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We establish the solvability of a Volterra integro-differential equation with logarithmic

kernel in a class of weighted spaces on a finite interval with power singularities at the

endpoints of the interval. Bibliography: 10 titles.

Much attention was paid to integro-differential equations with different properties of the kernel

were considered, for example, in [1]–[4]. The case of logarithmic kernels was studied [5]–[7] in

detail. We also mention the works [1, 8] devoted to the study of integro-differential equations

and the conjugates. Our work continues the study of equations of this type in this direction

1 Volterra Integral Operators in Weighted Spaces

Following [9], we introduce the weighted space Cλ = Cλ0,λ1([0, 1], 0, 1), λ = (λ0, λ1) ∈ R
2,

of continuous complex-valued functions ϕ(t), 0 < t < 1, such that ϕ0(t) = t−λ0(1 − t)−λ1ϕ(t)

is bounded. This space is Banach with respect to the norm |ϕ| = supt |ϕ0(t)|. The space

Cn
λ , n = 1, 2, . . . of differentiable functions is defined inductively by the condition ϕ ∈ Cn−1

λ ,

ϕ′ ∈ Cn−1
λ−1 or, in terms of the weight differentiation operator

(Dϕ)(t) = t(1− t)ϕ′(t) (1.1),

ϕ,Dϕ ∈ Cn−1
λ−1 . In particular, the operator D is bounded as an operator from Cn

λ to Cn−1
λ . We

note that if λ0 or λ1 is positive, then the constant functions do not belong to the space C1
λ
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and, consequently, the kernel of D is zero, i.e., the operator D is injective in C1
λ. Thus, we can

introduce the right inverse operator D(−1) which is the simplest Volterra operator and acts by

the formula

(D
(−1)
0 ϕ)(x) =

x∫

0

ϕ(t)dt

t(1− t)
, (1.20)

for λ0 > 0 or

(D
(−1)
1 ϕ)(x) = −

1∫

x

ϕ(t)dt

t(1− t)
, (1.21)

for λ1 > 0. For operators in the space Cn
λ were well studied [10]. We formulate the corresponding

result [10, Theorem 2.10.1] adapted to the case under consideration.

Lemma 1.1. (a) Assume that λ0 > 0 and λ1 �= 0. Then for λ1 < 0 the operator D
(−1)
0 is

bounded from Cn
λ to Cn+1

λ , and for λ1 > 0 from the subspace of Cn
λ defined by

1∫

0

ϕ(t)dt

t(1− t)
= 0. (1.3)

(b) Assume that λ1 > 0 and λ0 �= 0. Then for λ0 < 0 the operator D
(−1)
0 is bounded from

Cn
λ to Cn+1

λ and for λ0 > 0 from the subspace of Cn
λ defined by (1.3).

We note that the operator

(Tϕ)(t) = ϕ(1− t), (1.4)

realizes an isomorphism between Cn
λ and Cn

˜λ
, where λ̃0 = λ1 and λ̃1 = λ0. The operators (1.2)

are associated with T by the relation

TD
(−1)
1 T = D

(−1)
0 . (1.5)

Therefore, statements (a) and (b) are equivalent.

We consider the Volterra integral operator in the space Cλ

(Iϕ)(x) =

x∫

0

K(x, t)
ϕ(t)dt

t(1− t)
, 0 < x < 1, (1.6)

with the kernel

K = A0 +A1L++ . . .+An−1L
n−1, L(x, t) = ln

( x

1− x

1− t

t

)
,

where Aj ∈ C.

Lemma 1.2. The operator I is bounded in the space Cλ for λ0 > 0 > λ1.

Proof. As above, we introduce the space Cδ([0, a], 0), δ ∈ R, of continuous functions ϕ(x),

0 < x � a, such that ϕ0(t) = t−δϕ(t) is bounded. Then for 1/2 < a < 1 the space Cλ =

Cλ0,λ1([0, 1], 0, 1) can be described by the conditions

ϕ(t) ∈ Cλ0([0, a], 0), ϕ(1− t) ∈ Cλ1([0, a], 0). (1.7)
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We consider the Volterra integral operators

(I0ϕ)(x) =

x∫

0

c(x, t) lnr
( t

x

)ϕ(t)dt
t

, 0 < x � a,

(I1ϕ)(x) =

a∫

x

c(x, t) lnr
( t

x

)ϕ(t)dt
t

, 0 < x � a,

where r is an integer and the function c(x, t), 0 < x, t � a, is continues and bounded.

The operators I0 and I1 are bounded in the space Cδ([0, a], 0) for δ > 0 and δ < 0, which

becomes clear if we write

(I0ϕ)(x) = xδ
1∫

0

c(x, xs)(ln s)rsδ−1ϕ0(xs)ds, δ > 0,

(I1ϕ)(x) = xδ
a/x∫

1

c(x, xs)(ln s)rsδ−1ϕ0(xs)ds, δ < 0,

where ϕ0(t) = t−δϕ(t) is bounded.

Now, we consider I as an operator on [0, a]. It is obvious that

K(x, t)

1− t
=

n−1∑
j=0

cj(x, t) ln
j
(x
t

)
, 0 < x, t < a,

with some bounded continuous functions cj . This operator can be represented as the sum of

operators of the form I0. Therefore, taking into account the inequality λ0 > 0, we conclude that

this operator is bounded in Cλ0([0, a], 0).

Using (1.4), we write

(Iϕ)(1− x) =

a∫

x

K(1− x, 1− t)
ϕ(1− t)dt

t(1− t)
+ ψ(x), 0 < x, t < a,

where

ψ(x) =

1∫

a

K(1− x, 1− t)
ϕ(1− t)dt

t(1− t)
=

1−a∫

0

K(1− x, t)
ϕ(t)dt

t(1− t)
.

As above, the operator defined by the first term is the finite sum of operators of the form I1 and,

consequently, by the inequality λ1 < 0, is limited to Cλ1([0, a], 0). It is obvious that the second

term, can be represented as an operator with limited action Cλ0([0, 1 − a], 0) → Cλ1([0, a], 0).

Together with description (3) of the space Cλ, we obtain the required assertion.

Let us consider the connection between I and the weighted differentiation operator D = Dx.

It is obvious that Iϕ is continuously differentiable on (0, 1) and

D(Iϕ) = A0ϕ+ I1ϕ, (1.8)
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where I1 is defined in a similar way as (1.6) via K1 = DxK. Applying the operation Dx to

the function L(x, t) in (1.6), we obtain the relations DxL = 1 and DxL
s = sLs−1. Hence

K1 = A1 + 2A2L + . . . + (n − 1)An−1L
n−2. By Lemma 1.2 applied to I1, the operator I is

bounded from Cλ to C1
λ. From (1.8) it follows that

DI = A0 + I1, D2I = A0D +A1 + I2, . . . ,

DsI = A0D
s−1 + 1!A1D

s−2 + . . .+ (s− 1)!As−1 + Is, s � n,

where Is is defined via

DsK = s!As + 2 · 3 · · · (s+ 1)As+1 + . . . ,

Thus, the operator I is bounded from Cn−1
λ to Cn

λ . Since DnK = 0, we have

DnI = A0D
n−1 + 1!A1D

n−2 + . . .+ (n− 1)!An−1. (1.9)

2 Volterra Integro-Differential Equation

In the space Cn+1
λ , λ0 > 0, we consider the equation

Dϕ+ Iϕ = f (2.1)

with f ∈ Cn
λ . By (1.9), the function ϕ satisfies the ordinary differential equation

P (D)ϕ = Dnf, (2.2)

where

P (ζ) = ζn+1 +A0ζ
n−1 + . . .+ (n− 1)!An−1.

In what follows, we assume that all the zeros ζ0, ζ1, . . . , ζn of the polynomial P are simple.

We first consider the homogeneous equation

P (D)ϕ = 0. (2.3)

For the sake of brevity we set

q(t) =
t

1− t
, 0 < t < 1 (2.4)

and associate with a complex number ζ the function qζ(t) = [q(t)]ζ .

The straight lines Re ζ = λ0 and Re ζ = −λ1 divide the complex plane into open right G+

and left G− half-planes and the strip G0 between these planes (λ0 �= −λ1). Thus,

G− = {Re ζ < −λ1}, G+ = {Re ζ > λ0}, λ0 + λ1 � 0,

G− = {Re ζ < λ0}, G+ = {Re ζ > −λ1}, λ0 + λ1 � 0.
(2.5)

Lemma 2.1. Let all the zeros ζ0, ζ1, . . . , ζn of the polynomial P lie outside the lines Re ζ =

λ0 and Re ζ = −λ1. Then for λ0 + λ1 � 0 the homogeneous problem (2.3) in the class Cn+1
λ

has only the zero solution, and for λ0 + λ1 < 0 the functions qζi, ζi ∈ G0 form the basis for the

space of solutions to this problem.
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Proof. The obvious equalities

Dq = q, Dqζ = ζqζ (2.6)

for the function (2.4) show that P (D)qζ = P (ζ)qζ . Hence the linearly independent functions

ϕj = qζj , 0 � j � n, form a basis for the space of solutions to the homogeneous equation (2.3)

in the class Cn+1(0, 1) of (n+1) times continuously differentiable functions on (0, 1). Therefore,

it suffices to show that these functions belong to Cλ. By assumption, all points ζi belong to

G− ∪G0 ∪G+. According to (2.4),

|qζ(t)| = tλ0+ν0(1− t)λ1+ν1 , ν0 = Re ζ − λ0, ν1 = −Re ζ − λ1.

If ζ ∈ G±, then in both cases (2.5) one of the numbers νj is negative and, consequently, the

function qζ does not belong to the space Cλ. If ζ ∈ G0, then both numbers νj are positive for

λ0 + λ1 < 0 or negative for λ0 + λ1 < 0. Hence qζ ∈ Cλ only in the first case, which completes

the proof of the lemma.

By Lemma 2.1, it suffices to construct a particular solution to the inhomogeneous equation

(2.2) which, in the case λ0 > 0, is also a particular solution to the original equation (2.1). Let

f ∈ Cn
λ . Then

fq−ζ ∈ Cδ, δ0 = λ0 − Re ζ, δ1 = λ1 +Re ζ.

According to (2.5),

δ0 > 0, δ1 < 0, ζ ∈ G−,

δ0 < 0, δ1 > 0, ζ ∈ G+,

δ0 > 0, δ1 > 0, ζ ∈ G0, λ0 + λ1 < 0,

δ0 < 0, δ1 < 0, ζ ∈ G0, λ0 + λ1 > 0.

By Lemma 1.1, each of the functions

u−ζ (x) =
x∫

0

qζ(x)

qζ(t)

f(t)dt

t(1− t)
; ζ ∈ G−, (2.7−)

and

u+ζ (x) = −
1∫

x

qζ(x)

qζ(t)

f(t)dt

t(1− t)
∈ Cn+1

λ , ζ ∈ G+. (2.7+)

belongs to Cn+1
λ .

Assume that ζ ∈ G0, λ0 + λ1 < 0, and

1∫

0

f(t)

qζ(t)

dt

t(1− t)
= 0. (2.8)

Then u+ζ = u−ζ , and we can set

u0ζ = u±ζ , ζ ∈ G0, λ0 + λ1 < 0. (2.9)
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By Lemma 1.1, this function also belongs to the class Cn+1
λ . In the latter case, ζ ∈ G0,

λ0+λ1 < 0, the integrals in (2.9) do not necessarily have sense, so, this case should be excluded

from our consideration.

We formulate the main result of the paper about the solvability of Equation (2.1) in two

cases depending on the sign of λ0 + λ1.

Theorem 2.1. Let λ0 + λ1 � 0, and let all the zeros ζ0, ζ1, . . . , ζn of the polynomial P lie

outside the strip G
0
= {λ0 � Re ζ � −λ1}, i.e., in G+∪G−. Then Equation (2.1) with f ∈ Cn

λ ,

λ0 > 0, is uniquely solvable in the class Cn+1
λ and the solution is expressed as

ϕ = ϕ+ + ϕ−, ϕ± =
∑

ζi∈G±
ciu

±
ζi
, (2.10)

where c0, c1, . . . , cn satisfy the system

n∑
i=0

Pn−j(ζi)ci =

⎧⎨
⎩
0, 0 � j � n− 1,

1, j = n,

with polynomials P0 = 1, P1(ζ) = ζ, and

Ps(ζ) = An−s+1 +An−s+2ζ + . . .+An−1ζ
s−2 + ζs, 2 � s � n.

Proof. As was already mentioned, Equations (2.1) and (2.2) are equivalent in the class

Cn+1
λ , λ0 > 0. According to (2.6), for ϕ = u±ζ , ζ ∈ G±,

Dϕ = f + ζϕ, D2ϕ = f + ζDf + ζ2ϕ, . . . ,

Ds+1ϕ = ζsf + ζs−1Df + . . .+Dsf + ζs+1ϕ.

Substituting these expressions into P (D), taking into account that P (ζ) = 0, and making

elementary calculations, we obtain the equality

P (D)ϕ = Pn(ζ)f + Pn−1(ζ)Df + . . .+ P1(ζ)D
n−1f + P0D

nf + P (ζ)ϕ

with the polynomials Pj of degree j defined above. Hence

P (D)u±ζi =
n∑

j=0

Pn−j(ζi)D
jf, ζi ∈ G±.

Then for the linear combination (2.10) of u±ζi we can write

P (D)ϕ =
n∑

j=0

[
n∑

i=0

Pn−j(ζi)ci)

]
Djf, (2.12)

where we took into account that all the points ζ0, . . . , ζn belong to G+ ∪G− by assumption.

It is easy to see that the system (2.11) is uniquely solvable with respect to ci. Indeed, let a

matrix with entries Pn−j(ζi), 0 � i, j � n, have zero determinant. Then some nontrivial linear

combination of Pj , which is a polynomial of the nth degree, vanishes at n + 1 points ζ0, . . . ζn.
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Therefore, the linear combination is equal to zero, which contradicts the linear independence of

the polynomials P0, . . . , Pn.

For the solution c0, . . . , cn of this system, the equality (2.12) means that the function (2.10)

is a partial solution to Equation (2.2). This fact, together with Lemma 1.2, completes the

proof.

We note that the solution to the system (2.11) is given by ci =
det Mi

det M
, where M denotes

the matrix with entries Pn−j(ζi) and the matrix Mi is obtained by replacing the ith column of

M with the vector (0, . . . , 0, 1).

It remains to consider the case λ0 + λ1 < 0. Arguing in the same way as in Theorem 2.1 we

arrive at the following result.

Theorem 2.2. Let λ0+λ1 < 0, and let and all the zeros of the polynomial P lie outside the

lines Re ζ = (−1)kλk, k = 0.1. Let a function f ∈ Cn+1
λ satisfy the orthogonality conditions

1∫

0

f(t)[q(t)]−ζi = 0, ζi ∈ G0. (2.13)

Then a solution to this equation in the class Cn+1
λ , λ0 > 0, is given by

ϕ = ϕ− + ϕ0 + ϕ+,

where ϕ± are defined in (2.10), ϕ0 has a similar meaning with respect to G0, and the coefficients

c0, c1, . . . , cn satisfy (2.11).

By duality, it is easy to show that the orthogonality conditions (2.13) of Theorem 2.2 are

not only sufficient, but also necessary for the solvability of Equation (2.1).

We consider the bilinear form

(ϕ,ψ) =

1∫

0

ϕ(t)ψ(t)
dt

t(1− t)
. (2.14)

This form is continuous on Cλ×Cδ for λ+δ > 0. The operator D′ = −D is adjoint to D relative

to this form in the sense that

(Dϕ,ψ) = −(ϕ,Dψ). (2.15)

It remains to take into account that the product ϕψ of ϕ ∈ C1
λ and ψ ∈ C1

δ belongs to the space

Cλ+δ and vanishes for λ+ δ > 0 at the endpoints of the segment.

We consider the Volterra integral operator

(I ′ψ)(x) =
1∫

x

K(t, x)
ψ(t)dt

t(1− t)

which is the adjoint to (1.6). The following counterpart of Lemma 1.2 holds.

Lemma 2.2. The operator I ′ is bounded in Cδ for δ0 < 0 < δ1.
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Proof. We argue in the same as in Lemma 1.2. In this case, it is easier to use (1.4) sending

Cλ to Cλ′ with the weight order λ′ = (λ1, λ0). Since K(1−x, 1−t) = K(t, x), we have I ′ = TIT ,

which reduces Lemma 2.1 to Lemma 1.2.

We note that a similar relation is also valid for the operator D, i.e., TDT = −D. In

particular, for λ0 + λ1 < 0, in the notation of Lemma 2.1, the functions ψi = Tϕi are solutions

to the homogeneous adjoint equation

−Dψ + I ′ψ = 0. (2.16)

It is clear that

ψi(x) = ϕi(1− x) = q−ζi(x). (2.17)

Changing the integration order¡ we obtain the duality relation

(Iϕ, ψ) = (ϕ, I ′ψ).

By (2.15), it follows that for any ϕ ∈ C1
λ the solution ψ ∈ C1

δ to Equation (2.16) satisfies the

following equality for λ+ δ > 0:

(Dϕ+ Iϕ, ψ) = (ϕ,−Dψ + I ′ψ) = 0.

In particular, we have the equalities (f, ψi) = 0, ζi ∈ G0, which coincide with the orthogonality

conditions (2.13) In Theorem 2.2. Hence these conditions are necessary and sufficient for the

solvability of Equation (2.1) in the case λ0 + λ1 < 0.

Declarations

Data availability This manuscript has no associated data.

Ethical Conduct Not applicable.

Conflicts of interest The authors declare that there is no conflict of interest.

References

1. N. Rajabov, Introduction to Ordinary Differential Equations with Singular and Supersingular
Coefficients [in Russian], Dushanbe (1998).

2. S. K. Zaripov, “A new method of solving model first-order integro-differential equations
with singular kernels” [in Russian], Math. Phys. Comput. Simul. 20, No. 4, 68–75 (2017).
DOI: 10.15688/mpcm.jvolsu.2017.4.6

3. S. K. Zaripov, “A class of model first order integro-differential equations with a supersingular
kernel” [In Russian], Vestn. Tajik Natl. Univ. No. 1/6, 6–12 (2015).

4. S. Zaripov and N. Rajabov, “Solutions of a class of model partial integro-differential equa-
tions with singular kernels” [in Russian], Rep. Akad. Nauk Tadzh. 60, No. 3-4, 118–125
(2016).

5. S. K. Zarifzoda, R. N. Odinaev, Investigation of some classes of integro-differential equations
in partial derivatives of the second order with a power-logarithmic singularity in the kernel
[in Russian], Vestn. Tomsk Gos. Univ., Mat. Mekh. 67, 40–54 (2020).

474



6. T. K. Yuldashev and S. K. Zarifzoda, “Mellin transform and integro-differential equations
with logarithmic singularity in the kernel,” Lobachevskii J. Math. 41, No. 9, 1910–1917
(2020).

7. T. K. Yuldashev and S. K. Zarifzoda, “New type super singular integro-differential equation
and its conjugate equation,” Lobachevskii J. Math. 41, No. 6, 1123–1130 (2020).

8. T. K. Yuldashev, R. N. Odinaev, and S. K. Zarifzoda, “On exact solutions of a class of
singular partial integro-differential equations,” Lobachevskii J. Math. 42, No. 3, 676–684
(2021).

9. A. P. Soldatov and A. B. Rasulov, “Generalized Cauchy–Riemann equations with power-
law singularities in coefficients of lower order,” In: Springer Proc. Math. Stat. 357, 535–548
(2021).

10. A. P. Soldatov, “Singular integral operators and elliptic boundary value problems. I,” J.

Math. Sci. 245, No. 6, 695–891 (2020).

Submitted on November 1, 2023

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in pub-

lished maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this

article under a publishing agreement with the author(s) or other rightsholder(s); author self-

archiving of the accepted manuscript version of this article is solely governed by the terms of

such publishing agreement and applicable law.

475


	Abstract
	1 Volterra Integral Operators in Weighted Spaces
	2 Volterra Integro-Differential Equation
	Declarations
	References

