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LOCALLY EUCLIDEAN METRICS
AND THEIR ISOMETRIC REALIZATIONS
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Abstract. There are many works related to metrics and surfaces of positive and negative curvature.
This paper is a survey of results related to locally Euclidean metrics and surfaces with such metrics.
There are many problems included in the intersection of geometry, complex analysis, and differential
equations that can become a source of new interesting research.
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1. Definitions and statements. The work is based on the report read by the author at the
International Conference “Classical and Modern Geometry” organized by the Moscow Pedagogical
State University in connection with the 100th anniversary of the birth of Professor V. T. Bazylev.

The metric of an n-dimensional Riemannian manifold is said to be locally Euclidean if each of its
points has a neighborhood isometric to a ball in the Euclidean space R

n with the standard metric
dx21+ . . .+ dx2n. There are quite a lot of such manifolds. For example, the metric of any n-dimensional
polyhedral surface with punctured vertices is locally Euclidean. One of criteria of minimality of a two-
dimensional surface with a known metric ds2 is the Ricci test: A surface with a metric ds2 is minimal
if and only if the surface has nonpositive Gaussian curvature K and the metric ds2e =

√−Kds2 is
locally Euclidean outside the points where the curvature is zero. This means that on any minimal
surface, there exists a locally Euclidean metric.

When studying locally Euclidean metrics, several questions immediately arise:

1. Let the metric of a Riemannian space be defined by a quadratic form

ds2 = gij du
i duj. (1)

How can we know if it is locally Euclidean?
2. Let the metric (1) be locally Euclidean. How can we find an isometric mapping into R

n, which
exists by the definition of a locally Euclidean metric?

3. What are the properties of this mapping: smoothness class, domain of existence, behavior in general,
etc.?

4. What theorems and problems of Euclidean geometry can be transferred to domains with a locally
Euclidean metric?

5. Under which conditions can a given locally Euclidean metric be isometrically realized as the metric
of a surface in a Euclidean space of an appropriate dimension?

6. What can be said about existence, properties, equations, etc. surfaces with locally Euclidean metric?

2. On the natural representation of locally Euclidean metrics. When specifying a locally
Euclidean metric in the general form (1) in a certain domain D of the variables u1, . . . , un, we actually
do not see the geometry; for example, geodesics in D are, in general, some curves, and we cannot
see either their lengths or the angles between them even in the dimension n = 2 (all these quantities
can only be found by calculations using the appropriate formulas). If we find an isometric mapping
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of the metric into R
n, then geodesics will turn into straight lines, orthogonal lines will form right

angles, etc. We can say that an isometric image in R
n of the domain D with a locally Euclidean metric

represents, at least locally, a visual picture of the geometry in D. Therefore, it is natural to call this
image a natural representation of a locally Euclidean geometry defined in D. Such a representation
has so far been made only in the two-dimensional case. However, for any dimension, one can know in
advance the smoothness class of transition from an arbitrary local Euclidean metric (1) to its natural
representation and thus find the answer to one of the questions from Sec. 3. Namely, the following
theorem on the smoothness of isometries holds.

Theorem 1 (see [2, 11, 13]). Let two isometric n-dimensional Riemannian manifolds have the met-
rics

ds2 = gij du
i duj , dσ2 = hij dξ

i dξj

of the smoothness class Ck,α, 0 ≤ k < ∞, 0 ≤ α ≤ 1, k + α > 0. Then an isometry between then has
smoothness of class Ck+1,α. In the case where these metrics are analytic or C∞-smooth, isometries
have the same smoothness class. If the metrics are defined by continuous forms, isometries in general
are of the class C0,1.

Remark 2. The nontriviality of this theorem is that in the definition of an isometric map, there is
a priori no requirement about its smoothness class, there is only a requirement that it preserve the
distances between the corresponding points in the preimage and the image. This immediately implies
that the isometry belongs to the Lipschitz class C0,1.

Since the standard metric in R
n is analytic, the smooth of the isometry of a locally Euclidean metric

in R
n is greater than its smoothness in the initial representation (1) by one.

Note that the same approach to the search for the natural representation can be used for metrics
that are metrics of local constant negative or positive curvature, but no one has done this yet.

3. Case of two-dimensional locally Euclidean metrics. Since in this case, any metric can be
reduced to isothermal coordinates, we can assume that the metric is given in the isothermal form:

ds2 = Λ2(ξ, η)(dξ2 + dη2). (2)

The following simple criterion holds: The metric (2) with the continuous coefficient Λ is locally Eu-
clidean if and only if the function ln Λ is harmonic. One can easily verify that a function

z = x+ iy = Φ(ζ), ζ = ξ + iη, (3)

isometrically maps a domain D with the metric (2) onto the Euclidean plane (x, y) with the metric
dx2 + dy2 if and only if it is holomorphic in D; moreover, it is related to the coefficient Λ by the
equality

|Φ′(ζ)| = Λ(ζ).

In the case of a simply connected domain D, the function Φ(ζ) is defined by the modulus of its
derivative (see [14, 16]), and the mapping constructed is simple-valued, i.e., the following theorem
holds.

Theorem 3. Any locally Euclidean metric defined in a simply connected domain can be isometrically
immersed into the Euclidean plane.

This means that one can visualize the geometry of this metric. However, the image under an
immersion can have self-intersections, and it is important to identify cases where the metric can be
embedded into the plane, i.e., where an abstract locally Euclidean metric is in fact a representation
of the Euclidean geometry of a simply connected domain of the ordinary Euclidean plane. One can
also indicate some interesting embedding criteria (i.e., criteria of univalent functions Φ(ζ)) expressed
through the properties of the coefficient Λ (see [14, 16]).
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Consider locally Euclidean metrics in multiply connected domains. In this case, the problem of the
search for a natural representation is more complicated due to a larger number of solution options. Let
the metric (2) be defined in an (n+ 1)-connected domain Ω with circular boundaries Γj : |ζ−ζj| = Rj ,
1 ≤ j ≤ n, located inside the circle Γ0 : |ζ| = R0. As above, the holomorphic function Φ(ζ), which
locally conformally maps the domain Ω into the Euclidean plane, is defined by its derivative Φ′(ζ)
satisfying the condition |Φ′(ζ)| = Λ(ζ). The search for Φ′ and Φ is a more difficult problem. For
example, for a concentric annulus, we obtain the followingformulas :

Φ′(ζ) = ζcA(ζ), Φ(ζ) = d0 ln ζ + ζ1+cB(ζ),

where A(ζ) and B(ζ) are single-valued holomorphic functions and c and d0 are numerical (in general,
complex-valued) coefficients, which can be explicitly expressed through the metric (2).

In the case of an integer exponent c, the function Φ′(ζ) is single-valued; however, Φ(ζ) is a single-
valued function only under the additional condition d0 = 0. For d0 �= 0, the mapping Φ has a logarith-
mic singularity and does not provide an isometric immersion into R

2; since the image Φ(Ω) is similar
to the envelope of a cylinder, this singularity is said to be cylindrical. If c is noninteger, the mapping
Φ is also not single-valued; since the image Φ(Ω) is similar to the envelope of a cone, this singularity is
said to be conical. Apparently, natural representations of locally Euclidean metrics do not correspond
to torsos. This may be due to the fact that the spherical image of each torsional surface can be repre-
sented as the spherical image of some conical surface (see [18]), but, in general, this phenomenon—the
absence of torso features in the internal geometry of domains with locally Euclidean metrics—requires
a separate analysis.

Example 4. In the annulus Ω : R0 ≤ |ζ| ≤ R1, consider the locally Euclidean metric

ds2 = ρ2a(dξ2 + dη2), ρ2 = ξ2 + η2. (4)

We have

Φ′(ζ) = ζa, Φ(ζ) =
ζa+1

a+ 1
, a �= −1; Φ(ζ) = ln ζ, a = −1.

Therefore, for integer a �= −1, the metric (4) can be isometrically immersed into R
2 as an |a+ 1|-fold

annulus, but for a = −1, an immersion does not occur. Also, immersions are absent for noninteger a:
the image of the annulus Ω is a circular sector similar to the envelope of a cone.

4. Isometric immersions of locally Euclidean metrics in R
3. We start with isometric immer-

sions of locally Euclidean metrics in R
2, which can actually be considered as a special case of searching

for an isometric implementation of a given metric as a surface metric in the space or, in this case, in
the form of a domain on the plane, which is possible only for metrics of constant curvature, including
metrics of negative or positive curvature with their mapping to the Lobachevsky plane or sphere,
respectively (this formulation of the problem has not yet been used anywhere).

The image of the domain D in R
2 under the mapping (3) provides a visual representation of the

locally Euclidean geometry. The mapping (3) may be univalent; then we obtain an isometric embedding
of the metric (2) into R

3 as a flat domain; the mapping may be single-valued but multivalent, i.e.,
with self-overlays, and then we obtain an isometric immersion of the metric into R

3 as a domain of a
plane. In particular, we recall that a simply connected domain with a locally Euclidean metrics can
always be immersed into the plane R

2.
Finally, the mapping z = Φ(ζ) can be multivalued similarly to the logarithmic or power function

with a noninteger exponent. Recall that the latter occurs only if the domain D is multiply connected,
and cases of logarithmic or power singularities correspond to the cylindrical or conical structure of the
corresponding surface in R

3.
Now we consider isometric embeddings into R

3. We saw above that a locally Euclidean metric can
sometimes, but sometimes cannot, be embedded in R

2. It turns out that this property is essential for
the possibility of its isometric embedding in R

3.
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Fig. 1. Cylindrical embedding. Fig. 2. Conical embeddings.

Theorem 5 (see [8, 9, 12]). Assume that in a compact domain D with boundary of smoothness class
C2 or higher, a locally Euclidean metric is given, whcih admits an isometric immersion into E2. Then
it can be isometrically embedded into E3 as a cylindrical or conical surface of the class C∞ with
boundary of the same smoothness as the boundary of D.

Corollary 6. Each two-dimensional compact simple connected domain with a locally Euclidean metric
admits an isometric embedding into R

3.

Note that there are no analogs of this assertion for n-dimensional domains with locally Euclidean
metrics (i.e., the minimal dimension of the Euclidean space into which an arbitrary locally Euclidean
metric defined in an n-dimensional ball can be isometrically immersed or embedded is not yet known).

Example 7. The proof of Theorem 5 is constructive. An embedding is comstructed as a cylindrical
or conical surface (see Figs. 1 and 2). Consider examples of embeddings of the metric (4) with a = 1:

ds2 = 4(ξ2 + η2)(dξ2 + dη2).

For this metric, we have

Φ(ζ) = ζ2;

therefore, the immersed image of the annulus Ω in R
2 is the twofold annulus.

It was said above that any locally Euclidean metric defined in a simply connected domain can
be isometrically embedded into R

3. At the same time, we know that in a doubly connected domain,
there are metrics of cylindrical and conical types that cannot be immersed into R

2. Nevertheless, the
following theorem holds.

Theorem 8 (see [12]). Each locally Euclidean metric defined in a doubly connected domain can be
isometrically immersed into R

3.

If a metric has a cylindrical singularity, its isometric immersion into R
3 can be easily constructed.

However, the construction of an immersion of a metric with a conical singularity requires some inge-
nuity.

For triply connected domains, the situation is completely different.

Theorem 9 (see [12]). In triply connected domains, there exist locally Euclidean metrics that do not
admit isometric immersions into R

3 even in the class of C1-smooth ruled surfaces.

The corresponding example of a triply connected domain with a locally Euclidean metric is pre-
sented in Fig. 3. The locally Euclidean metric in this domain is obtained by identifying the segments
A1B1 and A2B2 (we thus obtain the closed boundary line A1A2); another boundary curve K1K2 is
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Fig. 3. Example of a triply connected domain from Theorem 9.

obtained by identifying the segments K1N1 and K2N2; the third boundary curve consists of the arcs
B1C1N1N2D1D2C2B2B1.

The nonexistence of an isometric immersion of this domain into R
3 follows from the fact that there

exist generatrices emanating from points of the line A1A2, which intersect with generatrices emanating
from points of the line K1K2; this is possible only if all points of these generatrices are planar, but
this is not so since the lines A1A2 and K1K2 are not sehments of straight lines.

Note that in [5, Sec. 3.2.1(F)], a statement about the existence of triply connected domains with
locally Euclidean metrics that cannot be isometrically immersed into R

3 in the class of classically
regular developable surfaces was presented (without a proof).

5. Isometric immersions into R
3 of the Möbius strip. The first explicit isometric embedding

of a flat Möbius strip was constructed in 1989 (see [20]), although the first work [3] on this topic
known to us was published back in 1898.1 A smooth nonorientable surface with a locally Euclidean
metric, diffeomorphic to a rectangular Möbius strip, is called a Möbius strip; if it is also isometric to
some rectangular Möbius strip, then it is called a standard Möbius strip. In [15] (see also [16]), the
following general statement was obtained.

Theorem 10. An analytical closed curve Γ is the midline of a standard Möbius strip if and only if its
curvature is antiperiodic and at the points where the curvature vanishes, the torsion of the curve has
a zero of order no less than the curvature. Moreover, the Möbius strip, even in the class of C2-smooth
surfaces, is uniquely determined by its given analytical midline.

One of the interesting consequences obtained in the proof of this theorem is the fact that closed
analytic curves in R

3 are divided into two disjoint classes, characterized by the periodicity or antiperi-
odicity of their principal normals and binormals.

The general Möbius strip is isometric to a flat strip with curvilinear lateral edges and identifiable
parallel transverse edges. An equation of the general Möbius strip was obtained in [15] from a theorem
connecting its generatrices with the midline.

Some time ago, the literature discussed the question of finding the simplest equation of the Möbius
strip. This question can be posed in various ways. First, one searches for the simplest equation in
parametric form, but there are no exact criteria for simplicity: whether the simplest equation of
the middle line is needed or the simplest (in some sense) equation of the surface itself, including
the representation of generatrices. The question can also include the requirement that the surface is
isometric to a flat rectangle, i.e., is a standard Mb̈ius strip. The simplest representation of the midline

1However, it requires rethinking since it was stated in the same work that the surface determined by the equation
x2(1− z) = zy2 is one-sided, which obviously presupposes some special understanding of one-sidedness.
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Fig. 4. Example from [7].

of the general Möbius strip was given in [15] in the form (cosϕ, sinϕ, cosϕ sinϕ) as the intersection
of two surfaces of second order (in [20], the midline was obtained as the intersection of two algebraic
surfaces of orders 4 and 6; we also note that an analytic Möbius strip with a flat midline does not
exist). Second, the question can be posed in a more specific way, namely, for the whole Möbius strip,
find an algebraic equation of the smallest degree. In the 1930s, Wunderlich proposed an algebraic
equation of order 40; the Schwartz equation in the algebraic form leads to an equation of degree 20.
In [15], an equation of degree 7 for a general Möbius strip was found. However, we note that this
equation does not describe the standard Möbius strip, so the question remains open: Which algebraic
equation of the smallest degree describes the standard Mb̈ius strip? Note also that we do not claim
that for a general Möbius strip, there are no equations of degree less than in [15].

6. Surfaces with locally Euclidean metrics. We are interesting in the structure of surfaces
with locally Euclidean metrics. It is well known that such surfaces are called developable surfaces;
they consist of rectilinear generatrices, which allow to parametrize these surfaces in the so-called
asymptotic coordinates as follows:

r(u, v) = a(u) + vb(u), (5)

where a = a(u) is the position vector of the directrix and b(u) is the unit vector of the generatrix.
They satisfy the relations

b(u) ∦ a′(u), (a′(u), b(u), b′(u)) = 0. (6)

However, nothing is usually said about the connection between the smoothness classes of the sur-
face and the vectors a(u) and b(u). Unexpectedly, it turned out that the surface can belong to the
smoothness class C∞, whereas the direction vector b(u) of the generatrix does not belong even to
the smoothness class C1, so is not possible to establish the real smoothness class of the surface based
on the smoothness of its equation (5) in the asymptotic coordinates. An example of this situation is
shown in Fig. 4 from [21] (the example itself was found in [7]).

Moreover, there exist surfaces with locally Euclidean metrics that do not contain any straight-line
segments (see [1]). This situation is possible in the smoothness classes C1,α, α < 1/7. Therefore, it is
interesting to find conditions under which a surface with a locally Euclidean metric has the ordinary
classical structure with generatrices. Such conditions were obtained by A. V. Pogorelov in 1956 (see [10,
Chap. IX]). Pogorelov introduced the class of C1-smooth surfaces of bounded external curvature. On
such surfaces with locally Euclidean metrics, a rectilinear segment passes through each point and
the tangent plane is constant along this segment. There are points (called planar), which have flat
neighborhoods on the surface. Through any nonplanar point, a unique generatrix passes in both
directions up to the edge of the surface. Sich surfaces are called torsos. Their structure guaranteed in
the class of surfaces of bounded external curvature can serve a definition in the general case; then they
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are called normal developable surfaces (the term was proposed by Burago and Shefel). Our immediate
goal is to find the smoothness properties of the direction curves and the field of generating vectors
involved in the parameterization (5).

First, we consider the “good” cases where the surface has no flattening points, i.e., points at which
all coefficients of the second quadratic form vanish. In this case, the smoothness of the surface and
the vectors defining its equation in the asymptotic coordinates are in the natural relationship.

Theorem 11 (see [6, 16, 21, 22]). A developable surface without flattening points has smoothness Cn,
n ≥ 2, if and only if it has the asymptotic parameterization (5), where a(u) ∈ Cn and b(u) ∈ Cn−1.
However, in the general case, the relation b(u) ∈ Cn may be violated.

The problem on an analytical description of normal developable surfaces in the general case was
posed for a long time, back in the 1970s, but the solution was obtained quite recently. Namely, the
following theorem was proved.

Theorem 12 (see [18]). If a surface of the class C1 is a normal developable surface of smoothness Cn,
n ≥ 1, then it belongs to Pogorelov’s class of surfaces of bounded external curvature and possesses an
asymptotic parameterization of the form (5), where the direction vectors b(u) of generatrices belong
to the Lipschitz class C0,1, the directrix has smoothness Cn, and Eqs. (6) hold at points where the
derivatives b′(u) exist.

Of course, for all smoothness classes in this theorem, only the statement about the C0,1-smoothness
of the vectors b(u) is of interest; for the class C1, it can be formulated as follows: if a C1-smooth
surface with locally Euclidean metric is a torso, then it is a surface of bounded external curvature
(recall that the sufficiency was proved by A. V. Pogorelov).

Unfortunately, Theorem 12 does not provide any information about the actual smoothness of a
normal developable surface based on differential properties of the vectors a(u) and b(u).

7. Monge–Ampère equation. The actual regularity of any surface can be verified by using its
representation in the Cartesian coordinates. If a surface is defined by an equation z = z(x, y), then its
metric is locally Euclidean if the following equation is fulfilled

zxxzyy − z2xy = 0. (7)

This equation is called the trivial (or degenerate) Monge–Ampère equation.
Let us dwell on local properties of solutions of this equation, which have some analogs with solutions

of elliptic equations: the phenomena of removability of singular points and an increase in the actual
smoothness of solutions.

It is well known that the formally required smoothness of solutions to elliptic equations can actually
be increased depending on the smoothness of the coefficients of the equation. A similar property holds
for solutions of Eq. (7).

Theorem 13 (see [16, 21, 22]). Let a solution z(x, y) of Eq. (7) be such that z(x, y) ∈ Cn, n ≥ 2,
and zxx �= 0. Then

zxy
zxx

∈ Cn−1,
zyy
zxx

∈ Cn−1.

This property is essentially used in the proof of local properties associated with the behavior of
solutions in neighborhoods of isolated singular points. For example, there is an analog of theorems on
removable singular points, as in the case of harmonic functions, i.e., solutions of the Laplace equation.
Let D and D0 denote the domains x2+ y2 < r2 and 0 < x2+ y2 < r2, respectively. Then the following
statement holds.

Theorem 14. Let a function z = z(x, y) belong to the class C1(D) ∩ C2(D0) and satisfy Eq. (7)
in D0. Then the second derivatives of the function z(x, y) can be continuously prolonged to the point
(0, 0) such that the function z(x, y) will be a function of the class C2(D).
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Now we discuss global properties of solutions of Eq. (7). In [10], it was proved that a complete C1-
smooth surface of bounded external curvature with a locally Euclidean metric is a cylinder. Therefore,
any solution of Eq. (7) defined over the whole plane is a cylinder. However, one can raise the question
of what will happen if we assume the existence of singular points at which the solution is not smooth.

An example of such a solution is the equation of a right circular cone z =
√

x2 + y2. For the first
time, such a question was posed by the author in 2009. In the case of a sole singular point, the answer
is as follows: such a surface is an arbitrary conical surface (i.e., a developable surface in which all
generatrices intersect at one point). Later, the author constructed other examples with a countable
number of singular points. Yu. A. Aminov showed how to construct a solution whose singular points
are located at the vertices of an arbitrary convex polygon. Finally, the following theorem was proved.

Theorem 15 (see [4, 19]). Let M be an arbitrary finite set of points on the plane (x, y). Then Eq. (7)
has solutions defined on the whole plane that belong to the class C∞ everywhere except for points of
the set M , at which they are continuous and look like conical surfaces with vertices at these points.

8. Locally Euclidean metrics and conformal mappings. We conclude this paper with a partial
answer to the 4th question formulated in Sec. 1. In [17], the problem of the search for a locally Euclidean
metric in a circle according to its geodesic curvature given on the boundary was posed and solved in
isothermal coordinates.

Under an isometric immersion into R
2 of a required metric, the geodesic curvature of a curve

transforms into the ordinary curvature of its image on the plane. Knowing the curvature of a curve
as a function of the arc length allows one to find the curve itself by using natural equations, i.e., as
a result, we can find the domain D bounded by this curve, and the isometric mapping of the circle
with a locally Euclidean metric into R

2 turns out to be a conformal mapping of the circle onto this
domain D.

Thus, the search for a locally Euclidean metric in a circle with a given geodesic curvature of the
boundary is similar to the problem of finding a domain on an ordinary plane by the curvature of its
edge. The reduction of this problem to the problem of finding a locally Euclidean metric in a circle by
the geodesic curvature of the boundary allows us to reduce the search for a conformal mapping of the
circle onto the domain D with a known curvature of the boundary to the solution of some strongly
nonlinear integro-differential equation.
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