.3)

The constant Cs depends only on the problem data (8.2).
Theorem 13.2 and Proposition 7.3 directly imply the following corollary.

Corollary 13.1. Suppose that at least one of the following conditions is satisfied:

1°. Relations (7.16) are valid, i.e., ¢° = g.
2°. Representations (7.17) hold, i.e., g° = g.
3°. n =1 and the matrices g(x), bg, |5| = p, have real entries.

Then estimate (13.3) holds.

Remark 13.1. Corollary 13.1 demonstrates a new effect which is typical for higher-order operators:
for the scalar operator .,Zt\g with real-valued coefficients, the exponential is approximated by the ex-
ponential of the effective operator in the operator norm in Ly with error O(e?) without taking into
account any correctors. There is no such effect for the second-order operators.

—Aet

13.2. Approximation of the operator e in the energy norm. Now, using Theorems 10.3,

—A:T in the norm of

oA

10.4 and Propositions 10.1, 10.4, we obtain approximation for the exponential e

operators acting from Lo(R%; C™) to HP(R%; C™), and also approximation of the operator g°b(D)
(corresponding to the “flux”) in the norm of operators acting from Lo(R%; C") to Lo(R% C™).
In addition to (12.5)—(12.7), we need the identities

b(D) = PTIb(D)T., [A°] =TI[AT., [g°] =T7[9)T-. (13.4)
Let TI. be the pseudodifferential operator in Lo (R%; C") with the symbol X& /E(f), ie.,

(M) = (20) 2 [ x9i(g) de, (13.5)
Qe
Operators (10.2) and (13.5) satisfy the following relation:
I, = T*IIT.. (13.6)
We put
K(e;7) == [A]b(D)e A 1L (13.7)

Operator (13.7) is called a corrector; it is a continuous mapping of Lo(R%; C") into HP(R%; C").

Theorem 13.3. Let A. be operator (12.4) and let AY be the effective operator (7.22). Suppose that

~

IL. is operator (13.5), K(g;7) is given by (13.7), and g is the matriz-valued function defined by (7.13).
Then for T >0 and € > 0 we have

HDp (e‘ﬁ” AT ePK(e; 7')) ‘ < CTE , (13.8)
LE)SL®) 1 (ra 4e)
‘ ¢Fb(D)e~ AT — Fh(D)e A 1L Coe (13.9)

La®)=Lo®) ~ 1 (30 4 o)

The constants 56 and 57 depend only on the problem data (8.2).
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Proof. We start with the proof of unequality (13.8). By (12.7), (13.4), and (13.6),

K (e;7) = T*[Ab(D)e~ s TIITL. (13.10)

£

Together with (12.5)—(12.7), this implies

Hflyz (e_“zﬂ AT spI%(s; 7')) ‘

Lo (Rd)—>L2 (Rd)

N 13.11
O R T ] oy
LQ(Rd)—)LQ(Rd)
Now, from (10.3) (with 7 replaced by ¢~?77) and (13.11) it follows that
Hﬁ;/Q (e_“‘TET AT PR (e T)) ‘ Cae (13.12)

La(Rd)—Ly(Rd) — T;(T;p +€)'

Combining (13.12) and the lower estimate (12.3) (with f = 1,), we obtain the required inequa-

- 1
lity (13.8) with the constant C7 = ¢, *Cs.
We proceed to the proof of estimate (13.9). Similarly to (13.11), we have

Fh(D)e AT — Fp(D)e A1,

Lo (Rd)—>L2 (Rd)
P H gb(D)e~ AT _ gb(D)e—@e”"Tn(

Lo (]Rd)—>L2 (]Rd)

Together with (10.4) (with 7 replaced by e~2P7), this implies estimate (13.9).

Next, we find approximation of the exponential e=4<7 in the (Ly — HP)-norm.

Theorem 13.4. Suppose that the assumptions of Theorem 13.3 are satisfied.
1°. For 7 > 0 and € > 0 we have

o 1

< Gll+772)e

He_ﬁ” e AT 51”16(5; T)‘ < L (13.13)
L2 (R)— H?(RY) T 4 e
The constant Cg depends only on the problem data (8.2).
2°. In addition, suppose that G(@) = 0. Then for 7 > 0 and £ > 0 we have
~ _ N . 2
He—AsT — AT R T)( <Gl . ¢ + .7 ) (13.14)
La(R4)—HP(RY) T2(T20 +€) TP+ g2
The constant Cy depends only on the problem data (8.2).
Proof. By (12.6), (12.7), and (13.10),
He‘jﬂ e AT Epk\:(E;T)‘
PR L2 (13.15)
= He‘Ae_QpT — AT [A]b(D)e_“@a_%TH‘ .
LQ(Rd)—)LQ(Rd)
Now, from (10.12) (with 7 replaced by e~2P7) and (13.15) it follows that
—A.r — A7 e 545
He T —e — ePK(e; 7')‘ < . (13.16)
Ly(RY)—Lo(RY) ~ Lo 4 ¢
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Since (1 + [€]?)P < 2P7L(1 + |€]?P), then the lower estimate (12.2) (with f = 1,,) for any function
u € HP(R% C") implies
[l = [+ lEPIREP e <2 [+ el de
R4 R4 (13.17)
<27 () oy + 05 g™ N 1AL 202 o ) -
Combining this with (13.12) and (13.16), we obtain

p—1 [ ~ o~ —é -1 % -1
<22 (C4+Cs04 29 HLooT 2 1
T 4¢

n i ~ £
He‘AET e AT ePK(e; T)‘

Lo(R4)— HP(R4)
This yields the required estimate (13.13) with the constant
~ p— ~ o~ 1 1
Cg =2 > max {C4,Cga0 2 Hg_lﬂzoo} .
We proceed to the proof of statement 2°. Suppose that 6(0) = 0. Then estimate (10.13) holds,
which together with (13.15) implies
5562

_ - .
He‘AET —e AT — P 7')‘ < .
LQ(Rd)%LQ(Rd) TP + 52

Combining this with (13.12) and (13.17), we obtain estimate (13.14) with the constant

% 93 man [ Gt
Co =22 max{CsCsa?|lg” [I7_¢-

Similarly to the proof of Theorem 13.3, we deduce the following result from Theorem 10.4.
Theorem 13.5. Suppose that the assumptions of Theorem 13.3 are satisfied. Denote
KO(e;7) := [A]b(D)e~A".

Then we have
1

T ~ ~ 1
HDP (e—AsT _ e—./zlhT _ EPICO(E;T))‘ < C’?ET—Q—%’ e > O, T > €2p’
Lo (R4)— Lo (R%)
A 10 ~ 11
b(D)e AT — Fh(D)e AT <Cger 2w, £>0, 7>¢e".
‘g (D)e g-b(D)e LR La®RY) = 6ET P, € T>¢

The constants CAg and CA§’ depend only on the problem data (8.2).

Similarly to the proof of Theorem 13.4, we deduce the following statement from Theorem 10.4 and
Proposition 10.4.

Theorem 13.6. Suppose that the assumptions of Theorem 13.5 are satisfied.
1°. We have

7 70 ~ ~ 1
He AT _ AT—spKO(s;T)‘ <Cer 2%, >0, 7>,

Lo (R4)— HP (R4)

The constant 5§ depends only on the problem data (8.2).
2°. In addition, suppose that G(0) = 0. Then we have

-~ -0 ~ ~ 11 1
He‘AET —e AT PO (e; 7')“ < Cq (57’ 272 4 g2 P) , >0, 7>,
Lo (R4)— HP (R4)

The constant 53 depends only on the problem data (8.2).
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13.3. Special cases. Let us focus on the special cases.
Suppose that relations (7.16) hold, i.e., ¢ = g. In this case we have A(x) = 0, whence correc-

tor (13.7) is equal to zero. Moreover, in this case @(0) = 0. Then Theorems 13.3 and 13.4 (2°) imply
the following result.

Corollary 13.2. Suppose that relations (7.16) are satisfied, i.e., ¢° = g. Then for 7 > 0 and ¢ > 0
we have
575

HDp (e_.lzl\sT _ e—.A\OT> < ) .
L@ 1a®) ol 1 o)

9

-7 _ 20
He AgT_e AT

)

g 52
d d < Gy 1,1 T ’
L (RY)—HP (R?) T2(T2 +¢€) TP +£2

Next, consider the case where relations (7.17) are satisfied, i.e., ¢° = g. Then g(x) = ¢°. Theo-
rem 10.3 implies the following statement.

Corollary 13.3. Suppose that relations (7.17) are satisfied, i.e., ¢° = g. Then for 7 > 0 and € > 0
we have

. ] G
h(D)e T — ¢%(D)e AT - 13.18
|g70(D) PP e = L 1 (13.18)
The constant CAé depends only on the problem data (8.2).
Proof. Since g(x) = ¢°, then inequality (10.4) takes the form
7 Ce
Hgb(D)e‘AT - gob(D)e_“‘TOTH‘ 6 7> 0. (13.19)

LaRD—La(®Y) 1313 4 1)
1 1
Similarly to the proof of Proposition 10.2, using (5.5), (8.4), (10.2), and the estimate 2t 2re=* < 1
for x > 0, we have
1 _;_ 1 1

1 e ~ 1
< gllza? sup [€[Pe ST <lglp a2, * *rylF 2w,

0p(D)e~A7(I — I
|y T —m sup ro17

Using the estimate mée_x <1 for z > 0, we obtain

1 1y
< lgllzo e 2772,

Hgob(D)e_ﬁO?(I - H)‘ Lo(R4)— Ly (RY)

Applying the first inequality for 7 > 1 and the second one for 0 < 7 < 1, we arrive at the estimate
é\g

Ob(D)e A7 (1~ 11 !
HQ (D)e ( )‘ Lo(RA)—La(R4) — 7—%(7—21;7 +1)

11
2

~ 1 — 1
where Cf = 2||g||1..af max {E* Prot e } Together with (13.19), this implies

Al
Cl _

< , 1>0,
LaR)~L2(RY) ) (72 4 1)

Hgb(D)e‘A; - gob(D)e_“@T

where (?é = 56 + é\g . Putting 7 = 7?7 and applying the scaling transformation, we arrive at the
required estimate (13.18).
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14. Homogenization of the Operator ffe~A:7(f)*

14.1. Approximation of the operator fe~“<7(f°)* in the operator norm in Ly(R% C").
Using (12.6), (12.7), and the fact that 7. is unitary, we obtain

‘ FremAT (£ foe—AOTfO‘ | _ er—As—%Tf* . foe—AOs—%TfO‘

Applying Theorems 11.1, 11.2 (with 7 replaced by e 2P7) and using identity (14.1), we arrive at
the following results.

. (14.1)

La(R4)— Ly (R4 La(R%)—Ly(R?)

Theorem 14.1. Let A. be operator (12.1) and let A° be operator (9.3). Suppose that fy is the matriz
defined by (9.1). Then for 7 > 0 and £ > 0 we have

‘ FremAT(fE) — foe—AOTfO‘

The constant Ci depends only on the problem data (9.7).

616
<
LQ(Rd)—)LQ(Rd) 7’217 + €

Theorem 14.2. Suppose that the assumptions of Theorem 14.1 are satisfied. Let @(0) be the operator
defined according to (7.25), (7.26). Suppose that G(0) = 0 for any @ € S* L. Then for 7 > 0 and

e > 0 we have
| 775" = foe™ " o)

The constant Co depends only on the problem data (9.7).

6262

LyRO—=Ly(RY) — oy 4 2

(14.2)

Theorem 14.2 and Proposition 7.3 directly imply the following corollary.

Corollary 14.1. Suppose that at least one of the following conditions is satisfied:
1°. Relations (7.16) hold, i.e., ¢° = g.
2°. Representations (7.17) are valid, i.c., ¢° = g.
3°. n =1 and the matrices g(x), ba, |5| = p, have real entries.

Then estimate (14.2) is satisfied.

14.2. Approximation of the operator fe~47(f°)* in the energy norm. Applying Theo-
rems 11.3, 11.4 and Propositions 11.1, 11.3, we obtain approximation of the operator fse_AfT(fE)* in
the norm of operators acting from Lo(R?; C") to HP(R?;C"), and also approximation of the operator
g°b(D) ffe~A<T(£)* in the norm of operators acting from Ly(R% C") to Lo(R%; C™).

We introduce the corrector

K(e;7) := [A]b(D) foe '™ foll.. (14.3)

Using the scaling transformation, we deduce the following result from Theorem 11.3; its proof is

completely similar to the proof of Theorem 13.3.

Theorem 14.3. Let A. be operator (12.1) and let A° be operator (9.3). Suppose that fo is the
matriz defined by (9.1). Let II. be operator (13.5). Suppose that K(e;7) is operator (14.3) and g is
the matriz-valued function defined by (7.13). Then for 7 > 0 and £ > 0 we have

[P (52677 = o o = ePleim) LR SLa®?) — ) (TZ: )
|

CGE
The constants Cg and C7 depend only on the problem data (9.7).

9

Gb(D) fee™ A (f5)* — (D) foe AT foll

L@ L)~ rh(rs 1)

Similarly, Theorem 11.3 and Proposition 11.1 imply the following result; its proof is analogous to
the proof of Theorem 13.4.
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Theorem 14.4. Suppose that the assumptions of Theorem 14.3 are satisfied.
1°. For 7 > 0 and € > 0 we have

|

The constant Cg depends only on the problem data (9.7).
2°. In addition, suppose that G(@) = 0. Then for 7 > 0 and € > 0 we have

13 52
‘ , , < Cq L1 + .
LR O\ A rd Loy g e

The constant Cy depends only on the problem data (9.7).

_Gs(1 +772)e
La(R3)—HP(RY) — 7—21;7 +e '

F2eAT(£9)" = foe AT fo — ePK(ei )

fae—AET(fa)* - foe—AOTfO . Ep]C(E; T)‘

In turn, by the scaling transformation, Theorem 11.4 implies the following result.
Theorem 14.5. Suppose that the assumptions of Theorem 14.3 are satisfied. Denote
K°(e:7) 1= [ATo(D) foe ™ fo.

Then we have

HD” (fee_AET(fe)* — foe T fo — PO (s T)) ‘
‘ g°b(D) fe AT (f)" - geb(D)foe_AOTfo‘

The constants C§ and C3 depend only on the problem data (9.7).

11
<Cger 2 22, £>0, T > e,

Lo (Rd)—>L2 (Rd)

_1_ 1
<Cger 2w, >0, 7>

L2 (Rd)—)LQ (Rd)

Theorem 11.4 and Proposition 11.3 imply the following statement.

Theorem 14.6. Suppose that the assumptions of Theorem 14.5 are satisfied.
1°. We have

‘ FEeAT(fE) = foem T fo — Pk (e T)‘

The constant Cg depends only on the problem data (9.7).
2°. In addition, assume that G(0) = 0. Then we have

Fre AT (£ = foe A fo — P e )|

!
<Cqet 2w, £>0, 7>
La(R4)— HP(R4)

o . — o 1 2p
<Cgler 2 22 +eT 2|, >0, 7>e7.

|

14.3. Special cases. Let us focus on the special cases.
Suppose that relations (7.16) are valid, i.e., ¢° = g. In this case we have A(x) = 0, whence the
corrector (14.3) is equal to zero and G(0) = 0. Theorems 14.3 and 14.4 imply the following result.

Lo (R%)— HP(R®)
The constant Cg depends only on the problem data (9.7).

Corollary 14.2. Suppose that relations (7.16) hold, i.e., ¢° = g. Then for T >0 and € > 0 we have

HDp (fae—Agr(fa)* _ foe_AOTf()) ‘ Cre

1 1
T2(T2 4 ¢)
2
€ €
‘ < (Cy L1 + .
La(R)— Hp () ri(ra te)  7r e
Next, we consider the case where relations (7.17) are satisfied, i.e., g° = ¢. In this case we have

g(x) = g°. Theorem 11.3 implies the following statement; its proof is completely similar to the proof
of Corollary 13.3.

)

L2 (Rd)—)LQ (Rd) -

FPeAT(E) — o fy
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Corollary 14.3. Suppose that relations (7.17) hold, i.e., g° = g. Then for T > 0 and € > 0 we have
Cie

Ly(R*)—La(RY) — 7—5(7-2117 + 5)'

gHD)F2eAT(5)" = g"B(D) foe ™7 fo|
The constant Cg depends only on the problem data (9.7).

15. Homogenization of the Parabolic Cauchy Problem

15.1. The problem with the operator A.. Approximation of the solutions in Ly(R% C").
The results of Secs. 13 and 14 can be applied to homogenization of solutions of parabolic equations
with periodic rapidly oscillating coefficients. Let A, = b(D)*¢*(x)b(D), 0 < T < oo. We study the
behavior of the solution u.(x,7) of the following problem:

PLET) Dy g b)) + Fx 7). x € B 7 (0.7), (15.1)
u.(x,0) = p(x), x€R?
where ¢ € Ly(R% C") and F € Ly((0,T); La(R% C™)) with some 1 < ¢ < co. We have
w (7)) = e AT + /e_ﬁS(T_?)F('f) dr. (15.2)
0

Let A° = b(D)*¢°b(D) be the effective operator and let ug(x, 7) be the solution of the “homoge-
nized” problem

oug(x,7) * 0 d
T = (D) D)o (x,7) + F(x,7), x € RY 7€ (0.7), (15.3)
up(x,0) = (x), xR
Similarly to (15.2),
ug(,7) = e A7 + / e ATDR () dF (154)

0
Theorem 13.1 and representations (15.2), (15.4) imply that

~ 1
lus(,m) = wo(, )l Ly may < Cre(m2r + &) 7|l oy (may

~ 1 _ - ~ -~ 1 _
+C1€/((T = 7)% + &) ()| Ly ey AT < Cae(r2 + )| 1, (ra)
0

T 1
o~ - 1 PV AN q’
+C1€HFHLQ((0,T);L2(Rd))(/((T—T)Qp +e) ! dT> :
0

1 1
where 1 < g < oo and +
q

, = 1. Estimating the integral on the right, we arrive at the following

result.

Theorem 15.1. Let 0 < T < oo and F € Ly((0,T); L2(R% C™)) for some 1 < q < oo. Let ¢ €
Ly(R%; C™). Suppose that u. is the solution of problem (15.1) and uq is the solution of the homogenized
problem (15.3). Then for any T € (0,T) and ¢ — 0 the solution u.(-,7) converges to ug(-,7) in the
Lo-norm. For T € (0,T) and 0 < e <1 we have

-~ 1
Juc(,7) = 0o, Pl qaey < Cre (7% + )l ety + 000 &, D) FllLyoryzaey) » (155)
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where
1- 11 2p

c(p,g)r 2p_12<q§oo,
1
Og,e,7) = Qg7+ 1]+ 2plloge)r . g=, 7, (15.6)
—1-2 2
C(pvq)€2p ! ;7 1<q< 2pfl

Here ¢(p,q) is a constant depending only on p and q.

For a fixed 7 € (0,T), the coefficient of [@]|,ra) in (15.5) is of order O(e). The coefficient of
2p

p
sforl < g <
R S V|

2 2
¥ L, ((0,7); Lo (raY) is of order O(e) for ﬁ | < < o0; O(egl log 5|21p) for g = o —

2p
2
its order O(Ezp_ f) depends on q.
Similarly, under the additional assumption that G(6) = 0, Theorem 13.2 implies the following

statement.

Theorem 15.2. Suppose that the assumptions of Theorem 15.1 are satisfied. Let @(0) be the operator

defined according to (7.25), (7.26). Assume that 6(0) =0 for any @ € S*L. Then for 7 € (0,T) and
0<e<1 we have

~ 1 ~
Juc(,7) = o, Pl yqaey < Coc? (77 + ) Dl y(ery + 008, DIF Ly o ryageeyy ) (157)

1 1
c(p,q)' 71, P | Sasoe
p_
~ 1 p
0(q,e,7) = (log|r + 1| + 2p|logel)» =" (15.8)
2p—2-2P
1<g< .
c(p, q)e ., <7

Under the assumptions of Theorem 15.2, for a fixed 7 € (0,T') the coefficient of [|@] 1, gay in (15.7) is
of order O(g?). The coefficient of ¥, ((0,7);Lo(raY) is of order O(?) for pf | <4a < o0; O(?|log 5\117)

2
for g = b X forl <g< b 1 its order O(Ezp_ qp) depends on g¢.
p —_—

15.2. The problem with the operator A.. Approximation of the solutions in L,((0,T);
Ly (R4 C™)). Now, suppose that 0 < T < oo and 1 < ¢ < co. Applying Theorem 13.1, we can estimate
the norm of the difference u. — g in the class L,((0,7); L2 (R%; C")).

Theorem 15.3. Let 0 < T < oo and let F € L,((0,7T); Lo(R%C)) with some 1 < g < oo. Let
¢ € Ly(R%CM). Suppose that u. is the solution of problem (15.1) and g is the solution of the
homogenized problem (15.3). Then for 0 < e <1 we have

~ 1
ue —woll 1, ((0,7); 02 (re)) < Ci€ (P(%&T)WHLQ(M) +e(p, )T 2 HF”LQ((O,T);LQ(RUZ))) ; (15.9)
where -
c(p,q)Ta 2, 1<q<2p,
plg,e,T) =0(q e, T) = (log(T + 1) + 2p|log )2 , q = 2p, (15.10)
2
c(p.g)es ", 2p < q < 0.
Proof. By (13.2), (15.2), and (15.4),
A 1
o~ 1 ~ q
ue —wollz, ((0.1);L0may) < Ciell@ll LymayZe(e; T)e + Cle(/ L(e,7;F)1 dT) : (15.11)
0
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where

T
dr
Zy(e;T) ::/ L , L(e,m;F) / T—T) 2P + &) Y F(-,T ) o ray d7-
(T2r +€)4 2
Estimating the integral Z,(e; T'), we obtain
T (e;T)e < pg,e,T). (15.12)

Now we estimate the second term in the right-hand side of (15.11). If ¢ = 1, changing the order of
integration, we have

T
/E(s,T; F)dr
0

o\q O\ﬂ

/(<T = 7)2 + ) HEC D) Ly@ey AT
0
T

GFIF (7). / (r—7)% + &) Ldr.

T

1

-1
1
> T1_2P, we obtain
2p

Estimating the internal integral by <1 —

1
/5(577'; F)dr < C(p)Tl 2PHFHL1((O,T);L2(]R‘1))'

In the case where 1 < ¢ < 0o, we apply the Hélder inequality

T T
1 1

LemF) < ( / ((r =P+ a7) " ( / ((r =7 + &) PR gy 7). (15.13)
0 0
1

-1
5 > T 2. Using (15.13) and changing
p

The integral in the first parenthesis does not exceed <1 —

the order of integration, we arrive at the inequality

T T T
[ cemmyar <cpar® @9 [ar [(( =75 4o PN, g 07
0 0 0
T T
= clp. 7[RI, / ((r=7)% o) dr
0

- 1— 1)
gc(p7Q)T( ( ) HFHq ¢((0,T); L2 (R%))"

As a result, for 1 < ¢ < oo we have

1
q _ 1
(/ L(e,m;F) dT) < elp, )T 2 | Bl 1, (0,710 () (15.14)

Now, relations (15.11), (15.12), and (15.14) imply the required estimate (15.9).

In estimate (15.9) the coefficient of ||F|[1, (01);1, ) 18 O(€), and the coefficient of ||@|| 1, (ra) is of
2p
order O(e) for 1 < q < 2p; O(e|log €| 2117) for ¢ = 2p; and for 2p < ¢ < o its order O(e ¢ ) depends on q.
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Similarly, under the additional assumption that @(0) = 0, Theorem 13.2 implies the following
statement.

Theorem 15.4. Suppose that the assumptions of Theorem 15.3 are satisfied. Let @(0) be the operator
defined according to (7.25), (7.26). Assume that G(8) = 0 for any @ € S¥~1. Then for 0 < ¢ < 1 we
have

-~ . _1
e = ollz, (0,1 (e)) < Cae” (P(q,E,T)WHLz(Rd) +c(p, )T HF”LQ((O,T);LQ(Rd))) ,  (15.15)

where
c(p,q)T1 7, 1<q<p,
plg,e,T) =0(¢ e, T) = (log(T + 1) + 2p|loge|)» , q=p, (15.16)
e(p,q)e 1 %, p<q< oo

In estimate (15.15) the coefficient of [|F| 1, (o.1);1,®e)) 1s O(e 2), and the coefﬁcient of @, we) is
of order O(e?) for 1 < q < p; O(£2|log e|» 1) for ¢ = p; and for p < ¢ < oo its order O(E a ) depends on gq.

15.3. The problem with the operator A.. Approximation of the solutions in HP(R%; C").
Next, we obtain approximation of the solution u. of problem (15.1) in the norm of H?(R%;C") and
also approximation of the “flux” p. = g°b(D)u. in the norm of Lo(R%;C™). In the case where F = 0,
Theorem 13.5 directly implies the following result.

Theorem 15.5. Let F =0 and let ¢ € Ly(R%; C"). Suppose that u. is the solution of problem (15.1)
and g is the solution of the homogenized problem (15.3). Let p. = g°b(D)u.. Suppose that A is the
[-periodic solution of problem (7.9) and g is the matriz-valued function defined by (7.13). Then for

€(0,T) and0 < e §7'21P we have

~  _1_1
ID? (ue (-, 7) —uo(-,7) — e’ Ab(D)ug (-, 7)) || pyray < CreT 2 22 [|@] 1, (ra),
e 1_1
[p=(-s7) — g°o(D)uo (-, )| £y (mey < Coer > 2|9l 1y (ray-
In turn, Theorem 13.6 implies the following statement.

Theorem 15.6. Suppose that the assumptions of Theorem 15.5 are satisfied.
1°. For 7 € (0,T) and 0 < e < 7'2117 we have
~ 1
Jue(-,7) —uo(-,7) — e’ A*B(D)uo (-, 7) || gp ey < CgeT 2 |[@]| 1y (RA)-
2°. In addition, suppose that @(0) = 0. Then for 7 € (0,T) and 0 < e < T2 we have

—~ 11 1
Jue(,7) = vo(,7) = PADDY o (-, 7)o ety < G (57727 +%777 ) g,z

In the case where F' # 0, we need approximations of the exponential e=AT for all values of 0 < 7 < T
(not only for 7 > £?P), therefore, we rely on Theorem 13.3.

Theorem 15.7. Let F € L,((0,T); L2(R%C")) for some 2 < q < 0o and let ¢ € La(R%;C™). Suppose
that u. is the solution of problem (15.1) and g is the solution of the homogenized problem (15.3). Let
pe = ¢°b(D)u.. Suppose that A is the T'-periodic solution of problem (7.9) and g is the matriz-valued
function defined by (7.13). Suppose that 1. is the operator defined in (13.5). Then for T € (0,T) and

1012



e > 0 we have

ID? (uc (-, 7) — (- 7) — e”A%H(D) ([euo) (- 7))l 1, (ay

Cre o (15.17)
< T Nl +CreO@, e TIF |, 0.y ram):
T2(T2 + ¢
[Pe(-,7) = g°b(D)uo (-, 7)1, (e
Coe ~ (15.18)
< . @1l Ly ray + Co€O(q, 6, T)IF | 1, ((0,1): L0 (RY)-
T2(T2 +¢)
Here
_1_ 2
e(p,g)r2 "0 %, p1<q§oo,
1,1 2p
Ofg.e.7) = § c(p) (log |7 +1| + logel) 4, = . (15.19)
p—1-2P 2p
2 .
c(p,q)e’ " a, <e<
Proof. Theorem 13.3 and representations (15.2), (15.4) imply the estimate
ID” (1., 7) — wo(-, ) — P ASB(D) (ILetwg) (- 7))l . e
Cre S B | O P
<, ||¢||L2(Rd)+c7€/ . i( Y dr
T2(T2 +¢) g (T=7)2((r—7)% +¢)
~ T 1
Cre ~ dr q
< bl Lo rty + CrellFll L, (0,7);10(R4Y) </ o 3 ,> ;
T2(T2% 4 ¢) 0 (T=7)2((r=7)>» +e)

1 1
where ~ + = 1. The integral on the right converges if q <2, ie., q> 2. Estimating the integral on
q g

the right, we arrive at the inequality (15.17).
Similarly, combining (13.9) and representations (15.2), (15.4), we deduce estimate (15.18).

Next, Theorem 13.4 implies the following statement.

Theorem 15.8. Suppose that the assumptions of Theorem 15.7 are satisfied.
1°. For0 <7 < T and e > 0 we have
[us(-,7) —ao(-, 7) — e”A°B(D)Iuo (-, T)HHP(Rd)
_Cs(l+772)

3 ~ _1_1
< i @Il 1, (ray + Cse (C(p, Q' w4 @(%577)) 1F(| 2, ((0,7), Lo (ReY)»
T <P g

(15.20)

where O(q,¢e,T) is given by (15.19).
2°. In addition, assume that G(0) = 0. Then for 7 € (0,T) and € > 0 we have

e, 7) = (-, ) — PATBD)Tottg (- )| s ey

2

= g S ~ _1_1
< Cy ( L + ) &l 1, ey + Co (59(%6,7) +c(p, @)’ v ‘1) ¥ L, (0,7);Lo(REY)-
T2(T2% +¢) TP + g2

(15.21)
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Proof. To check inequality (15.20), we apply (13.13), (15.2), and (15.4):
e (- 7) = uo(-, 7) — P ATD(D) (Tewao) (-, 7) | 7o gty
1 -
(I+ (7 =7)"2)F 7l wa)
(r—7) +e

58(1 +7'_%)€ 7
< ! @1l L, ey +Cs€/
T +¢€ 0

dr

o~ T 1
C 1—|—7'_% € ~ d= o
< 8l ] ) ||¢||L2(Rd)+Cs€||F||Lq((o,T);L2(Rd))</ 1 ,>
T2 +¢€ g (T=7)% +e)

1
~ dr a
+C8EHF”Lq((O7T);L2(]Rd))(/ o 1 ,> .
o (T=7)2((r=7)>» +e)

Estimating the integrals on the right, we arrive at the inequality
e, 7) = to(-, 7) — PAB(D)(Ietwo) (-, ) | g e

~ 1
Cs(1+772)¢ =~
< T P Wl + e 000.2.7) + 00027 [Pl ey
T2 +¢

Since 0(q,e,7) = c(p,¢)7"~ 2™ q for q > 2, this implies (15.20).
Similarly, applying inequality (13.14) (which holds under the condition G(8) = 0), we obtain

e (o7) = (-, ) — PABD)(Hewo) (1) | g

2

T 1
o g I ~ d? q'
< Cy ( 1( 1 + ) DIl L (e +6952”FHLq((QT);Lg(]Rd))</ >
T2(T

1
2 +¢e) TP 42 ) ((r=7)r +e2)7

T 1
~ dT a
+C9€HF”Lq((0,T);L2(Rd))</ o 1 ,>
0 (T=7)2((r=7)>» +e)

9 52

< Cy ( 11 + ) DIl L (e +Cy (525(97577) +€9(q,€a7')) IF |z, ((0.7);Lo(R))-
T2(T2% +¢€) TP +£2

~ 1

Since 6(q,e,7) = ¢(p, q)Tl_P 2 for ¢ > 2, this implies (15.21).

Under the assumptions of Theorems 15.7 and 15.8, in estimates (15.17), (15.18), (15.20), (15.21)
for a fixed 7 € (0,7) the coefficient of ||@||1,(ra) is or order O(e). The coefficient of [|F||;,_(o,7);1.(r?))

2p

. 1,1 2p 2p .
is of order O(e) for L <4 < o0; O(e|loge|2 ™ 20) for g = ; and for 2 < g < 1 its order
p— p—= p—

1 ?
O(eP™ qu) depends on gq.

15.4. The problem with the operator .,Zt\e. Approximation of the solutions in the space
Ly((0,T); HP (RZ;C")). Applying Theorem 13.3, it is possible to approximate the solution u. in the
class Ly((0,7); HP(R% C™)) in the case where 0 < T < 0o and 1 < ¢ < 2.

Theorem 15.9. Let 0 < T < oo and let F € Ly((0,T); Lo(R% C™)) with some 1 < q < 2. Let
¢ € Ly(R%CM). Suppose that u. is the solution of problem (15.1) and ug is the solution of the
homogenized problem (15.3). Let p. = ¢°b(D)u.. Suppose that A is the I'-periodic solution of the
problem (7.9) and g is the matriz-valued function defined by (7.13). Let 1. be the operator given
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by (13.5). Then for 0 < e <1 we have

ID? (us —ug — e”A°B(D)Iwo) | 1, (0,715 (R)) < Crea(q,e, T) @l Ly (ra)

_ L (15.22)
+ Crec(p, )T 2 |Fl L, ((0,1); Lo (R7))s
Ipe = g°b(D)euol| L, (0,7):Lore)) < Coeo(q,€, TPl L, (way
N 11 (15.23)
+ Ceec(p, )T 2 |F| L, ((0,1); Lo (r?))s
where
1_1_ 1 2p
Q)T 2 2, 1<g< :
c(p,q)Ta 2 2 q2 bl
1 1
7(q:6,T) = O(¢',e,T) = { e(p) (log(T +1) + [log )™, g = T (15.24)
P 2
c(p.q)e s P, pfl <g<2.
Proof. By (13.8), (15.2), and (15.4),
T 1
o~ 1 -~ q
ID? (ue —ug — P A°B(D)ILewo) ||, (0,11 )y < Crell @l Ly may Ta(es T) e + Cre (/M(EJ; F)? dT> ;
0
(15.25)
where
[od [ IECA e &7
, T T
To(e;T) == / . 17' , M(e,m;F) = / ) LQ(Rd)l )
o T2(T 4 e)d g (T=7)2((r—7)% +¢)
Estimating the integral J,(e;T"), we obtain
Ty T)e < o(g.,T). (15.26)

Now we estimate the second term in the right-hand side of (15.25). If ¢ = 1, changing the order of
integration, we have

r [T AR dF r r
77— T ~ ~
M(e,m:F)dr = [ dr L2 (R) = [ dF|F(,7)|| Lo dr .
1 1 LQ(R) 1 1
5 5 g (T=7)2((r=7)% +¢) J (t—=T)2((r—=7)% +¢)

1 1

-1
1 1
Estimating the internal integral by (2 ~ 4 > T2 2» we obtain
p

T

11
/M e, 7 F)dr < c(p)T2 2 ||F||L, (0,7); L, (r))-
0

In the case where 1 < ¢ < 0o, we apply the Holder inequality:

1

7 ~ ql’ T q = q
M(e,;F) < (/ ST ) (/ ”F(i )HLQ(Rd’ld ) . (15.27)
g (T=7)2((r—=7) +e) g (T=7)2((r—=7) +e)
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1

—1
2p> T2 2. Using (15.27)

1
The integral in the first parenthesis on the right does not exceed <2 —

and changing the order of integration, we arrive at the inequality

T T T ~
IF (T, ey 47

/M e, 7 F)dr < e(p,q) /d / LQ(Rd)l

0 0 (1 =7)2((r =72 +¢)

T P~
dr

d%HF(.,%)H%NRd)](T_;);((T_;);p ve)

T

= c(p, )T )4

O\'ﬂ

~ 1)
< é(p, q)T2 72 HY IFNT (0710 ety

As a result, for all 1 < ¢ < oo we obtain

! 11
(/M(E,T;F)q dT) Y < e, )T 2 |[F| L, (0,1); Lo (RY))- (15.28)
Now, relations (15.25), (15.26), and (15.28) imply the required estimate (15.22).

Inequality (15.23) is checked similarly with the help of (13.9).

Similarly, Theorem 13.4 implies the following statement.

Theorem 15.10. Suppose that the assumptions of Theorem 15.9 are satisfied.
1°. For 0 < e <1 we have

~ 1_1
HuE —Up — EpAEb(D)HEuOHLq((O7T);HP(Rd)) < Cge <c(p, q)Tq » + U(Qa &, T)) ”(p”Lz(Rd)

N L1 - (15.29)
+ Cse (T 4T 21’) ¥ L, ((0,7);L (REY)-
Here o(q,e,T) is defined by (15.24).
2°. In addition, suppose that G(6@) = 0. Then for 0 < e <1 we have
~ 11
[us —ug — e?A°B(D)ILuo| 1, ((0,1); 17 (R)) < Co (C(p, q)e*Ta » + EU(q,E,T)) &l 1, (ray (15.30)

o~ 1_1 _1
+ Coc(p, q) (€T2 w4 2T p) IF L, ((0,7);L (RA)) -

Proof. By (13.13), (15.2), and (15.4),

-~ 1 1
[ue —ug — e”A°B(D)Iuol| 1, ((0,1); 17 (Re)) < Csell Dl Ly ma) (Iq(E;T)q + ~7q(€§T)q)
N 1 R 1
+ Cse (/ L(e,7;F)1 dT) !+ Cse (/M(s, 7;F)? dr) !
0 0

R ~ 1 11
< Csell @l y(ray (p(g,6,T) + 0(q6,T)) + CsellFll 1, (0,7); L0 (RY) (P 9) (Tl 2w+ T2 2p> :

In the last passage, we have used (15.12), (15.14), (15.26), and (15.28). Taking into account that
1 1
p(q,e,T) =c(p,q)T« 2 for 1 < g < 2, we arrive at inequality (15.29).
Similarly, under condition that G(8) = 0, we check estimate (15.30) with the help of (13.14).
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In estimates (15.22), (15.23), (15.29), and (15.30) the coefficient of ||F||1_ (0 1);1,ra)) is O(¢), and

. : 2p 1) P
th fficient of f order O(e) for 1 < ; Oell 272p) f = ; and fa
2ecoe cient of ||@||,(gay is of order O(e) for _q<p+1, (e]loge|2™2r) for q p+1,an or
2
fl < g < 2 its order O(E;_p) depends on g.

15.5. More general Cauchy problem. Approximation of the solutions in Lg(Rd; C™). Now,

we consider a more general Cauchy problem. Let Q(x) be a measurable I'-periodic matrix-valued

function in R of size n x n. It is assumed that Q(x) is uniformly positive definite and bounded:
1, <Qx) <1, xeR? 0<d < <.

Let 0 < T' < oo. We study the behavior of the solution v.(x,7) of the following problem:
0
@)™ — b(D) g (BD)V-(x,7) + Flx 7). x € R 7 (0.7)

Qe(X)VE(X, 0) = ¢(X)7 X € Rdy

where ¢ € Ly(R% C") and F € Ly((0,T); Lo(R% C")) with some 1 < g < oc.

We represent the matrix-valued function Q(x)~! in a factorized form: Q(x)~! = f(x)f*(x), where
f(x) is a I'-periodic matrix-valued function of size n x n such that f, f~! € Lo (R?). (For instance,
one can take f(x) = Q(x)"1/2.)

We substitute w. = (f¢)~!v.. Then w. is the solution of the following problem:

(15.31)

PELT)  (17(30)"B(D) g (0BD) F* (<) w23, ) + (S5 60) Fx, 7). x € B 7€ (0.7),
we(x,0) = (f*(x))*¢(x), xeR%
Let A. = (£°(x))b(D)*¢" (x)b(D)f* (x). Then
Ws(‘aT) _ e_AsT(fE)*¢+/e_Ag(T—?)(f&‘)*F(',:?‘:) 7.
0

Hence,
-

V(1) = fre AT ) p + /f‘fe—f‘s(f—?)(ff)*F(-,F) 7. (15.32)
0

Let fo be given by (9.1) and let A% = fob(D)*¢°b(D)fo. Suppose that vq is the solution of the
“homogenized” problem

Qav()ég’:” = —b(D)*¢"b(D)vo(x,7) + F(x,7), xR, re(0,T), (1533
Qvo(x,0) = p(x), xeR%
Similarly to (15.32),
vo(- ) = foe T fop + / foe AT £ R (-, F) dF. (15.34)
0

Applying Theorems 14.1, 14.2 and using representations (15.32), (15.34), we arrive at the following
results.

Theorem 15.11. Let 0 < T < oo and let F € Ly((0,T); L2(R% C")) with some 1 < q < oco. Let
¢ € Ly(R* C"). Suppose that v. is the solution of problem (15.31) and vq is the solution of the
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homogenized problem (15.33). Then for any T € (0,T) and € — 0 the solution v.(-,T) converges to
vo(-,7) in the La-norm. For 7 € (0,T) and 0 < e <1 we have

1
Ve () = Vols Pl agesy < Cae (720 + €)Ml Loaey + 000, DIF |y o)ty )
where 6(q,e,7) is defined by (15.6).

Theorem 15.12. Suppose that the assumptions of Theorem 15.11 are satisfied. Let @(0) be the
operator defined according to (7.25), (7.26). Suppose that G(0) = 0 for all @ € S%~'. Then for
7€ (0,T) and 0 < e <1 we have

1 ~
Ve (s 7) = Vol T zagaey < Cos? (77 + €)@l ety + 80,2, )Pl (0i1ycaesy )

where 0(q,e,7) is defined by (15.8).

15.6. More general Cauchy problem. Approximation of solutions in L,((0,T); Lo(R%; C")).
By analogy with the proof of Theorem 15.3, we deduce the following statement from Theorem 14.1.

Theorem 15.13. Let 0 < T < oo and let F € Ly((0,T); L2(R% C")) with some 1 < q < oo. Let
¢ € Ly(R* C"). Suppose that v. is the solution of problem (15.31) and vq is the solution of the
homogenized problem (15.33). Then for 0 < e <1 we have

!
Ve = vollz, (0.1);0®ay) < Ci€ (p(Q757T)||¢HL2(Rd) +c(p, )T 2 ||F||Lq((0,T);L2(Rd))) ;
where p(q,e,T) is defined by (15.10).
Similarly, applying Theorem 14.2, we obtain the following result.

Theorem 15.14. Suppose that the assumptions of Theorem 15.13 are satisfied. Let @(0) be the
operator defined according to (7.25), (7.26). Assume that G(8) = 0 for any @ € S* 1. Then for
0 < e <1 we have

~ 1
Ive = vollz, (0,1) Lo (ra)) < Cag” (p(QaEaT)H¢||L2(Rd) +elp,q)T" v ||F||Lq((O,T);L2(Rd))) :
where p(q,e,T) is defined by (15.16).

15.7. More general Cauchy problem. Approximation of the solutions in H? (]Rd; c™).
Now, we obtain approximation of the solution v, of problem (15.31) in the norm of H?(R%;C") and
also approximation of the “flux” q. = ¢°b(D)v. in the norm of Ly(R%; C™). In the case where F = 0,
Theorem 14.5 directly implies the following result.

Theorem 15.15. LetF = 0 and let ¢ € Lo(R%; C™). Suppose that v, is the solution of problem (15.31)
and v is the solution of the homogenized problem (15.33). Let q. = ¢g°b(D)v.. Suppose that A is the
[-periodic solution of problem (7.9) and g is the matriz-valued function defined by (7.13). Then for

7€ (0,T) and 0 < e < T2 we have
11
IDP (ve(,7) = vo(-,7) = ePA°b(D)vo (-, 7)) [ yray < CreT 2 22 |[@] 1, (ray,
. ° _1_ 1
(-, 7) = go(D)vo (-, T)l| Ly may < CoeT 2 22 (||| 1y may-
Applying Theorem 14.6, we obtain the following statement.

Theorem 15.16. Suppose that the assumptions of Theorems 15.15 are satisfied.
1°. For 7 € (0,T) and 0 < e < 72 we have

1
[ve(:,7) = vo(-,7) = P A°B(D)vo (-, 7)|| o (may < CgeT 22| Bl Ly may-
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2°. In addition, assume that @(0) = 0. Then for 7 € (0,T) and 0 < e < T2 we have
11 1
Ve 7) = Vol 7) = PABDIVo (et < G5 (7727 4 2775) @l e

If F # 0, then we need approximations of the sandwiched exponential fee=A47(f%)* for all values
of 0 <7 < T (not only for 7 > &%), and therefore we rely on Theorem 14.3.

Theorem 15.17. Let F € L,((0,T); L2(R% C")) with some 2 < q < 0o. Let ¢ € La(R%;C"). Suppose
that v, is the solution of problem (15.31) and vq is the solution of the homogenized problem (15.33).
Let q. = ¢°b(D)v.. Suppose that A is the I'-periodic solution of problem (7.9) and g is the matriz-
valued function defined by (7.13). Let Il. be the operator defined by (13.5). Then for 7 € (0,T) and
e > 0 we have

ID? (ve(-,7) = vo(:, 7) — e’ A%B(D)(evo) (-, 7))l 1, me)

C7€
< 1Dl £y (rey + C7eO(q, 8, TIF 1, ((0,1): L2 (R4))
T2(T2% +¢)
la:(+;7) = g7o(D)uo (-, 7)|| 1, (ray
§ 1 C?E
T2(T2 +¢)

Here O(q,¢e,T) is given by (15.19).

@1l Ly ray + Co€O(q, 6, T)IF | 1, ((0,1): L2 (RY)-

Finally, applying Theorem 14.4, we obtain the following result.
Theorem 15.18. Suppose that the assumptions of Theorem 15.17 are satisfied.
1°. For 7 € (0,T) and € > 0 we have
V=) = Vol 7) = P ATB(D) Lt -, 7)o
Cs(1+ 7 2)e 1- 11
<TGl gy + Co ()T 0+ O(a,6,7) ) IF Ly 01zt
T +¢€
2°. In addition, assume that @(0) = 0. Then for 7 € (0,T) and € > 0 we have
V=) = Vol 7) = P ATB(D) Lt -, 7)o

2

3 e _1_1
< Cy ( L + > &l 1, ey + Co (E@(q,&T) +e(p,q)e’r q) ¥ L, (0,7);Lo(RY)-
T2(T2% +¢€) TP +£2

15.8. More general Cauchy problem. Approximation of solutions in L,((0,T); HP(R%; C")).
By analogy with the proof of Theorem 15.9, applying Theorem 14.3, we deduce the following result.

Theorem 15.19. Let 0 < T < co and let F € L,((0,T); Lo(R% C™)) with some 1 < g < 2. Let ¢ €
Ly (R4 C™). Suppose that v. is the solution of problem (15.31) and vy is the solution of the homogenized
problem (15.33). Let q- = g°b(D)v.. Suppose that A is the I'-periodic solution of problem (7.9) and
g is the matriz-valued function defined by (7.13). Let Il. be the operator defined by (13.5). Then for
0 < e <1 we have

ID? (ve — vo — e?AB(D)Ievo)ll (0,11, ey < C720(q, €, T) @], ey

11
+ Crec(p, )T > | F| 1, ((0,1):L5(R4Y)»
an . gEb(D)HEVO”Lq((O,T);Lg(Rd)) < CGEU(Q7 g, T) H¢HL2(R(1)

11
+ Ceec(p, )T Zp”FHLq((O,T);Lg(IRd))a
where o(q,e,T) is given by (15.24).

1019



Similarly, Theorem 14.4 implies the following statement.

Theorem 15.20. Suppose that the assumptions of Theorem 15.19 are satisfied.
1°. For 0 < e <1 we have

11
[ve — vo — e”AB(D)ILvo 1, ((0,7); 17 (R)) < Cse (C(p, q)Ta 2 + U(%&T)) D1l Ly ey
1 11
+ Cge (Tl w412 2”) IF |z, ((0.7);Lo(R?))-

Here 0(q,e,T) is defined by (15.24).
2°. In addition, assume that G(0) = 0. Then for 0 < e <1 we have

11
[ve —vo — e”AB(D)ILvo | 1, ((0,7); 17 (R)) < Co (C(p, Q)T v + EU(q,E,T)) @l L, ey

11 1
+ Coc(p, q) (ET2 » + 27! p) IF(| L, ((0.7);L0(R))-

16. Appendix. Another Way to Get Results
on Homogenization of the Operator Exponential

The results on approximation of the operator exponential can be derived by the method of inte-
grating the resolvent along a suitable contour in the complex plane. This method was applied by
Meshkova in [9], where second-order operators A, were considered. To implement such an approach,
one needs to have “ready” results on approximation of the resolvent (A. —(I)~! at an arbitrary regular
point ¢ € C\ Ry with two-parametric error estimates (depending on ¢ and (). For the second-order
operators, such estimates were obtained in [21].

For higher-order operators of form A, = b(D)*¢°(x)b(D), the required approximations for the
resolvent with two-parametric error estimates were obtained in [8]. On their basis, another proof of
Theorems 13.1 and 13.3 can be given.

: 1 s 37

= P = =

Let ¢ ICle’? € C\ Ry. We put c(p) : sin o for ¢ € (O, 2) U ( 5 ,271) and ¢(p) = 1 for
T 3T .
RS (2, ) ) In [8, Sec. 8], it was proved that
(A= ¢n= = (A = ¢n| < Clef) el (16.1)
© La(RY)—Ly(RY) — ’
D? (A — ¢ = (A° — ¢I) ! — ePASH(D)(A° — ¢I)~ M < C"e()2e|C| 2.

|o7 (A =™ = (& e =AD& — L) < el el

(16.2)

We use representation for the operator exponential e~ "<, 7 > 0, via the integral of the resolvent
along the contour enclosing the spectrum of the operator A. (see [7]):

oA — 1 /e—CT(,ZE — ¢ tde. (16.3)

211
¥r

We choose the contor 7, depending on the parameter 7 in the same way as in [9]: 7, = 7, U7, where
Vr :Z{CGC:Czpeiz ipelroo)U{CeC:C=pcT ipe [T,OO)},

o T T
Vr = C:¢(=71e?: <p< .
pocfeccicann T2peT)
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Using representation (16.3) for e~ and a similar representation for e_TAO, we have

oA _ T A _ 1 /e_gT ((A‘e ) (A - CI)_l) dc

i

S C1(C T e P

7

(16.4)

The second equality is obtained by changing the variable n = (7.
Applying representation (16.4) and estimate (16.1), we arrive at the inequality

c’ -
< g/e‘Re”(T‘lln\)Zp Yldn).

He—rﬁs
LQ(Rd)—)LQ(Rd) T
71

_ 70
_67,4‘

We took into account that c(¢) < v/2 for the points of the contour +,. The integral is understood here

as an integral over the arc length. Estimating this integral, we arrive at the inequality
1

< C'e

He_”Ks A < (16.5)
Lo (Rd)—)LQ (Rd)

T 211’
Applying (16.5) for 7 > 1 and estimating the left-hand side by 2 for 0 < 7 < 1, we obtain an inequality

of form (13.2). Thus, we have proved Theorem 13.1 in a different way.
Similarly, using (16.2) and representation (16.3), it is easy to get the estimate

C'e

HDp (e—fﬁg _ e—T/TO _ EPE(E,T)) ‘ (R La(RE) = 7—§+21p .

From here it is easy to pass to inequality (13.8).

Thus, general results on the behavior of the exponential =™ can be deduced from the results
of [8] about approximations of the resolvent. However, we could not use the same way to get other
results of the paper, since we have no “ready” results on the behavior of the resolvent in the case of
improved results under the additional condition (that G(8) = 0), nor in the case of a more general
operator of the form A, = (f¢)*b(D)*¢°(x)b(D) f*.

Therefore, we preferred to carry out independent considerations for the operator exponential in the
spirit of the operator-theoretic approach.
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