
Journal of Mathematical Sciences, Vol. 277, No. 5, December, 2023

A NEW FORMULA FOR THE NUMBER
OF LABELED SERIES-PARALLEL GRAPHS
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Abstract. A series-parallel graph is a graph that does not contain a complete graph with four vertices
as a minor. A new explicit simpler formula for the number of labeled series-parallel biconnected graphs
with a given number of vertices is obtained.
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Definition 1. A graph is said to be series-parallel if it does not contain a subdivision of the complete
graph K4 (see [1]).

Series-parallel graphs are used for constructing robust communication networks (see [3]).
In [1], an asymptotic formula for the number of labeled connected and double connected series-

parallel graphs with a large number of vertices was found. In [4], labeled series-parallel connected and
biconnected graphs were listed in correspondence with the number if vertices. The numbers of labeled
series-parallel tricyclic and tetracyclic blocks with a given number of vertices were found in [7] and [5],
respectively. In [6], an explicit formula for the number of labeled series-parallel k-cyclic blocks with a
given number of vertices was obtained.

Let Bn be the number of labeled biconnected series-parallel graphs with n vertices. In [4], the
following formula was obtained:
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In this paper, we obtain a simpler explicit formula for the number of labeled series-parallel biconnected
graphs with a given number of vertices.

Theorem 1. The number Bn of labeled series-parallel biconnected graphs with n vertices is equal to

Bn = (n− 1)!
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here we assume that
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= 0 for 0 ≤ n < m and 00 = 1.

Proof. Let bn,m be the number of labeled series-parallel biconnected graphs with n vertices andm edges
and
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be the corresponding generating function. The following relations are well known (see [1]):
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Let t = ln((1 +D)/(1 + y)); then we obtain
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In [4], the following relation was found:
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The following formula for the coefficients of expansion of an analytic function f(t) into the series
in powers of another analytic function w(t) (the Bürmann–Lagrange formula; see [2]) is well known:
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In the case considered, we have
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. Using Newton’s binomial formula and the Taylor expansion for

the exponential function, we obtain
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In the second term, the factorial in the denominator turns the term into zero for i = 1, whereas the
second binomial coefficient vanishes for j = n+ i− 1; therefore,
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Performing the change of variables i′ = i− 1 and i′ → i, we arrive at the required assertion. �

Table 1.

n 3 4 5 6 7 8 9 10 11
Bn 1 9 152 3810 126402 5210576 256469544 14666168250 955097348870

In Table 1, the numbers Bn calculated by Theorem 1 and the Maple software are presented. They
coincide with the numbers calculated by the formula (1) in [4].
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