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We study the fractional diffusion equation with changing direction of evolution. We

consider the boundary value problem for this equation and prove the existence of a gen-

eralized solution. Bibliography: 10 titles.

1 Introduction

Introduce the notation: T > 0, Ω ⊂ Rm is a bounded domain with smooth boundary Γ = ∂Ω,

Q = (0, T ) × Ω, S = (0, T ) × Γ, 0 < ν < 1. In the cylinder Q, we consider the following mixed

problem for the model equation with the Gerasimov–Caputo fractional derivative:

∂ν
t (k(t, x)u(t, x))−Δu(t, x) + γu(t, x) = f(t, x),

u(t, x)|S = 0, u(0, x) = u0(x).
(1.1)

The case k(t, x) � k0 > 0 has been well studied.

In the case of a constant coefficient k(x, t) ≡ k0, the study of this problem is based on the

separation of variables or the use of the Laplace transform.
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In the case of variable coefficients, integral inequalities of the form

T∫

0

ψ(t, u)Dν(ku) dt � C(‖u‖B),

where B is a Banach space, are usually used. Based on these inequalities, it is possible to obtain

necessary a priori estimates. Some general inequalities of this kind can be found in [1]. We also

mention the related works [2]–[6].

In this paper, we are interested in setting a well-posed problem in the case of an arbitrary

behavior of the coefficient k(t, x). It is clear that the Cauchy initial condition in (1.1) should be

replaced in this case. For example, if k(t, x) � 0, a part of the set Ω is free from the initial data

(see [6]). In the case of ordinary derivatives, the problem

k(t, x)ut(t, x)−Δu(t, x) + γu(t, x) = f(t, x),

u(t, x)|S = 0,

u(0, x) = u0(x), x ∈ Ω+
0 = {x|k(0, x) > 0},

u(T, x) = u1(x), x ∈ Ω−
T = {x|k(T, x) < 0}

is well posed under certain conditions (for more details we refer to [7], where the uniqueness of

a generalized solution was studied). In the case of fractional derivatives, a similar problem is

also well posed.

We reduce the problem to solving an equation of the form

(k(t, x)u(t, x))t −DμΔu(t, x) + γDμu(t, x) = Dμf(t, x).

Such equations (without degeneracy and sign change) were considered, for example, in [8] (see

also the references therein).

2 Notation. Auxiliary Estimates

For 0 < ν < 1 and t > 0 we introduce the fractional integral of order ν with origin at a

point a

Jν
a y(t) =

sgn(t− a)

Γ(ν)

t∫

a

y(s)

|t− s|1−ν
ds,

the Riemann–Liouville fractional derivative of order ν

Dν
ay(t) =

1

Γ(1− ν)

d

dt

t∫

a

y(s)

|t− s|ν ds,

and the Gerasimov–Caputo fractional derivative

∂ν
ay(t) =

1

Γ(1− ν)

t∫

a

y′(s)
|t− s|ν ds.
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In the case a = 0, we write Jνy(t), Dνy(t), ∂νy(t).

Let y(t) ∈ C1(0, T ). Then for some constant C > 0 we have (see [1, 6])

T∫

0

y(t)Dνy(t) dt � C

T∫

0

y2(t)
( 1

tν
+

1

(T − t)ν

)
dt+ C‖y(t)‖2

W
ν/2
2 (0,T )

. (2.1)

Using the equality

Dνy(t) =
y(t)

tνΓ(1− ν)
+

ν

Γ(1− ν)

t∫

0

y(t)− y(s)

(t− s)1+ν
ds,

it is easy to get

2yDνy(t) = Dνy2(t) +
y2(t)

tνΓ(1− ν)
+

ν

Γ(1− ν)

t∫

0

(y(t)− y(s))2

(t− s)1+ν
ds. (2.2)

Then the estimate (2.1) immediately follows from (2.2).

Further, a direct calculation shows that DνJνy(t) = JνDνy(t) = y(t). Moreover, for 0 <

μ � ν < 1

DμJνy(t) = Jν−μy(t) = Jν−μJμDμy(t) = JνDμy(t),

JμDνy(t) = Dν−μJν−μJμDνy(t) = Dν−μy(t) = DνJμy(t).

It is obvious that the same equalities hold for operators with the origin at the point T .

For any smooth functions f(t) and g(t) we denote

J(f, g) =

T∫

0

f(t)g(t) dt.

Then

J(f, g) =

T∫

0

f(t)Jν
TD

ν
T g(t) dt =

T∫

0

Jνf(t)Dν
T g(t) dt.

For 0 < μ < 1/2 we have the estimates (see [9])

C1‖Dμg(t)‖L2(0,T ) � ‖Dμg(t)‖L2(0,T ) � C2‖Dμg(t)‖L2(0,T )

which imply

|J(f, g)| � C3‖Jμf(t)‖L2(0,T )‖Dμg(t)‖L2(0,T ), (2.3)

where the constant C3 depends on μ and T .

In what follows, we need to regularize fractional differentiation operators. For 0 < μ < 1

and 0 < θ < 1 we put

Jμ,θy(t) =
1

Γ(μ)

t∫

0

y(s)

(t− s+ θ)1−μ
ds,

Kμ,θy(t) =
1

Γ(1− μ)

d

dt

t∫

0

y(s)

(t− s+ θ)μ
ds.

368



It is clear that Kμ,θv(t, x) =
d

dt
J1−μ,θ. As in the case (2.1), for some constant CK = CK(μ, T ) >

0 independent of θ the following inequality holds:

T∫

0

y(t)Kμ,θy(t) dt � CK‖y(t)‖L2(0,T ). (2.4)

Moreover,
T∫

0

y(t)Kμ,θy(t) dt � C1‖y(t)‖2
W

μ/2
2 (0,T )

− C2θ
(1−μ)/2‖y(t)‖2W 1

2 (0,T ). (2.5)

Indeed, to prove this we need to estimate the term Dμy(t)−Kμ,θy(t). Denote

D(y(t), z(t)) =

T∫

0

(Dμy(t)−Kμ,θy(t))z(t) dt.

Lemma 2.1. There exists a constant C(μ, T ) > 0 independent of θ and such that for any

smooth functions y(t), z(t)

|D(y(t), z(t))| � C(μ, T )θ(1−μ)/2‖y(t)‖W 1
2 (0,T )‖z(t)‖W 1

2 (0,T ). (2.6)

Proof. Denote

ρθ(t) =
1

Γ(1− μ)

( 1

tμ
− 1

(t+ θ)μ

)
.

Then

Dμy(t)−Kμ,θy(t) = y(0)ρθ(t) +

t∫

0

y′(s)ρθ(t− s) ds.

It is easy to see that

T∫

0

ρθ(t) dt � C(T 1−μ + θ1−μ − (T + θ)1−μ) � Cθ1−μ, (2.7)

0 < ρθ(t) = C
t+ θ − tμ(t+ θ)1−μ

tμ(t+ θ)
� C

θ

tμ(t+ θ)
. (2.8)

Denote

w(t) =

t∫

0

y′(s)ρθ(t− s) ds.

Using (2.7) and the Hausdorff–Young inequality, we get

‖w(t)‖L2(0,T ) � Cθ1−μ‖y(t)‖W 1
2 (0,T ).

Thus, with the help of (2.8), we obtain the inequality

|D(y(t), z(t))| � Cθ1−μ‖y(t)‖W 1
2 (0,T )‖z(t)‖L2(0,T ) + C|y(0)|Iz, (2.9)
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where

Iz =

T∫

0

|z(t)|θ
tμ(t+ θ)

dt.

It is obvious that

Iz �
( T∫

0

z2(t)

tμ
dt

)1/2( T∫

0

θ2

tμ(t+ θ)2
dt

)1/2

.

To estimate the last integral, we divide the interval (0, T ) into two subintervals and write

T∫

0

θ2

tμ(t+ θ)2
dt �

θ∫

0

dt

tμ
+

T∫

θ

θ2 dt

t2+μ
� Cθ1−μ. (2.10)

Combining (2.9) with (2.10) and using the embedding theorems, we obtain (2.6).

Corollary 2.1. For any smooth function y(t) the estimate (2.5) holds with some constants

C1(μ, T ) > 0 and C2(μ, T ) > 0.

Proof. It suffices to note that

T∫

0

Kμ,θy(t)y(t) dt =

T∫

0

Dμy(t)y(t) dt−
T∫

0

(Dμy(t)−Kμ,θy(t))y(t) dt

and use the inequality (2.1) and Lemma 2.1.

3 Statement of the Problem. Existence Theorem

Consider the problem

∂ν(k(t, x)u(t, x))−Δu(t, x) + γu(t, x) = f(t, x), (3.1)

u(t, x)|S = 0, (3.2)

u(0, x) = 0, x ∈ Ω+
0 = {x|k(0, x) > 0}, (3.3)

u(T, x) = 0, x ∈ Ω−
T = {x|k(T, x) < 0}. (3.4)

We set χ0(x) = k(0, x)u(0, x) and χT (x) = k(T, x)u(T, x). Formally applying the operator Jν

to Equation (3.1), we arrive at the equality

k(t, x)u(t, x)− JνΔu(t, x) + γJνu(t, x) = Jνf(t, x) + χ0(x), t ∈ [0, T ]. (3.5)

In particular, for t = T we have

χT (x)− χ0(x)− JνΔu(T, x) + γJνu(T, x) = Jνf(T, x). (3.6)

Taking into account (3.3) and (3.4), we get

suppχ0(x) ⊆ Ω−
0 , suppχT (x) ⊆ Ω+

T , (3.7)
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where Ω−
0 and Ω+

T are introduced in the same way as (3.3) and (3.4). Respectively, a function

u(t, x) ∈ L2(0, T ; W̊
1
2 (Ω)) is referred to as a generalized solution to the problem (3.1)–(3.4) if

Jνu(t, x) ∈ C([0, T ]; W̊ 1
2 (Ω)), k(t, x)u(t, x) ∈ C([0, T ],W−1

2 (Ω)),

and (3.5)–(3.7) hold for some functions χ0(x), χT (x) ∈ L1(Ω).

Everywhere below, we set μ = 1− ν.

Theorem 3.1. Let γ > 0, k(t, x), kt(t, x) ∈ L∞(Q), Dμ/2f(t, x) ∈ L2(0, T ;W
−1
2 (Ω)), and

for some γ0 > 0

2CKγ + kt(t, x) � γ0, (t, x) ∈ Q, (3.8)

where the constant CK is taken from (2.4). Then the problem (3.1)–(3.4) has a generalized

solution such that

‖χ0‖2L2(Ω) + ‖χT ‖2L2(Ω) + ‖u‖2
W

μ/2
2 (0,T ;W 1

2 (Ω))
� C‖f‖2

W
μ/2
2 (0,T ;W−1

2 (Ω))
.

Proof. As in [6], we use the regularization method proposed in [10]. However, we first

formally apply the operator Dμ to Equation (3.1)

(k(t, x)u(t, x))t −DμΔu(t, x) + γDμu(t, x) = Dμf(t, x).

Let 0 < ε < 1. We introduce a family of smooth functions fε(t, x) such that

fε(0, x) = 0, (3.9)

lim
ε→0

‖fε(t, x)− f(t, x)‖
W

μ/2
2 (0,T ;W−1

2 (Ω))
= 0, (3.10)

lim
ε→0

ε‖fε(t, x)‖2W 1
2 (0,T ;L2(Ω)) = 0. (3.11)

We note that the condition (3.9) is compatible with (3.10) since μ < 1. Then we consider the

problem (see [10])

− εutt + (k(t, x)u(t, x))t −DμΔu(t, x) + γDμu(t, x) = Dμfε(t, x), (3.12)

u(t, x)|S = 0,

− εut(0, x) + k+(0, x)u(0, x) = 0, (3.13)

− εut(T, x) + k−(T, x)u(T, x) = 0, (3.14)

where we use the conventional notation

η+ =

⎧⎨
⎩
η, η > 0,

0, η � 0,
η− =

⎧⎨
⎩
η, η < 0,

0, η � 0.

In turn, the solvability of the problem (3.12)-(3.14) is proved by a modified Galerkin method.

Let {wk(x)}k∈N be the system of L2(Ω)-orthonormal eigenfunctions of the problem

−Δwk = λkwk, wk(x)|Γ = 0.
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For any n > 0 we denote by En ⊂ L2(Ω) the subspace of functions spanned by the vectors wk,

k = 1, . . . , n. Denote by Pn the orthogonal projection in L2(Ω) onto the space En. Assuming

that θ = θ(ε, n) (we specify this value below), we consider the following problem in En:

− εvntt(t, x) + Pn(k(t, x)vn(t, x))t −Kμ,θΔvn(t, x) + γKμ,θvn(t, x) = Kμ,θfnε(t, x), (3.15)

vn(t, x)|S = 0, (3.16)

− εvnt(x, 0) + Pn(k
+(0, x)vn(0, x)) = 0, (3.17)

− εvnt(T, x) + Pn(k
−(T, x)vn(T, x)) = 0. (3.18)

Here,

vn(t, x) =

n∑
k=1

Vk(t)wk(x), fnε(t, x) = Pnfε(t, x) =

n∑
k=1

Fkε(t)wk(x).

We will omit the superscript n if this does not cause confusion. We note that the kernel Kμ,θ has

no singularity and can be integrated by parts. Therefore, we obtain a system of ordinary integro-

differential equations with respect to the coefficients Vk(t) the solvability of which follows from

the uniqueness theorem. Hence it suffices to derive a suitable a priori estimate for the solution.

We multiply Equation (3.15) by 2v(t, x) and integrate over the cylinder Q

∫

Ω

(k(0, x)v2(0, x) + k(T, x)v(T, x)) + 2ε

∫

Q

v2t dQ+

∫

Q

ktv
2 dQ

+ 2

∫

Q

((Kμ,θ∇v,∇v) + γvKμ,θv) dQ = 2

∫

Q

vKμ,θfε dQ. (3.19)

By (2.4), the operator Kμ,θ is positive and the inequality (3.8) is satisfied. By (3.19), for some

sufficiently large constant C (independent of θ) the following estimate holds (see also (3.9)):

ε‖vt‖2L2(Q) + γ0‖v‖2L2(Q) � C‖Kμ,θf‖2L2(Q) � C‖f‖2W 1
2 (0,T ;L2(Ω)). (3.20)

Using (2.5), we obtain the lower estimate

2

∫

Q

((Kμ,θ∇v,∇v) + γvKμ,θv) dQ � C‖v‖2
W

μ/2
2 (0,T ;W 1

2 (Ω))
− Cθ(1−μ)/2‖v‖2W 1

2 (0,T ;W 1
2 (Ω)).

Since the space En is finite-dimensional, for some constant C(n) we have

‖h‖2W 1
2 (Ω) � C(n)‖h‖2L2(Ω) ∀h ∈ En.

By the estimate (3.20), for a sufficiently small θ

2

∫

Q

((Kμ,θ∇v,∇v) + γvKμ,θv) dQ � C‖v‖2
W

μ/2
2 (0,T ;W 1

2 (Ω))
− ε‖f‖2W 1

2 (0,T ;L2(Ω)). (3.21)
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The right-hand side of (3.19) can be estimated with the help of (2.3) and Lemma 2.1 as
∫

Q

vKμ,θfε dQ =

∫

Q

vDμfε dQ+

∫

Q

v(Kμ,θfε −Dμfε) dQ

=

T∫

0

∑
k

Vk(t)D
μFkε(t) dt+

T∫

0

∑
k

Vk(t)(Kμ,θFkε(t)−DμFkε(t)) dt

� C‖f‖
W

μ/2
2 (0,T ;W−1

2 (Ω))
‖v‖

W
μ/2
2 (0,T ;W 1

2 (Ω))
+ Cθ(1−μ)/2‖f‖W 1

2 (0,T ;W−1
2 (Ω))‖v‖W 1

2 (0,T ;W 1
2 (Ω)).

As above, choosing θ sufficiently small and taking into account the condition (3.11), we obtain

the estimate∫

Q

vKμ,θfε dQ � C‖f‖
W

μ/2
2 (0,T ;W−1

2 (Ω))
‖v‖

W
μ/2
2 (0,T ;W 1

2 (Ω))
+ ε‖f‖2W 1

2 (0,T ;L2(Ω)). (3.22)

Combining the estimates (3.19), (3.21), (3.22), we finally obtain the estimate
∫

Ω

(|k(0, x)|v2(0, x) + |k(T, x)|v2(T, x)) dx+ ε

∫

Q

v2t dQ+

∫

Q

v2 dQ

+

∫

Q

(|Dμ/2∇v|2 + |Dμ/2v|2) dQ � C‖Dμ/2fε‖2L2(0,T ;W−1
2 (Ω))

+ Cε‖f‖2W 1
2 (0,T ;L2(Ω)). (3.23)

Thus, we have established the desired estimate, which means that the system (3.15)–(3.18) is

uniquely solvable. We note that for all (t, x) ∈ Q

(−εvnt + Pn(kvn))
∣∣t
0
= Jν,θ(Pnfε +Δvn − γvn).

By (3.17) and (3.18),

Pn(k
+vn(T, x))− Pn(k

−vn(0, x)) = Jν,θ(Pnfε(T, x) + Δvn(T, x)− γvn(T, x)).

Now, we can pass to the limit as n → ∞. Taking, if necessary, a subsequence, we can assume

that for some functions zε0(x), zεT (x), uε(t, x) the following convergences hold:
√

|k(0, x)|vn(0, x) ⇀ zε0(x) weakly in L2(Ω), (3.24)

√
|k(T, x)|vn(T, x) ⇀ zεT (x) weakly in L2(Ω), (3.25)

vn(t, x) ⇀ uε(t, x) weakly in W
μ/2
2 (0, T ;W 1

2 (Ω)), (3.26)

vnt(t, x) ⇀ uεt(t, x) weakly in L2(Q) (3.27)

as n → ∞. By (3.23),

ε‖uεt‖2L2(Q) + ‖Jνuε‖
W

1+ν
2

2 (0,T ;W 1
2 (Ω))

� C. (3.28)

In particular, Jνuε(t, x) ∈ C([0, T ];W 1
2 (Ω)) and Jνuε(0, x) = 0. The functions

χ0ε(x) = −
√
|k−(0, x)|zε0(x), χTε(x) =

√
|k+(T, x)|zεT (x)
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satisfy (3.7), and, by the conditions (3.17) and (3.18), the following equalities hold:

− εuεt + kuε − χ0ε = Jν(fε +Δuε − γuε),

χTε(x)− χ0ε(x) = Jν(fε(T, x) + Δuε(T, x)− γuε(T, x)).

Now, we can pass to the limit as ε → 0 and then argue in a standard way. We only emphasize

that, by the estimate (3.28), we can assume that εuεt(t, x) → 0 as ε → 0 in L2(Q).
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