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APPLICATION OF THE VARIATIONAL METHOD OF HOMOGENEOUS SOLUTIONS IN 
THE AXISYMMETRIC PROBLEM OF THE THEORY OF ELASTICITY FOR A FINITE 
CYLINDER WITH REGARD FOR ITS OWN WEIGHT 

V. F. Chekurin1  and  L. I. Postolaki1, 2 UDC 539.3 

We use the variational method of homogeneous solutions to investigate the stress-strain state of a solid 
finite cylinder with regard for its own weight.  The lateral surface of the cylinder is fixed and the end 
faces are free of loads.  The general solution is represented in the form of superposition of the solutions 
of the problems for an inhomogeneous system of equations with homogeneous conditions imposed on 
the end faces of the cylinder (principal state) and a homogeneous system of equations with inhomogene-
ous conditions on the end faces of the cylinder (perturbed state).  The problem of determination of the 
perturbed state is reduced to infinite systems of linear algebraic equations solved by the method of re-
duction.  Examples of numerical realization of the solution are presented.  

Keywords: variational method of homogeneous solutions, axisymmetric problem, finite cylinder, Love 
function, own weight.  

Introduction 

Despite the development of computational complexes aimed at software realization of the numerical    
methods, analytic approaches to the solution of boundary-value problems of the mechanics of deformable solids 
have not lost their urgency.  The exact analytic solutions serve as an irreplaceable tool both for the verification 
of the accumulated numerical results and for getting approximate formulas used in engineering applications.  
Thus, in particular, for the solution of axisymmetric problems of the theory of elasticity for cylindrical bodies, it 
is customary to use the methods of singular integral equations [10], expansions in Fourier–Bessel series [14], 
cross superposition [2, 8], integral transformations [4], direct integration [1, 16], and homogeneous solutions 
[12, 13]. 

Note that the problems of determination of the stress-strain state of a finite cylinder with regard for its own 
weight form an important class of axisymmetric problems of the theory of elasticity [5, 6, 15].  In [6], by the 
method of integral transformations, the numerical solutions of axisymmetric problems of the theory of elasticity 
for a cylinder of finite length with free cylindrical surface were found by taking into account its own weight.  In  
[5], this method was used to solve a similar problem for a cylinder with conditions of sliding fastening imposed 
on the lower end face, an axisymmetric normal load applied to the upper end face, and the rigidly restrained lat-
eral surface.  The exact analysis of the strain and stress fields in a finite circular elastic cylinder under the action 
of its own weight was presented in [15], where the influence of the end faces was analyzed.  It was shown that 
the influence of the end faces on the stress-strain state is significant but restricted to a local region near the end 
face, where the stress and strain distributions noticeably differ from the distributions corresponding to the sim-
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plified solution for the uniaxial stressed state. 
The aim of the present paper is to develop the variational method of homogeneous solutions [12] for solving 

an axisymmetric problem of the theory of elasticity for a finite solid cylinder with restrained lateral surface and 
and free end faces under the action of its own weight. 

1.  Statement of the Problem 

Consider an axisymmetric problem of the theory of elasticity for a solid cylinder   V =  {0 ≤ r ≤1, 

 −b ≤ z < b}  under the action of its own weight.  Here,  r   and  z   are the dimensionless radial and axial coordi-
nates and  b = const .  Assume that the lateral surface    S 0 = {r = 1, − b ≤ z ≤ b}  of the cylinder is fixed, i.e.,  

 ur r=1 = 0      and     uz r=1 = 0 , (1) 

and the end faces    S1 = {0 ≤ r ≤1, z = − b}  and    S 2 = {0 ≤ r ≤1, z = b}  are free of force loads: 

 σzz z=±b = 0      and     σrz z=±b = 0 . (2) 

Here,  ur   and  uz  are, respectively, the radial and axial components of the vector of displacements and  σzz   
and  σrz   are, respectively, the axial and tangential stresses. 

The elastic equilibrium of the cylinder   V   is described by the following equations [7]: 

 
 

1
r
∂
∂r

(rσrr) +
∂
∂z

σrz − 1
r
σθθ = 0, 

   (3) 

 
 

1
r
∂
∂r

(rσrz) +
∂
∂z

σzz = ρg, 

where  ρg  is the weight of the unit volume of the body.  The relationship between the components of the strain 
tensor  εrr ,  εzz ,  εθθ ,  and  εrz   and the components of the vector of displacements is determined by the follow-
ing Cauchy relations [7]: 

 εrr = ∂ur
∂r

,      εzz =
∂uz
∂z

,      εθθ = ur
r

,      εrz = 1
2

∂ur
∂z

+
∂uz
∂r

⎛
⎝

⎞
⎠ . (4) 

Moreover, the relationship between the components of the strain tensor and the components of the stress tensor  
σrr ,  σzz ,  σθθ,  and  σrz   is determined by the physical relations of Hooke's law [7], namely, 

 
 
σrr = 2µ

1− 2ν
((1− ν)εrr + ν(εzz + εθθ )), 

 
 
σzz = 2µ

1− 2ν
((1− ν)εzz + ν(εrr + εθθ )), (5) 
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σθθ = 2µ

1− 2ν
((1− ν)εθθ + ν(εzz + εrr )),    σrz = 2µεrz. 

Here,   µ = E/(2(1+ ν))  is the shear modulus,  E   is Young’s modulus, and  ν  is Poisson’s ratio. 
By using relations (4) and (5), we represent the balance equations (3) in displacements in the following 

form [3]: 

 ∇2ur +
1

1− 2ν
∂ε
∂r

− ur
r2

= 0, 

   (6) 

 ∇2uz +
1

1− 2ν
∂ε
∂z

= ρg ,      ε ≡ εrr + εzz + εθθ = 1
r
∂
∂r

(rur ) −
∂uz
∂z

, 

where   

 ∇2 = ∂2

∂r2
+ 1

r
∂
∂r

+ ∂2

∂z2
   

is the axisymmetric Laplace operator. 
Our aim is to determine the components of the vector of displacements and stress tensor satisfying Eqs. (3) 

and (6) and guaranteeing the validity of conditions (1) and (2) together with relations (4) and (5). 

2.  Construction of the Solution  

We construct the solution of problem (1), (2), (4)–(6) in the form of sums as follows: 

  ur (r, z) = ur
0(r, z) + !ur (r, z),       uz (r, z) = uz

0(r, z) + !uz (r, z), 

where  ur
0(r, z),  uz

0(r, z)  is a partial solution of the inhomogeneous system (6) and   !ur (r, z),   !uz (r, z)  is the 
general solution of the homogeneous system  

 
 
∇2 !ur +

1
1− 2ν

∂!ε
∂r

−
!ur
r2

= 0, 

   (7) 

 
 
∇2 !uz +

1
1− 2ν

∂!ε
∂z

= 0 ,      
 
!ε = 1

r
∂
∂r

(r !ur ) −
∂ !uz
∂z

 

corresponding to the inhomogeneous system (6). 

2.1.  Principal State.  The problem of determination of the principal state is reduced to finding the solution 
of the inhomogeneous system of equations (6) with the following homogeneous boundary conditions: 
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 σrr
0

r=1
= 0,      σrz

0
r=1

= 0, (8) 

 uz
0
z=−b

= 0      σrz
0

z=−b
= 0 ,      σzz

0
z=b

= 0 ,      σrz
0

z=b
= 0. (9) 

The components of the stress tensor  σrr
0 ,  σzz

0 ,  σθθ
0 ,  and  σrz

0   satisfying the balance equations (3) and 
guaranteeing the validity of conditions (8) and (9) can be simply found in the following form: 

 σrr
0 = 0,      σzz

0 = −ρg(b − z),     σθθ
0 = 0,      σrz

0 = 0. (10) 

The corresponding components of the strain tensor in the principal state are expressed in terms of the com-
ponents of stresses by the formulas [7] 

 
 
εθθ
0 = ur

0

r
= 1

E
(σθθ

0 − ν(σrr
0 +σzz

0 )), 

 
 
εzz
0 =

∂uz
0

∂z
= 1

E
(σzz

0 − ν(σrr
0 +σθθ

0 )). 

From these formulas, in view of Eq. (10) and the first condition in (9), we obtain the components of the vec-
tor of displacements in the principal state 

 ur
0 = νρgr

E
(b − z)       and      

 
uz
0 = ρg

2E
((b − z)2 − 4b2). (11) 

2.2.  Perturbed State.  The problem of determination of the perturbed state is reduced to finding the solution 
of the homogeneous system of equations (7).  The indicated equation is reduced to the following homogeneous 
biharmonic equation [3, 7]: 

  ∇
2∇2 !χ = 0 (12) 

satisfying the boundary conditions imposed on the surface   S 0  

  
!ur r=1 = −ur

0(z)       and        
 
!uz r=1 = −uz

0(z)  

and the inhomogeneous conditions on the surfaces   S1  and   S 2 : 

 
 
!σzz z=−b = −σzz

0
z=−b

,      
 
!σrz z=−b = 0 ,      

 
!σzz z=b = 0 ,      

 
!σrz z=b = 0. 

Here,  σzz
0   is given by the second formula in (10) and   !χ  is the Love function introduced by the following for-

mulas [3]: 
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1
2µ
!σrr = ∂

∂z
ν∇2 !χ − ∂2 !χ

∂r2
⎛
⎝⎜

⎞
⎠⎟

,      
 

1
2µ
!σθθ = ∂

∂z
ν∇2 !χ − 1

r
∂ !χ
∂r

⎛
⎝

⎞
⎠ , 

 
 

1
2µ
!σzz = ∂

∂z
(2 − ν)∇2 !χ − ∂2 !χ

∂z2
⎛
⎝⎜

⎞
⎠⎟

,      
 

1
2µ
!σrz = ∂

∂r
(1− ν)∇2 !χ − ∂2 !χ

∂z2
⎛
⎝⎜

⎞
⎠⎟

, 

 
 
!ur = − ∂2 !χ

∂r∂z
,      

 
!uz = 2(1− ν)∇2 !χ + ∂2 !χ

∂z2
. 

Adding the corresponding components of stresses for the principal and perturbed states 

  σrr
0 (r) + !σrr (r, z) = σrr (r, z),       σθθ

0 (r) + !σθθ(r, z) = σθθ(r, z) , 

  σzz
0 (r) + !σzz (r, z) = σzz (r, z),       !σrz (r, z) = σrz (r, z), 

we get the stress-strain state of the cylinder   V . 
The unknown Love function   !χ  can be represented in the form of the sum of two components 

  !χ = ′χ + ′′χ , 

each of which is determined from the corresponding perturbed problem for the homogeneous equation (12). 
The first disturbed problem is to find the solution of Eq. (12) with homogeneous conditions imposed 

on   S 0 : 

 ′ur r=1 = 0 ,      ′uz r=1 = 0 , (13) 

and inhomogeneous conditions imposed on   S1  and   S 2 : 

 ′σzz z=−b = σ1,      ′σzz z=b = σ2, 

   (14) 
 ′σrz z=−b = τ1,      ′σrz z=b = τ2. 

We find the solution of the first perturbed problem as the sum of the symmetric and antisymmetric compo-
nents representing the functions on the right-hand sides of relations (14), respectively, in the form 

 σ1 = −1
2
σzz
0 ,      σ2 = −1

2
σzz
0 ,      τ1 = 0 ,    τ2 = 0 , (15) 

 σ1 = −1
2
σzz
0 ,      σ2 = 1

2
σzz
0 ,      τ1 = 0 ,    τ2 = 0 . (16) 
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In (15) and (16), the function  σzz
0   is determined by the second formula in (10). 

We now represent the Love function  ′χ (r, z)  for the symmetric problem in the form 

 ′χ (r, z) = C sinh (γz) f (r). (17) 

At the same time, for the antisymmetric problem, we get  

 ′χ (r, z) = C cosh (γz) f (r) . (18) 

Here,  C   is an unknown coefficient.  Substituting representations (17) and (18) in Eq. (12), we find the function  
f (r)  in the following form [12]: 

 f (r) = ArJ1(γ r) −
2B
πγ

J0(γr), (19) 

where  A  and  B  are unknown coefficients,  J0(γ r)  and  J1(γ r)  are, respectively, the zero- and first-order 
Bessel functions of the first kind and  γ   is an eigenvalue, which is a solution of the transcendental characteristic 
equation 

  γ(J0
2(γ )+ J1

2(γ )) − 4(ν−1)J0(γ )J1(γ ) = 0. (20) 

In view of (19), conditions (13) are reduced to the solution of the following homogeneous system of equa-
tions for the constants  A   and  B: 

 γ πJ0(γ )A + 2J1(γ )B = 0 ,       π(γJ1(γ )− 4(ν−1)J0(γ ))A − 2J0(γ )B = 0. (21) 

The compatibility of this system is guaranteed by the validity of Eq. (20). 
The sole trivial real root  γ = 0  of Eq. (20) is of no practical interest.  Therefore, we focus our attention on 

the determination of the infinite sequence of complex roots  γ k.  The first 20 roots  γ k = αk + i βk   of Eq. (20) 
for  ν = 0.25  are presented in Table 1. 

Note that the first equation in system (21) can be written as follows: 

 κk = A
B

= − 2J1(γ k )
πγ kJ0(γ k )

. (22) 

Then the solution of the first perturbed problem is represented in the form 

 
 
′χ (r, z) = 1

2
(Ck ′χk (r, z)+Ck ′χk (r, z))

k=1

∞

∑ , (23) 

where  ′χk = sinh (γ kz) fk (r),  ′χk = cosh (γ kz) fk (r),   fk (r) = rJ1(γ kr)κk− 2J0(γ kr)/(πγ k ),  γ k  are the roots of 
Eq. (20), and  κk   is given by (22). 



APPLICATION OF THE VARIATIONAL METHOD OF HOMOGENEOUS SOLUTIONS IN THE AXISYMMETRIC PROBLEM  159 

Table 1 

k  αk  βk  k  αk  βk  

1 3.0253 0.5565 11 34.5301 1.7716 

2 6.1991 0.9173 12 37.6733 1.8151 

3 9.3583 1.1217 13 40.8164 1.8551 

4 12.5109 1.2659 14 43.9593 1.8921 

5 15.6601 1.3775 15 47.1021 1.9266 

6 18.8072 1.4687 16 50.2447 1.9588 

7 21.9531 1.5457 17 53.3872 1.9891 

8 25.0981 1.6124 18 56.5297 2.0177 

9 28.2425 1.6713 19 59.6721 2.0447 

10 31.3864 1.7239 20 62.8143 2.0703 

The second perturbed problem is to find the solution of Eq. (12) with inhomogeneous conditions imposed 
on   S 0 : 

 ′′ur r=1 = u1(z),      ′′uz r=1 = u2(z)  (24) 

and homogenous conditions imposed on   S1  and   S 2 : 

 ′′σzz z=±b = 0 ,      ′′σrz z=±b = 0 . (25) 

As in the first perturbed problem, we represent the solution in the form of the sum of symmetric and anti-
symmetric parts for which the right-hand sides of conditions (24) can be represented in the form: 

 
 
u1(z) = − 1

2
(ur

0(1, z)+ ur
0(1, −z)),      

 
u2(z) = − 1

2
(uz

0(1, z)− uz
0(1, −z)), 

 
 
u1(z) = − 1

2
(ur

0(1, z)− ur
0(1, −z)),      

 
u2(z) = − 1

2
(uz

0(1, z)+ uz
0(1, −z)). 

Here, the functions  ur
0  and  uz

0  are given by relations (11). 
We represent the solution of Eq. (12) in the form 

 ′′χ (r, z) = CJ0(γ r)ϕ(z), (26) 
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where  

 ϕ(z) = (A + Bz) cosh (γz)+ (C + Dz) sinh (γz) 

is a solution of the differential equation   

  ϕIV (z) – 2γ 2 ′′ϕ (z) + γ 4ϕ(z) = 0,   

A,  B,  C, and  D  are arbitrary constants, and  γ   is an eigenvalue.  We represent the function  ϕ(z)   as the sum 
of the odd 

 ϕ(z) = L1 sinh (γ z) + L2z cosh (γ z),      L1 = A,    L2 = D, (27) 

and even 

 ϕ(z) = L1 cosh (γ z) + L2z sinh (γ z),      L1 = C ,    L2 = B , (28) 

parts, each of which depends on two arbitrary constants  L1  and  L2 . 

In view of (27) and (28), the validity of conditions (25) is reduced to the homogeneous systems of linear al-
gebraic equations: 

 
γ cosh (γb)L1 +((2ν −1) cosh (γb)+ γb sinh (γb))L2 = 0,

γ sinh (γb)L1 +(2ν sinh (γb)+ γb cosh (γb))L2 = 0,

⎧
⎨
⎪

⎩⎪
 (29) 

 
γ sinh (γb)L1 +((2ν −1) sinh (γb)+ γb cosh (γb))L2 = 0,

γ cosh (γb)L1 + 2ν cosh (γb)+ γb sinh (γb)( ) L2 = 0,

⎧
⎨
⎪

⎩⎪
 (30) 

whose compatibility conditions yield the following transcendental equations: 

 sinh (2γb) + 2γb = 0, (31) 

 sinh (2γb) − 2γb = 0. (32) 

Each of Eqs. (31) and (32) has a unique trivial real root, which is of no practical interest for our subsequent 
analysis.  This is why we restrict ourselves to the case of infinite sequences of complex roots  γ k  of these two 
equations.  Hence, the solutions of systems (29) and (30) are given by sequences of the pairs of the complex 
numbers  L1k ,  L2k,   k = 1, 2,…,  such that  

 
L1k/L2k = κk ,  and  κk   are complex constants expressed, for the 

cases of odd and even functions  ϕ(z),  in terms of the roots of Eqs. (31) and (32): 
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 κk = − 2ν
γ k

− b
tanh (γ kb)

      and      κk = − 2ν
γ k

− b tanh (γ kb). 

If  γ k  is the root of Eq. (31) or Eq. (32), then  −γ k , γ k , and  −γ k  are the roots of these equations (the over-
bar denotes the operation of complex conjugation).  Real and imaginary parts of the roots  gk ≡ γ kb = αk + iβk   
of Eqs. (31) and (32) satisfy, respectively, the following systems of transcendental equations:  

 
sinh (2αk ) cos (2βk )+ 2αk = 0,

cosh (2αk ) sin (2βk )+ 2βk = 0

⎧
⎨
⎪

⎩⎪
 

and 

 
sinh (2αk ) cos (2βk )− 2αk = 0,

cosh (2αk ) sin (2βk )− 2βk = 0.

⎧
⎨
⎪

⎩⎪
 

 The asymptotic values of these roots as  k →∞   are given by the formulas 

 αk
a = 1

2
ln (π + 4πk),      βk

a = −π
4
+ πk  

and 

 αk
a = 1

2
ln (π + 4πk),      βk

a = π
4
+ πk , 

respectively. 
Thus, we get two systems of homogeneous complex roots of the biharmonic equation (12) for the odd (27) 

and even (28) functions  ϕ(z) .  This means that, according to representation (26), the corresponding expressions 
for the Love functions take the form  

  ′′χk (r, z) = J0(γ kr)(κk sinh (γ kz)+ z cosh (γ kz)), 

  ′′χk (r, z) = J0(γ kr)(κk cosh (γ kz)+ z sinh (γ kz)). 

Hence, we get the solution of the second perturbed problem in the form 

 
 
′′χ (r, z) = 1

2
(Ck ′′χk (r, z)+Ck ′′χk (r, z))

k=1

∞

∑ , (33) 

where  Ck  are unknown complex constants. 
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2.3.  Components of Stresses and Displacements.  The sum of components of the stress tensor and the vec-
tor of displacements in the principal state and two perturbed states gives the complete solution of the original 
problem: 

 σrr (r, z) = σrr
0 (r, z) + ′σrr (r, z) + ′′σrr (r, z), 

 σθθ(r, z) = σθθ
0 (r, z) + ′σθθ(r, z) + ′′σθθ(r, z) , 

 σzz (r, z) = σzz
0 (r, z) + ′σzz (r, z) + ′′σzz (r, z), 

 σrz (r, z) = σrz
0 (r, z) + ′σrz (r, z) + ′′σrz (r, z), 

 ur (r, z) = ur
0(r, z) + ′ur (r, z) + ′′ur (r, z), 

 uz (r, z) = uz
0(r, z) + ′uz (r, z) + ′′uz (r, z). 

For the perturbed problem, the stresses and displacements can be represented in the form 

 
  
!σrr (r, z) = 1

2
(Ckσkrr (r, z)+Ckσkrr (r, z))

k=1

∞

∑ , 

 
  
!σzz (r, z) = 1

2
(Ckσkzz (r, z)+Ckσkzz (r, z))

k=1

∞

∑ , 

 
  
!σθθ(r, z) = 1

2
(Ckσkθθ(r, z)+Ckσkθθ(r, z))

k=1

∞

∑ , 

   (34) 

 
  
!σrz (r, z) = 1

2
(Ckσkrz (r, z)+Ckσkrz (r, z))

k=1

∞

∑ , 

 
  
!ur (r, z) = 1

2
(Ckukr (r, z)+Ckukr (r, z))

k=1

∞

∑ + az + d , 

 
  
!uz (r, z) = 1

2
(Ckukz (r, z)+Ckukz (r, z))

k=1

∞

∑ + c , 

where  a ,  c ,  and  d   are unknown constants.  In relations (34), we have used the following notation: 

 – for the first symmetric perturbed problem: 
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σkrr = −2µγ k

2 cosh (γ kz) κk((1− 2ν)J0(γ kr)− γ krJ1(γ kr)
⎛
⎝⎜

) 

  + 
 

2
πγ kr

(γ krJ0(γ kr)− J1(γ kr))
⎞
⎠⎟

, 

 σkzz = −2µγ k
2 cosh (γ kz) − 2

π
J0(γ kr)

⎛
⎝  

  + 
 
κk(2(ν− 2)J0(γ kr)+ γ krJ1(γ kr))

⎞
⎠⎟ , 

 σkθθ = − 2µγ k cosh (γ kz) (1− 2ν)γ kκkJ0(γ kr) +
2
πr

J1(γ kr)
⎛
⎝

⎞
⎠ , 

   (35) 

 σkrz = 2µγ k
2 sinh (γ kz) − 2

π
J1(γ kr)

⎛
⎝  

  + 
 
κk((2ν− 2)J1(γ kr)− γ krJ0(γ kr))

⎞
⎠ , 

 ukr = − γ k
π

cosh (γ kz) 2J1(γ kr)+ πγ kκkrJ0(γ kr)( ), 

 
 
ukz = γ k sinh (γ kz) (γ krJ1(γ kr)+ 4(1− ν)J0(γ kr))κk −

2
π
J0(γ kr)

⎛
⎝

⎞
⎠ ; 

 – for the first antisymmetric  perturbed problem, it is necessary to replace  cosh (γ kz)  with  sinh (γ kz)  
and  sinh (γ kz)  with  cosh (γ kz) in relations (35); 

 – for the second symmetric perturbed problem: 

 
 
σkrr = 2µ γ k

r
(γ kr(2ν+1+ γ kκk )J0(γ kr)− (1+ γ kκk )J1(γ kr))(  

  × 
 
cosh (γ kz)+ γ kz(γ krJ0(γ kr)− J1(γ kr))sinh (γ kz)), 

  σkzz = −2µ(γ k )
2 J0(γ kr)(γ kz sinh (γ kz)+ (2ν−1+ γ kκk ) cosh (γ kz)), 

 
 
σkθθ = 2µ γ k

r
(2νγ krJ0(γ kr)+ (1+ γ kκk )J1(γ kr))( cosh (γ kz) 

  + γ kzJ1(γ kr) sinh (γ kz)), 
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  σkrz = 2µγ k
2J1(γ kr)((2ν+ γ kκk ) sinh (γ kz)+ γ kz cosh (γ kz)), 

  ukr = γ kJ1(γ kr)(γ kz sinh (γ kz)+ (1+ γ kκk ) cosh (γ kz)), 

  ukz = γ kJ0(γ kr)((γ kκk − 4ν+ 6) sinh (γ kz)+ γ kz cosh (γ kz)), 

 – for the second antisymmetric perturbed problem: 

 σkrr = 2µ γ k
r

γ kr(2ν+1+ γ kκk )J0(γ kr)− (1+ γ kκk )J1(γ kr)( )( sinh (γ kz)  

  +  γ kz(γ krJ0(γ kr)− J1(γ kr))cosh (γ kz)( ), 

  σkzz = −2µ(γ k )
2 J0(γ kr)(γ kz cosh (γ kz)+ (2ν−1+ γ kκk ) sinh (γ kz)), 

 
 
σkθθ = 2µ γ k

r
(2νγ krJ0(γ kr)+ (1+ γ kκk )J1(γ kr))( sinh (γ kz) 

  + γ kzJ1(γ kr) cosh (γ kz)), 

  σkrz = 2µγ k
2J1(γ kr)((2ν+ γ kκk ) cosh (γ kz)+ γ kz sinh (γ kz)), 

  ukr = γ kJ1(γ kr)(γ kz cosh (γ kz)+ (1+ γ kκk ) sinh (γ kz)), 

  ukz = γ kJ0(γ kr)((γ kκk − 4ν+ 6) cosh (γ kz)+ γ kz sinh (γ kz)). 

For the first symmetric and antisymmetric perturbed problems, the constants are equal to  a = c = d = 0,  for 
the second symmetric perturbed problem, we get  a = c = 0,  and for the antisymmetric problem,  d = 0 . 

2.4.  Variational Method of Homogeneous Solutions for the Perturbed Problem.  To find the unknown 
coefficients  Ck,  we assume that solutions (23) and (33) satisfy conditions (14) and (24), respectively, and apply 
the variational approach [9, 11–13].  For this purpose, we introduce quadratic functionals for the first and second 
perturbed problems, respectively, 

 
  
F1 = ( !σzz z=−b −σ1(r))

2 +( !σrz z=−b − τ1(r))
2( )dr

0

1

∫ , 

   (36) 

 
  
F2 = ( !ur r=1 − u1(z))

2 +( !uz r=1 − u2(z))
2( )dz

0

b

∫ . 
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 (a)  (b) 

   

 (c) (d) 

Fig. 1 

Substituting representations (34) in functionals (36) and applying the necessary conditions of minimum, 
namely,  

 ∂Fi
∂Cm

= 0 ,      ∂Fi
∂Cm

= 0 ,      ∂Fi
∂a

= 0,      ∂Fi
∂c

= 0,      ∂Fi
∂d

= 0, 

where   m = 1, 2,…,  i = 1, 2,  we arrive at the infinite systems of linear algebraic equations for the complex con-
stants  Ck

1 = Ck   and  Ck
2 = Ck : 

 
 

Mmk
ℓp Ck

p

p=1

2

∑
k=1

∞

∑ = Km
ℓ . (37) 
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 (a) (b) 

   
 (c) (d) 

      Fig. 2 

The coefficients   Mmk
ℓp ,   Km

ℓ ,   ℓ = 1, 2,   m = 1, 2,…,  of system (37) are determined by the following formu-
las: 

 – for the first symmetric and antisymmetric perturbed problems: 

 
  
Mmk
ℓp = 1

2
(σkzz

p (r, −b)σmzz
ℓ (r, −b) + σkrz

p (r, −b)σmrz
ℓ (r, −b))dr

0

1

∫ , 

   (38) 

 
   
Km
ℓ = (σ1(r)σmzz

ℓ (r, −b) + τ1(r)σmrz
ℓ (r, −b))dr

0

1

∫ , 

 – for the second symmetric perturbed problem: 
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 (a) (b) 

   
 (c) (d) 

       Fig. 3 

 
  
Mmk
ℓp = 1

2
(ukr

p (1, z)umr
ℓ (1, z)+ ukz

p (1, z)umz
ℓ (1, z))dz

0

b

∫  

  – 
 

1
2b

ukr
p (1, z) dz

0

b

∫ umr
ℓ (1, z) dz

0

b

∫ , 

   (39) 

 
  
Km
ℓ = (u1(z)umrℓ (1, z)+ u2(z)umz

ℓ (1, z))dz
0

b

∫  

  – 
 

1
b

u1(z) dz
0

b

∫ umr
ℓ (1, z) dz

0

b

∫ , 
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 (a) (b) 

   

 (c) (d) 

       Fig. 4 

 – for the second antisymmetric perturbed problem: 

 
  
Mmk
ℓp = 1

2
(ukr

p (1, z)umr
ℓ (1, z)+ ukz

p (1, z)umz
ℓ (1, z))dz

0

b

∫  

  – 
 

3
2b3 ukr

p (1, z) dz
0

b

∫ umr
ℓ (1, z) dz

0

b

∫  – 
 

1
2b

ukz
p (1, z) dz

0

b

∫ umz
ℓ (1, z) dz

0

b

∫ , 

   (40) 

 
  
Km
ℓ = (u1(z)umrℓ (1, z)+ u2(z)umz

ℓ (1, z))dz
0

b

∫  
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 (a) (b) 

   

 (c) (d) 

      Fig. 5 

 – 
 

3
b3 u1(z) dz

0

b

∫ umr
ℓ (1, z) dz

0

b

∫  – 
 

1
b

u2(z) dz
0

b

∫ umz
ℓ (1, z) dz

0

b

∫ . 

The constants  a,  c,  and  d  are given by the following formulas: 

 
 
a = − 3

b3
1
2

(Ckukr (1, z)+Ckukr (1, z)− u1(r))z dz
k=1

∞

∑
0

b

∫ , 

 
 
c = − 1

b
1
2

(Ckukz (1, z)+Ckukz (1, z)− u2(r))dz
k=1

∞

∑
0

b

∫ , 
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 (a) (b) 

Fig. 6 

 
 
d = − 1

b
1
2

(Ckukr (1, z)+Ckukr (1, z)− u1(r))dz
k=1

∞

∑
0

b

∫ . 

In relations (38)–(40), we have introduced the following notation:  σkzz
1 = σkzz ,  σkzz

2 = σkzz ,  σkrz
1 = σkrz ,  

σkrz
2  = σkrz,  ukr

1 = ukr ,  ukr
2 = ukr ,  ukz

1 = ukz,  and  ukz
2 = ukz. 

3.  Examples of Numerical Investigations of the Solution  

The system of equations (37) was solved by the method of reduction [11] according which finite systems of  
N   equations for  N   unknown coefficients are considered instead of the corresponding infinite systems.  For the 
results presented in what follows, we restricted ourselves to  N = 15 .  The calculations were performed for  
ρg = 1  and  ν = 0.25,  and the components of the stress tensor were normalized to Young’s modulus. 

For the first perturbed symmetric problem, we present the distributions of components of the stress tensor  

 !σrr ,   !σzz ,   !σθθ,  and   !σrz   along the axial coordinate  z   normalized by  b in Fig. 1; for the first perturbed anti-
symmetric problem, the corresponding distributions are shown in Fig. 2;  for the second perturbed symmetric 
problem, they are shown in Fig. 3, and for the second perturbed antisymmetric problem, in Fig. 4.  Curves 1–5 in 
these figures correspond to the values  b = 0.25 ,  0.5, 0.75, 1.0, and 2.0,  respectively.  The components of the 
stress tensor were found on the surface   S 0 . 

It is easy to see that the stresses in the perturbed state have a well-pronounced edge effect, i.e., the gradients 
of the components of the stress tensor noticeably increase as b  increases in the vicinity of the end faces of the 
cylinder.  

In  Fig. 5, we show the distributions of components of the stress tensor in the original problem  σrr ,  σzz ,  
σθθ,  and  σrz   along the axial coordinate  z   referred to the parameter  b  for the following values of length of 
the cylinder:  b = 0.25, 0.5, 0.75, 1, 2   (curves 1–5, respectively) and   r = 1. 
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The dependences of the components of the vector of displacements  ur   and  uz on the radial coordinate  r   
for the end face of the cylinder   S 2   are shown in Fig. 6 for the following lengths of the cylinder:  b = 0.25, 1.5, 
1.75, 1, 2  (curves 1–5, respectively). 

CONCLUSIONS 

By using the variational method of homogeneous solutions, we formulate and solve the axisymmetric   
problem of the theory of elasticity for a finite cylindrical body under the action of its own weight.  The solution 
of the problem is represented in the form of superposition of the principal and perturbed states.  The problem    
of determination of the perturbed state is split into two problems, for each of which we analyze the symmetric 
and antisymmetric cases about the middle cross-section of the cylinder.  The solution of each of these four   
problems is represented in the form of expansion in the complete systems of complex axisymmetric homogene-
ous solutions of the Lamé equations.  We introduce quadratic functionals for solving the first and second per-
turbed problems, which determine the deviations of solutions from the corresponding given inhomogeneous 
conditions in the quadratic norm.  The conditions of minimum for the functionals give infinite systems of linear 
algebraic equations with respect to the coefficients of expansion of solutions, which are solved by the method of 
reduction preserving finitely many terms of expansions in the series.  We also analyze the efficiency of applica-
tion of the proposed variational approach to the solution of axisymmetric problems for different lengths of the 
cylinder. 

On behalf of all authors, the corresponding author states that there is no conflict of interest. 
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