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GENERALIZATION OF THE NOTION OF COMPLETENESS
OF A RIEMANNIAN ANALYTIC MANIFOLD
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Abstract. In this paper, we discuss the concept of an analytic prolongation of a local Riemannian
metric. We propose a generalization of the notion of completeness realized as an analytic prolongation
of an arbitrary Riemannian metric. Various Riemannian metrics are studied, primarily those related to
the structure of the Lie algebra g of all Killing vector fields for a local metric. We introduce the notion
of a quasi-complete manifold, which possesses the property of prolongability of all local isometries to
isometries of the whole manifold. A classification of pseudo-complete manifolds of small dimensions
is obtained. We present conditions for the Lie algebra of all Killing vector fields g and its stationary
subalgebra h of a locally homogeneous pseudo-Riemannian manifold under which a locally homogeneous
manifold can be analytically prolonged to a homogeneous manifold.
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1. Introduction. Consider a Riemannian analytic manifold M and a ball U ⊂ M of small radius
centered at some point x0 ∈ M . By an analytic prolongation of a locally defined metric, we mean a
Riemannian analytic manifold N for which there exists an analytic isometry ϕ : U → M . We state
the problem of constructing a natural analytic prolongation of a given metric. The natural condition
of the nonprolongability of the required manifold was introduced by Helgason (see [1]) and Kobayashi
and Nomizu (see [2]). However, the structure of nonprolongable manifolds may be quite extraordinary,
for example, the simply connected covering of the right-hand half-plane with the punctured points(
1/n, k/n

)
, k, n ∈ N.

As a rule, in studies on the geometry of Riemannian spaces “in the whole,” another essential
requirement is the completeness of manifolds considered. For a complete, simply connected, analytic
Riemannian manifold, any isometry ϕ : U → M between two connected open subsets U ⊂ M and
V ⊂ M can be analytically prolonged to an isometry ϕ : M → M (see [1]).

However, in the general case, a ball U of a Riemannian analytic manifold cannot be isometrically
embedded in a complete Riemannian analytic manifold, i.e., generally speaking, a locally given Rie-
mannian metric cannot be extended analytically to the metric of a complete Riemannian manifold.
The question arises about generalizing the concept of completeness. A natural generalization is the
nonprolongability of a Riemannian analytic manifold.

We pose the following question: By given local properties of a Riemannian analytic metric, i.e.,
a metric defined on a small ball U , is it possible to construct a Riemannian analytic manifold M
containing U as an open subset and admitting analytical prolongation of local isometries to isometries
of the whole manifold? In other words, can any isometry ϕ : U → V between two connected open
subsets U ⊂ M and V ⊂ M be analytically prolonged to an isometry ϕ : M → M? An obstruction
of such a prolongation is the following fact. Let g be the Lie algebra of all Killing vector fields on the
Riemannian analytic manifold M and h ⊂ g be its stationary subalgebra: for a fixed point p ∈ M , we
assume that X ∈ h if and only if X(p) = 0. Let G be a simply connected subgroup generated by the
algebra g and H be its subgroup generated by the subalgebra h. Let G act on the simply connected
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manifold M ; then the orbit of a fixed point p ∈ M is a submanifold isometric to the factor-group
G/H. However, the factor-group G/H is a manifold only in the case where the subgroup H is closed
in G.

The goal of this work is to define a pseudo-complete manifold, which is the “most complete” analyti-
cal prolongation of an arbitrary locally given Riemannian analytic metric. The analytical prolongation
of a locally given Riemannian metric is studied. We consider the cases of a completely inhomogeneous
metric and a metric for which the Lie algebra of all Killing vector fields has no center. In these cases,
we give the definition of a quasi-complete manifold M , which possesses the property of unique pro-
longability of all local orientation-preserving isometries f : U → V , where U and V are connected open
subsets of the manifold M , to an isometry f : M → M . An oriented Riemannian analytic manifold
whose algebra of vector fields has a zero center is said to be quasi-complete if it is nonprolongable and
does not admit nontrivial local isometries preserving the orientation and all Killing vector fields.

Let us give a definition of a pseudo-complete manifold that leads to the “most complete” prolon-
gation of a locally given metric and is applicable to an arbitrary locally given metric. An analytic,
simply connected, oriented Riemannian manifold M is said to be pseudo-complete if it possesses the
following properties:

(i) M is nonprolongable;
(ii) there are no local isometric orientation-preserving mappings f : M → N , where N is a simply

connected Riemannian analytic manifold and f(M) is an open proper subset in N .

Among pseudo-complete manifolds, we distinguish the “most symmetric” regular pseudo-complete
manifolds. Next, we study pseudo-complete manifolds of small dimensions and classify them.

The second goal is to study locally homogeneous manifolds, not only Riemannian, but also pseudo-
Riemannian. We give conditions under which H is closed in G. The structure of nonclosed subgroups is
well known. However, the nature of the corresponding studies are purely algebraic and do not take into
account local properties of the Riemannian metric. A description of properties of nonclosed subgroups
U ⊂ M is contained in the classical work of A. I. Maltsev [3]. If a Lie subgroupH of a simply connected
Lie group G is not closed in G, then the group G contains a torus T such that the intersection H ∩ T
is an everywhere dense winding of this torus. However, this fact is difficult to establish based on local
properties of a given Riemannian analytical metric, i.e., on properties of the Lie algebra g and the
stationary subalgebra h. Is it possible to find properties of the Lie algebra of all Killing vector fields
such that the subgroup H defined by the stationary subalgebra h is closed in the simply connected
group G generated by the algebra g? We note Mostow’s result, according to which H is closed in G if
h is semisimple. Moreover, Mostow proved that H is closed in G if dim g− dim h < 5 (see [4]).

We find necessary and sufficient properties of the Lie algebra g of all Killing vector fields on a
Riemannian analytic manifold M and its stationary subalgebra h such that H is closed in G. Purely
algebraic means are not enough here. To study the problem of the closedness of a stationary subgroup
H in a simply connected group G, we use the study of the analytic continuation of a locally given
Riemannian analytic metric. Manifolds that are analytic proongations of an arbitrary locally given
Riemannian analytic metric have the same Lie algebra of all Killing vector fields. Therefore, the ques-
tion of the closedness of the group H in G is equivalent to the question of the analytic prolongability
of a given locally given Riemannian analytic metric on a locally homogeneous space to the metric of
a complete manifold. The concept of analytic prolongation of a Riemannian analytic metric was used
in the classical monographs of Helgason [1] and Kobayashi and Nomizu [2], but was not developed.

The case where g has a zero center was studies in [5–8] not only for Riemannian manifolds, but
also for pseudo-Riemannian spaces and affinely connected spaces. It is proved that in this case the
subgroupH defined by the stationary subalgebra h is closed in the simply connected group G generated
by the algebra g. In addition to the algebraic approach, an analytical approach is being developed
to study the analytic continuation of Riemannian analytic manifolds. One of the topics of this work
is the study of locally homogeneous manifolds whose Lie algebra g of all Killing vector fields has
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a nontrivial center z. We examine properties of the algebra g, its stationary subalgebra h, and the
center z that provide the closedness of the subgroup H defined by the stationary subalgebra h in the
simply connected group G generated by the algebra g. Let z be the center of the algebra g, r be its
redical, and [g, g] be its commutator subgroup. If

dim
(
h ∩ (z+ [g, g])

)
= dim

(
h ∩ [g, g]

)
,

then H is closed in G. If for any semisimple subalgebra p ⊂ g satisfying the condition p+ r = g, where
r is the redical of g, the relation (p+ z) ∩ h = p ∩ h holds, then H is closed in G.

It is important to study the case of a completely inhomogeneous Riemannian metric, i.e., a metric
that does not admit any motions (Killing fields). In this case, it is possible to define a so-called quasi-
complete manifold, which possesses the property of nonprolongability and uniqueness for each locally
defined, completely inhomogeneous metric (see [6]). The definition of a quasi-complete manifold can
be generalized to the case where the Lie algebra of all Killing vector fields for a given locally defined
Riemannian analytic metric has no center (see [5]). Such a manifold M possesses the property of
maximal possible symmetry, i.e., any isometry f : U → V between connected open subsets of the
manifold M can be analytically prolonged to an isometry f : M → M . However, a quasi-complete
manifold not only has the disadvantage that it is not defined for an arbitrary locally given metric, but
in a certain sense it is not the “most complete” manifold. Therefore, below, for an arbitrary locally
defined Riemannian metric, we present the concept of a pseudo-complete manifold, study its properties
and relationships with quasi-complete manifolds, and also describe pseudo-complete manifolds in the
case of small dimensions.

2. Analytic prolongation of Riemannian manifolds and generalization of the notion of
completeness. The class of all locally isometric Riemannian analytic manifolds is called the class of
manifolds generated by a given germ of a Riemannian analytic manifold, and each specific manifold
from this class is called an analytic prolongation of this germ. A natural requirement for the analytic
prolongation of a germ is the nonprolongability of the resulting manifold. Now we present precise
definitions and formulations.

Definition 1. An analytic prolongation of a Riemannian analytic manifold M is a Riemannian ana-
lytic manifold N such that there is an analytic embedding of M into N as a proper open subset. A
manifold that does not admit analytical prolongations is said to be nonprolongable.

Definition 2. A local isometry between two Riemannian analytic manifolds M and N is an isometry
ϕ : U → V between open subsets U ⊂ M and V ⊂ M . Manifolds that admit a local isometry between
them are said to be locally isometric.

Any vector field X ∈ g can be analytically prolonged along any curve on the manifold M ; therefore,
the Lie algebra g determines the Lie algebra g of Killing vector fields on any simply connected manifold
N , which is localli isometric to M . This fact also holds for affinely connected manifolds.

Lemma 1. Let M be an analytic affinely connected manifold, X be an infinitesimal affine transform
defined in a domain U ⊂ M , and γ(t), 0 ≤ t ≤ 1, be a continuous curve in M such that γ(0) ⊂ U .
Then the vector field is analytically prolongable along γ(t). If curves γ(t) and δ(t), where 0 ≤ t ≤ 1,
γ(0) = γ(0), and γ(1) = γ(1) = x1, are homotopic, then the prolongations of the vector fields to the
point x1 along these curves coincide.

Proof. Assume that X can be analytically prolonged to a neighborhood of any point γ(t) for 0 ≤ t ≤ t1.
We prove that X can be prolonged to a neighborhood of the point q = γ(t1). Let V be a normal
neighborhood of the point q, which is a normal neighborhood of each of its points (see [1]). Consider
t ≤ t1 such that p = γ(t) ∈ V .

The vector field X generates a local one-parameter group of isometries φs in a neighborhood of each
point if γ(t), t ≤ t1. We prove that for all sufficiently small values of s, the local isometries φs can be
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analytically prolonged to a neighborhood of the point q = γ(t1). Then the vector field of velocities of
this local group of isometries is an analytic prolongation of the vector field X to a neighborhood of
the point q.

Consider a connected open set V0 ⊂ V containing the points p and q whose closure also leis in V ,
V 0 ⊂ V , p, q ∈ V0. Consider a small neighborhood V ′ ⊂ V0 of the point q and join the point p with an
arbitrary point q′ ∈ V ′ be a segment of a geodesic line α(t), 0 ≤ t ≤ 1. Let

Y =
dα

dt
(0) ∈ TpM, ps = ϕs(p), Ys = ϕs(Y ).

Draw a geodesic β(t), 0 ≤ t ≤ 1, from the point ps such that dβ/dt = Ys. For sufficiently small values
of s, we have β(t) ∈ V0, 0 ≤ t ≤ 1. We set ϕs(q

′) = β(1). The mapping obtained is an analytic
prolongation of the affine transform ϕs. �

It is important to study the case of a completely inhomogeneous Riemannian metric, i.e., a metric
that does not admit any motions (Killing fields). In this case, it is possible to define a so-called quasi-
complete manifold, which possesses the properties of nonprolongability and uniqueness for each locally
defined, completely inhomogeneous metric (see [6]).

Definition 3. A Riemannian analytic manifold is called a completely inhomogeneous manifold if
there are no Killing vector fields on it. A Riemannian metric of a completely inhomogeneous manifold
is called an inhomogeneous metric.

By Lemma 1, all manifolds that are locally isometric to a completely inhomogeneous manifold are
completely inhomogeneous.

Definition 4. A completely inhomogeneous, oriented, analytic Riemannian manifold is said to be
quasi-complete if it is nonprolongable and does not admit nontrivial orientation-preserving local isome-
tries onto itself.

We present basic properties of completely inhomogeneous quasi-complete manifolds (see [5]). For
an arbitrary completely inhomogeneous manifold M , consider the set S ⊂ M of all fixed points of
various orientation-preserving local isometries of the manifold M onto itself.

Theorem 1. For an arbitrary completely inhomogeneous, analytic Riemannian manifold M ′, theset
S ⊂ M ′ is an analytic subset of codimension ≥2. Therefore, M ′ \ S is a connected manifold.

Theorem 2. For any completely inhomogeneous, analytic Riemannian manifold M ′, there exists a
quasi-complete manifold M locally isometric to it and a locally isometric covering mapping f : M ′\S →
M . Thus, a quasi-complete manifold possesses the uniqueness property for each completely inhomoge-
neous, locally defined analytic Riemannian metric.

The definition of a quasi-complete manifold can be generalized to the case where the Lie algebra of
all Killing vector fields for a given locally defined analytic Riemannian metric has no center (see [5]).
Many locally homogeneous manifolds, in particular, all locally symmetric spaces possess this property.

Definition 5. An analytic Riemannian manifold M is said to be locally homogeneous if at each point
p ∈ M , Killing vector fields form a basis of the tangent space TpM .

An equivalent definition of a locally homogeneous manifold M is as follows: for any points p, q ∈ M ,
there exists a local isometry ϕ of the manifold M such that ϕ(p) = q.

Definition 6. An oriented analytic Riemannian manifold whose algebra of vector fields has zero center
is said to be quasi-complete if it is nonprolongable and does not admit nontrivial orientation-preserving
Killing vector fields of local isometries onto itself.

We examine oriented analytic Riemannian manifolds whose Lie algebra of Killing vector fields has
no center. We prove that each such manifold is locally isometric to a quasi-complete manifold, whereas
locally homogeneous quasi-complete manifolds are complete homogeneous manifolds.
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We denote by Z(M) the pseudogroup of all local isometries of an analytic Riemannian manifold M
that preserve the orientation and Killing vector fields: ϕ ∈ Z(M) if and only if ϕX = X for any X ∈ g.

Lemma 2. Let M be an analytic Riemannian manifold satisfying the property of unique prolongability
of Killing vector fields and let the Lie algebra of all Killing vector fields on M have no center. Then
the set S ⊂ M consisting of fixed points of various isometries ϕ ∈ Z(M) is an analytic subset of
codimension ≥ 2.

Proof. We prove that for any open set U ⊂ M with compact closure, there is a finite number of local
isometries from U onto itself belonging to the pseudogroup Z(M). Assume the contrary and consider
an infinite sequence of local isometries ϕi ∈ Z(M) whose domains and sets of values lie in U . In the
proof of [6, Lemm 3], by an infinite sequence of local isometries ϕi on some open set V ⊂ U , a Killing
vector field X was constructed, which satisfies the following condition after passing to a subsequence:
for any t ∈ [−1, 1], there exists k(i) ∈ N such that

lim
i→∞

ϕ
k(i)
i = Exp tX,

where Exp tX is the local one-parameter group of isometries generated by the vector field X. Therefore,
for any vector field Y on V , there exists i ∈ N such that the following inequality holds;
∣∣
∣
(
Exp tx

)
∗Y − Y

∣∣
∣ ≤

∣∣
∣ϕk(i)

i Y − Y
∣∣
∣+

∣∣
∣
(
Exp tX

)
∗Y − ϕ

k(i)
i Y

∣∣
∣

≤ 0 +
∣
∣∣Y − (

Exp t(−X)
)
∗ϕ

k(i)
i Y

∣
∣∣ ≤ 1

2

∣
∣∣
(
Exp tx

)
∗Y − Y

∣
∣∣.

Therefore, for any Y ∈ g we have (Exp tX)∗Y = Y , i.e., [X,Y ] = 0. However, this contradicts the
absence of the center in the algebra g. This contradiction proved the existence of only a finite number
of local isometries from U into U that belong to the pseudogroup Z(M). As was proved in [6], this
easily implies the fact that the set S is an analytic subset of codimension ≥2. By Lemma 2, the
manifold M \ S is connected. �

Lemma 3. Let M be an analytic Riemannian manifold satisfying the property of unique prolongability
of Killing vector fields and such that the Lie algebra of all Killing vector fields on M has no center.
Then there exists a locally isometric covering mapping from M \ S into an analytic Riemannian
manifold M1, which also satisfies the property of unique prolongability of Killing vector fields and such
that the pseudogroup Z(M1) consists only of the identity transform.

Proof. We take the factor-manifold of the manifold M ′ \S with respect to the pseudogroup Z(M). The
proof of Lemma 2 implies that for each point x ⊂ M \ S, there exists a neighborhood U1x ∈ M \ S of
the point x, which does not admit nonidentity orientation-preserving local isometries onto itself that
belong to the pseudogroup Z(M). This proves that the factor-mapping π, which project the manifold
M \ S into set set M1 = M \ S/Z(M), is a covering mapping. Therefore, for each point x ∈ M ,
there exists a neighborhood Ux ⊂ M1 of it and an open set Vx ⊂ π−1(Ux) such that the mapping
π is a homeomorphism between the sets Vx and Ux. We introduce the Riemannian scalar product.
Restricting the set Vx ⊂ M \ S if necessary, we assume that Vx is a coordinate neighborhood of the
point y ∈ π−1(Ux) ⊂ M \S. Then we take the set Ux ⊂ M1 as a coordinate neighborhood of the point
x ∈ M1. Consider two such neighborhoods U1, U2 ⊂ M1, U1∩U2 	= 0. Note that the sets V1, V2 ⊂ M \S
corresponding to the sets U1 and U2 may be nonintersecting. We set π−1(U1 ∩ U2) ∩ V1 = V10 and
π−1(U1∩U2)∩V2 = V12. Then there exists an isometry α : V10 
 V20. Let ψ1 and ψ2 be the coordinate
mappings onto V1 and V2, respectively. Then ψ1π

−1 and ψ2π
−1 are the coordinate mappings onto U1

and U2.
Consider an arbitrary point x ∈ M1 and arbitrary vectors X,Y ∈ TxM1. Also, consider a point

π−1(x) ⊂ M \ S and vectors X1, Y1 ∈ TyM such that π∗X1 = X and π∗Y1 = Y . We consider the
Riemannian scalar product 〈X,Y 〉, which is equal to the Riemannian scalar product 〈X1, Y1〉 existing
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on TxM . if we take another point z ∈ π−1(x) and vectors X2, Y2 ∈ TzM such that π∗X2 = X and
π∗Y2 = Y , then there exists a local isometry ϕ ∈ Z(M) such that ϕ(z) = y, ϕ∗X2 = X1, and
ϕ∗Y2 = Y1. Therefore, 〈X1, Y1〉 = 〈X2, Y2〉. This proved the well posedness of the definition of the
Riemannian metric on M1.

The Riemannian manifold M1 constructed above does not admit nonidentity orientation-preserving
local isometries that induce the identity transform on the algebra of Killing vector fields g. The
projection π : M \ S → M1 is a locally isometric covering mapping. It remains to prove the property
of unique prolongability of Killing vector fields on M1. Consider a Killing vector field X defined on
an open set U ⊂ M1 and open sets U0 ⊂ U and V0 ⊂ M \ S such that the covering mapping π is
an isometry between the sets V0 and U0. Then the vector field π−1∗ X can be uniquely prolonged from
the set V0 ⊂ M on the whole manifold M and defines a vector field Y on M . Let points y, z ∈ M \ S
be such that π(x) = π(y) and π∗Y (z) = π∗ϕ∗Y (y). Since πϕ = π by the definition of π, we have
π∗ϕ∗ = π∗. Therefore, π∗Y (z) = π∗ϕ∗Y (y) = π∗Y (y). This proved that the mapping π uniquely
projects the vector field Y defined on M onto the vector field π∗Y defined on the manifold M1. The
vector field π∗Y is an analytic prolongation of the vector field X on the whole manifold M1. �

Theorem 3. An arbitrary analytic Riemannian manifold M whose Lie algebra of Killing vector fields
has no center is locally isometric to a quasi-complete manifold.

Proof. Consider an arbitrary analytic Riemannian manifold M ′ whose Lie algebra of Killing vector
fields has no center. The manifold M1 constructed in the proof of Lemma 3 does not admit local
isometries onto itself that preserve the orientation and Killing vector fields. Then a certain maximal
analytic prolongation of the manifold M1 is a quasi-complete manifold M . We assume that all man-
ifolds, which will be considered in the proof of Theorem 3, possess the property of unique analytic
prolongability of Killing vector fields, i.e., the Lie algebra of all Killing vector fields is the same for all
manifolds and coincides with g. If M ′ satisfies this condition, then the manifolds M1 also satisfies it.

Consider the set Λ consisting of analytic prolongations Mα of the manifold M1 that satisfy the
property of unique prolongability of Killing vector fields and do not admit local isometries, which
are identical on the algebra of all Killing vector fields. We consider a marked point on the manifold
M1, endow the manifold with a marked frame at the marked point, and consider the images of these
point and frame in the manifolds Mα ∈ Λ. On the set Λ, we introduce the following order relation:
Mα ≤ Mβ if there exists an isometric embedding iαβ : Mα → Mβ, which maps the marked point
to the marked point and the marked frame to the marked frame. As a result, Λ becomes a partially
ordered set. Consider an arbitrary linearly ordered subset Δ of the set Λ and construct the direct
limit of the family of manifolds Mα ∈ Δ and mappings iαβ. We obtain a manifold M0 possessing the
following properties. For any manifold Mα ∈ Δ, there exists an isometric embedding iα : Mα → M0

and, moreover, iα(Mα) ⊂ iβ(Mβ) if Mα ≤ Mβ. Let M0 =
⋃

Mα. We prove that Mα ∈ Λ. We can
transfer an arbitrary vector field X from the manifold M1 to the manifold iα(Mα) ⊂ M0 by using the
embeddings i1α : M1 → Mα and iα : Mα → M0; moreover, (iαi1α)∗X = (iβi1β)∗X on iα(Mα)∩ iβ(Mβ)
and the Killing vector field (iαi1α)∗X is uniquely prolonged from the submanifold iα(Mα) ⊂ M0 to
any submanifold iβ(Mβ) ⊂ M0, Mβ ≥ Mα, and hence to the whole manifold M0. Thus, a Killing
vector field defined on a arbitrarily small open set U ⊂ M0 can be uniquely prolonged to a Killing
vector field on M0.

Now we consider a local isometry ϕ ∈ Z(M). Let x0 ∈ M0 be a point from the domain of the isometry
ϕ. Then the points x0 and ϕ(x0) line in some submanifold iα(Mα ⊂ M0. Therefore, ϕ ∈ Z(iα(Mα))
and hence ϕ is the identity transform. We conclude that the pseudogroup Z(M0) consists only of the
identity transform. Thus, for an arbitrary linearly ordered subset Δ ⊂ Λ, we have constructed an upper
boundary. By Zorn’s lemma, the set Λ has a maximal element. We assert that the manifold M , which
is the maximal element, is the required quasi-complete manifold. We prove that M is nonprolongable.

Assume the contrary and denote by N a nontrivial prolongation of the manifold M . Let, as above,
S ⊂ N be the set of fixed points of various local isometries from the pseudogroup Z(N). As in the
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proof of Lemma 3, we consider the factor-manifold of the manifold N \ S. As a result, we obtain
a manifold L satisfying the property of unique prolongability of Killing vector fields and admitting
no local isometries that preserve the orientation and all Killing vector fields. We denote by i the
embedding i : M → N and prove that i(M) ∩ S = ∅. If x ∈ i(M), then a certain normal ball B
centered at x belongs to i(M). Moreover, if x ∈ S, then there exists a local isometry ϕ ∈ Z(M)
satisfying the condition ϕ(x) = X. This isometry determines an isometry of the ball B into itself
defined in the normal coordinates by the differential of the isometry ϕ, which is a linear mapping.
However, the existence of such an isometry contradicts the triviality of the pseudogroup Z(M). Thus,
i yields the embedding i : M → N \ S. The composite mapping πi : M → L, where π : N \ S → L
is the covering mapping constructed in the proof of Lemma 3, is also an embedding. If πi(x) = πi(y),
then there exists a local isometry ϕ ∈ Z(M) such that ϕ(x) = ϕ(y); therefore, x = y. Since M is a
maximal element of the set Λ, πi is an isometry and N \ S covers M .

We have the covering mapping π : N \ S → M and the embedding i : M → N \ S; moreover, i(M)
is open in N \ S. Let xn ∈ i(M) be a sequence of points converging to x ∈ N \ S. Then the sequence
yn = π(xn) also converges to a point y ∈ M . Since xn = i(yn), we have x = i(y) ∈ M . This proves the
closedness of i(M) in N \S. Thus, N \S is not connected or N \S = N . However, the nonconnectedness
of N \S contradicts Lemma 2; therefore, N \S = M . We prove that S = ∅. Assume the contrary and
consider a normal ball B centered at some point x ∈ S ⊂ N . There exists an isometry of the ball B
into itself; this isometry does not fix points of B \S and hence it is a nonidentical local isometry from
the pseudogroup Z(N \S). Since N \S = M , this contradicts the triviality of the pseudogroup Z(M).
This proves that S 	= ∅, N = M , and M is not prolongable. �

Theorem 4. Let ϕ be a local isometry from a quasi-complete manifold M into a quasi-complete
manifold N . Then ϕ can be prolonged to an isometry ϕ : M 
 N .

Proof. Consider an arbitrary point X ∈ M and a smooth curve γ(t), 0 ≤ t ≤ 1, such that γ(t) ∈
D(ϕ) ⊂ M and γ(1) = x. We prove that the isometry ϕ defined in the neighborhood U = D(ϕ) ⊂ M
of the point x0 = γ(0) can be prolonged along the curve γ. Assume that such a prolongation does not
exist. Consider the minimal number t1 ∈ [0, 1] among all numbers t such that the isometry ϕ cannot be
prolonged to a neighborhood of the point γ(t) along the curve γ. However, we prove that, in contrast
to the assumption, there exists a prolongation of ϕ to some neighborhood of the point γ(t1) along the
curve γ.

Due to the assumption about t1, the isometry ϕ is defined in some neighborhood of point γ(t) for
any t ∈ [0, t1); therefore, a curve δ(t) = ϕ(γ(t)), 0 ≤ t ≤ t1, is defined on N . Let x1 = γ(t1) and ε > 0
be such that the neighborhood Uε = {x ∈ M, ρ(x, x1) ≤ ε} is a normal neighborhood of each of its
points. Since for any y ∈ N and ε0 > 0, there exists α > 0 such that the inequalities

∣
∣∣ρ
(
y, δ(t′)

)− ρ
(
y, δ(t′′)

)∣∣∣ ≤ ρ
(
δ(t′), δ(t′′)

) ≤
t′′∫

t′

√
〈δ′(t), δ′(t)〉dt =

t′′∫

t′

〈γ′(t), γ′′(t)〉dt < ε0

are fulfilled for all t′, t′′ ∈ [0, t1) satisfying the conditions |t1 − t′| < α and |t1 − t′′| < α. Therefore, for
any y ∈ N , there exists

lim
t→t1

ρ(y, δ(t)) = ρ1(y).

Consider the set
Vε =

{
y ∈ N | ρ1(y) < ε

}
.

There exists an isometry ϕ = ψ−1 of some neighborhood VD ⊂ Vε of the set

D =
{
y ∈ N | y = δ(t), t2 ≤ t < t1

}

onto a neighborhood UD ⊂ Uε of the set

B =
{
x ∈ M | x = γ(t), t2 ≤ t < t1

}
.
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We prove that ψ can be prolonged up to an isometry ψ : V 
 V . First, we prove that ψ is prolongable
along any curve ν(s), 0 ≤ s ≤ 1, to Vε, where ν(0) ∈ VD and ν(1) = y is an arbitrary point in Vε.
Assume the contrary; then there exists a minimal number s1 among all numbers u ∈ [0, 1] possessing
the following property: ψ is not prolongable along the curve ν(s) to any neighborhood of the point ν(u).
Let σ > 0 and s2 < s1 be such that the set

Bσ =
{
y ∈ N | ρ(y, ν(s2)) < σ

}

is a normal neighborhood of the point ν(s2) and ρ(ν(s2; ν(s1)) < σ/2. Therefore, ν(s1) ∈ Bσ. Using
the linearity of the mapping ψ in the normal coordinates, one can prolong the isometry ψ defined
in some neighborhood of the point ν(s2) to an isometry ψ defined on the whole set Bσ, which is a
neighborhood of the point ν(s). Therefore, the assumption on the nonprolongability of ψ along the
curve ν(s) is invalid.

Now we prove that the prolongation of the isometry ψ to Vε along various curves yields a single-
valued mapping ψ : Vε → Uε. Assume the contrary. Then there exists a closed Jordan curve ν(t),
0 ≤ t ≤ 1, ν(0) = ν(1), on Vε such that the curve β(t) = ψ(ν(t)) on Uε is nonclosed, β(0) 	= β(1). Since
various analytic prolongations of the isometry ψ induce the same mapping on the algebra of Killing
vector fields, then the isometry ψψ−1, which maps β(0) to β(1), belongs to the pseudogroup Z(M); this
contradicts the fact that M is a quasi-complete manifold. One can similarly prove that a prolongation
of a local isometry φ = ψ−1 from Uε to Vε defines a single-valued mapping on the set ϕ(Vε) ⊂ Uε.
Thus, we have the isometric embedding Vε → Uε. We prove that it is a surjective mapping. Assume the
contrary. Gluing the manifolds N and Uε along the mapping ψ, we obtain a nontrivial prolongation of
the manifold N , which contradicts its nonprolongability. Therefore, we have an isometry ψ : Vε → Uε.
The inverse isometry ψ−1 : Uε → Vε yields a prolongation of the isometry ψ to a neighborhood Uε of
the point γ(t1) along the curve γ, in contrast to the initial assumption about t1.

Thus, we have proved that a local isometry ϕ from M to N can be prolonged to any point x ∈ M
along an arbitrary curve on M . We have proved above that prolongations of an isometry ψ along
various curves on Vε yield a bijective mapping defined on the whole Vε. In a similar way, one can prove
that prolongations of ϕ along various curves on M yield an isometric embedding ϕ : M → N . �

Corollary 1. An arbitrary analytic Riemannian manifold whose Lie algebra of Killing vector fields
has no center is locally isometric to a unique quasi-complete manifold. In other words, a locally defined
analytic Riemannian metric whose Lie algebra of Killing vector fields has no center can be uniquely
prolonged to a quasi-complete manifold.

Proof. Let a quasi-complete manifold M be locally isometric to a manifold M ′ and let N be another
quasi-complete manifold, which is locally isometric to the manifold M ′. Then there exist a local
isometry ϕ from N to M ′ and a local isometry ψ from M ′ to M . The superposition of the isometries
ϕ and ψ is a local isometry from N to M . By Theorem 4, the local isometry ψϕ can be prolonged to
an isometry M 
 N . �

Corollary 2. Let g be the Lie algebra of all Killing vector fields of an analytic Riemannian manifold
M ′, which is diffeomorphic to a ball, and h be its stationary subalgebra. Let G be a simply connected
group generated by the algebra g and H be its subgroup generated by the subalgebra h. If g has no
center, then H is closed in G.

Proof. Since M ′ is diffeomorphic to a ball, its Killing vector fields can be analytically prolonged on it
uniquely. By Theorem 3, the manifold M ′ is locally isomorphic to a quasi-complete manifold M , which
possesses the same Lie algebra g of all Killing vector fields and the same stationary subalgebra h. For
an arbitrary vector field X ∈ g, for all t < δ, elements of the one-parameter transformation group
Exp tX are local isometries of the manifold M . By Theorem 4, they can be prolonged to isometries of
the whole manifold M . Then the isometries Exp tX = (Exp tX)n are defined. Thus, the group G acts
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on M and H is the stationary subgroup of G. This means that the orbit of the group G on M can be
covered by a homogeneous manifold G \H. Therefore, H is closed in G. �

Note that a quasi-complete manifold is the most contracted, i.e., universally attracting, object
of the category of all locally isometric manifolds. For any analytic Riemannian manifold M ′ whose
algebra of Killing vector fields has no center, there exists a locally isometric mapping from M ′ into a
quasi-complete manifold M defined on whole M ′.

A quasi-complete manifold is unique in the class of all analytic prolongations of a given germ and
possesses a series of remarkable properties (see [6]). First of them is the property of maximal symmetry:
any local isometry f : U → V from a quasi-complete manifold M into itself can be analytically
prolonged to an isometry f : M → M . However, the notion of a quasi-complete manifold has not only
the disadvantage that it is defined not for all locally defined analytic Riemannian metrics, but also it
is not the “most complete” in a certain sense. Namely, there exists a germ of an analytic Riemannian
manifold admitting a prolongation to a complete manifold whose prolongation to a quasi-complete is
not a complete manifold.

Example 1. Consider the ellipsoid in the three-dimensional space defined by the equation

x2

a2
+

y2

b2
+

z2

c2
= 1.

To obtain a quasi-complete manifold in the class of all analytic Riemannian manifolds locally isometric
to an ellipsoid, one must remove six points of intersection with the coordinate axes from the ellipsoid
and factorize the manifold obtained by the group of rotations by 180◦ about all coordinate axes.

It is possible to generalize the notion of completeness leading to the “most complete” manifold for
an arbitrary germ of an analytic Riemannian manifold.

Definition 7. A simply connected analytic Riemannian manifold M is said to be pseudo-complete if
it is possesses the following properties:

(1) M is nonprolongable;
(2) there are no locally isometric covering mappings f : U → M , where N is a simply connected

analytic Riemannian manifold and f(M) is a proper open subset in N .

We examine analytic prolongations to a pseudo-complete manifold for various classes of germs of
analytic Riemannian manifolds. First, we must prove the fact the an analytic prolongation to a pseudo-
complete manifold exists for any germ of an analytic Riemannian manifold. In the general case, this
prolongation is not unique, but various analytic prolongations of the same germ differ slightly.

Theorem 5. Any locally defined analytic Riemannian manifold admits an analytic prolongation to a
pseudo-complete manifold. If the class of locally isometric of analytic Riemannian manifolds contains
a complete manifold, then this manifold is a unique pseudo-complete manifold of this class.

Proof. On the set of all simply connected analytic prolongations of a given germ of analytic Riemannian
manifold, we introduce the following order relation. We write M 
 N if there exists a locally isometric
mapping f : N → M . Thus, the set of simply connected, locally isometric analytic Riemannian
manifolds becomes a partially ordered set. By Zorn’s lemma, this set contains a maximal element. By
definition, this element is a pseudo-complete manifold.

Consider a complete analytic Riemannian manifold M . Assume that M is not pseudo-complete;
then there exists a locally isometric mapping f : M → N such that there exists a point x /∈ N . Let
γ(t), 0 ≤ t ≤ 1, be a geodesic curve joining the points y ∈ f(M) and x. Then the preimage of this
geodesic for 0 ≤ t ≤ δ cannot be prolonged to a geodesic curve for all t on the manifold M , which
contradicts the completeness of this manifold. Pseudo-complete manifolds are not unique in the class
of all locally isometric analytic Riemannian manifolds. �
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Example 2. Consider a germ of a two-dimensional analytic Riemannian manifold defined on the
sphere with the metric

ds2 =
f(z, z)

√
(1 + |z|6 dz dz,

where f(z, z) is an analytic function on the sphere satisfying the condition

f(z, z) 	= |A′(z)|2f(A(z), A(z))

for any linear fractional transform A(z).
This metric has a singularity at the point z = ∞. The sphere with this metric is a pseudo-complete

manifold. Using the transform z = w2 + a, a ∈ C, we remove the singularity at the point z = ∞. As
a result, we obtain another sphere, which doubly covers the initial sphere and has the metric

ds2 =
4|w|f(w2 + a,w2 + a

)

√
1 + |w2 + a2|6 dw dw.

This metric has a singularity at the point w = 0; this fact is natural since the sphere w is branched
over sphere z at the point z = a corresponding to the point w = 0. For various a, we obtain various
pseudo-complete manifolds with the coordinate w.

Example 2 shows that there exist a large set on nonnatural pseudo-complete manifolds. To avoid
branching over regular points, we restrict the notion of a pseudo-complete manifold.

Definition 8. An analytic simply connected Riemannian manifold M is called a regular pseudo-
complete manifold if there is no a covering locally isometric mapping f : M \ S → N into another
pseudo-complete manifold N , which is locally isometric to the manifold M .

Theorem 6. A local isometry from a regular pseudo-complete manifold M into a pseudo-complete
manifold N can be analytically prolonged along a continuous curve to any point of M except for an
analytic subset S of codimension ≥2.

Proof. We prove the theorem for the case where the Lie algebra of all Killing vector fields has no
center. Consider the subsets S ⊂ M and S′ ⊂ N consisting of all fixed points of local isometries that
preserve the orientation of Killing vector fields. The sets S and S′ are analytic subsets of the manifolds
M and N of codimension ≥2 (see [5, 6]). Let M0 be a quasi-complete manifold locally isometric to
the manifolds M and N . Then there exist covering locally isometric mappings f : M \ S → M0

and g : N \ S′ → M0 (see [5, 6]). Moreover, the definition of a regular pseudo-complete manifold
implies that f(M \ S) = M0 and g(N \ S′) = M0. Consider an arbitrary curve γ(t) ⊂ M \ S such
that the initial local isometry φ between the manifolds M and N contains the point γ(0), its image
δ(t) = f(γ(t)) ⊂ M0, and the connected component β(t) of the preimage g−1((t)) ⊂ S′ containing the
point φ(γ(0)). Then the initial local isometry φ can be analytically prolonged to an isometry of some
neighborhood of the curve γ(t), 0 ≤ t ≤ 1, to some neighborhood of the curve β(t), 0 ≤ t ≤ 1, lying
in N \ S′. �

For an arbitrary oriented analytic Riemannian manifold M , we denote by Z(M) the pseudogroup
consisting of all local isometries of the manifold M that preserve the orientation and all Killing vector
fields. Consider the factor-manifold KM of the manifold M \ S by the pseudogroup Z(M). We define
the union of the manifolds KM and KN by gluing them along the set KM∪N . By the union of M ∪N
we mean the identification of maximal subsets on which the initial local isometry between the simply

connected coverings M̃ and Ñ of the manifolds M and N can be prolonged. On the manifold M \ S,
we consider the distribution z⊥ consisting of vectors that are perpendicular to the center z of the Lie
algebra g of all Killing vector fields.

Theorem 7. A germ of an analytic Riemannian manifold such that the distribution z⊥ of tangent
vectors perpendicular to the center z of the Lie algebra of all Killing vector fields is involutive admits
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an analytic prolongation to a regular pseudo-complete manifold. If one removes the set S of fixed points
of local isometries preserving the orientation and all Killing vector fields from this pseudo-complete

manifold M , then the simply connected covering M̃ \ S of the manifold M \S is isometric to the direct

product of the Euclidean space and the simply connected covering K̃ of the quasi-complete manifold K,

which is locally isometric to the completely geodesic submanifold tangent to z⊥, i.e., M̃ \ S ≈ R
k × K̃.

Proof. Since the distributions z and z⊥ are involutive, a certain neighborhood U of the marked
point p ∈ M has the form U = V × W , where V is an open subset of the integral submanifold
of the distribution z and W is an open subset of the integral submanifold of the distribution z⊥. Let
x1, . . . , xk be the coordinates on V and y1, . . . , ym be the coordinates on W . Then in the coordinates
x1, . . . , xk, y1, . . . , ym, the components gij are independent of x

1, . . . , xk. Since the submanifolds V and
W are perpendicular, the coefficients of dxi dyj are equal to 0. Therefore, the metric on U has the
form

ds2 = ds21(y) + fij(y) dx
i dxj .

Due to the nonprolongability of pseudo-complete manifolds, M \ S contains complete integral sub-
manifold of the distribution z, i.e., the direct products of the Euclidean space and the torus Rs × T l.
Therefore, M \ S is a bundles over K ′ ⊂ K with the fibers R

s × T l. Since the distribution z⊥ is
involutive, this bundle contains a section K ′ and hence is trivial, M \ S = R

s × T l ×K ′. Since M is
nonprolongable, we conclude that K ′ = K. Therefore, the simply connected covering of the manifold

M \ S is isometric to the direct product of simply connected spaces: M̃/S ≈ R
k × K̃. �

Corollary 3. Consider an analytic Riemannian manifold M ′ of dimension n whose Lie algebra g is
commutative, i.e., coincides with its center z, and dim g = dim z = n − 1. Then there exists at most
two pseudo-complete manifolds locally isometric to M ′.

Proof. Since codim z = 1, we have dim z⊥ = 1 and hence z⊥ is involutive. By Theorem 5, for a
pseudo-complete manifold M locally isometric to the manifold M ′, the following decomposition holds:
M \S = R

s×T l×K. The completely geodesic submanifold K is isometric either to the straight line R,
or to the circle S1, or to the ray (a,∞), or to the interval (a, b). Consider the factor-set K = M \Z(M).
If K = R or K = Sl, then K = K. If K = (a,∞), then K = [a,∞) or K = K = (a,∞). If K = (a, b),
then K = [a, b), or K = (a, b], or K = [a, b], or K = K = (a, b).

In the case where K = R or K = S1, then the corresponding germ of an analytic Riemannian
manifold has a unique prolongation to a pseudo-complete manifold and this manifold is isometric to
the Euclidean space. A prolongation of a germ to a pseudo-complete manifold is unique in the case
S = ∞, i.e., K = K.

Let K = (a,∞) and K = [a,∞). Then points of the subset S ⊂ M are mapped to the point a ∈ K
under the factorization K = M/Z(M). The point x ∈ S is a singular point of some field X ∈ z,
X(x) = 0, and any isometry ϕ from M into itself for which ϕ(x) = x has the form φ = Exp tY ,
Y ∈ z. Consider the subalgebra z0 ⊂ z consisting of Killing vector fields X ∈ z that vanish at the
point x, X(x) = 0. Then z0 generates a group of isometries of some ball B, which can be analytically
prolonged to a group of isometries of the manifold M and is isomorphic to the factor-group of the
group z0 = R

s by a certain lattice Γ acting on the manifold M . Then M is a complete manifold
isometric to the space R

s × T l. A similar construction can be used in the case where K = (a, b) and
K = [a, b) ot K = (a, b], i.e., where K is obtained from K by attaching a point a or b. In this case,
the pseudo-complete manifold is also unique an is isometric to the manifold R

s × T l × K; however,
this manifold is not complete.

Finally, consider the case where K = (a, b) and K = [a, b], i.e., where K is obtained from K
by attaching two point a and b. Consider the pseudo-complete manifold M1 and points of the set
S1 ⊂ M1 projected to the point a ∈ K. As in the previous cases, consider the manifold M ′

1 obtained

by attaching the set S1 to the factor-manifold of the manifold M \S by some lattice Γ1 ⊂ z = R(n−1)
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such that M ′
1 = R

s × T l × K1, where K1 = [a, b). Similarly, consider the pseudo-complete manifold
M2 and point of the set S2 ⊂ M2 projected to the point b ∈ K. The manifold M ′

2 is obtained by

attaching the set S2 to the factor-manifold of the manifold M \ S by some lattice Γ2 ⊂ z = R(n − 1)
such that M ′

2 = R
s × T l ×K2, where K2 = (a, b]. If the lattices Γ1 and Γ2 do not coincide, then the

manifolds M1 = M ′
1 and M2 = M ′

2 are two different pseudo-complete manifolds. If the lattices Γ1

and Γ2 coincide, then the manifolds M1 and M2 are isometric and determines a complete manifold
M = M1 = M2. �

Now we describe pseudo-complete manifolds of low dimension.
Consider a germ A of a two-dimensional real-analytic Riemannian manifold. The dimension of the

Lie algebra g of Killing vector fields of a two-dimensional manifold is no greater than 3. If dim g = 3,
then the germ A is a germ of a manifold of constant curvature, which can be prolonged to a complete
manifold: the sphere, the plane, or the hyperbolic plane. If dim g = 2, then the germ A is a germ of
a left-invariant Riemannian metric on a two-dimensional Lie group, which is the prolongation of the
germ to a complete manifold. The case dim g = 1 was described in the corollary of Theorem 5.

Consider completely inhomogeneous two-dimensional analytic Riemannian manifolds. The factor-
manifold K constructed above as the union of all locally isometric factor-manifolds with respect to the
pseudogroup of all local isometries preserving the orientation and all Killing vector fields is a quasi-
complete manifold. Consider the set K = K ∪ T obtained by attaching to the manifold K the images
of the points x ∈ S ⊂ Mα under the factor-mappings π : Mα → Mα/Z(Mα = Kα ⊂ K defined on
various analytic prolongations Mα of the germ A. Then the subset T ⊂ K consists of isolated points
and one can introduce on K the structure of an analytic manifold. Consider a point z0 ∈ T ⊂ K.
Then there exists a sufficiently small ball U0 centered at a point x0 ∈ U0 such that the factor-mapping
π : U0 → K is the factorization of the ball U0 by a finite group of rotations with center x0 ∈ U0,
π(x0) = z0. If z is a complex coordinate on U0, then the mapping π has the form z → w = zm4 and

the metric on the set V0 = π(U0) ⊂ K has the form ds2 = |w|(−2(m−1))/mds21(w,w), where ds21(w,w)
is an analytic Riemannian metric on the ball V0 ⊂ K.

We denote by K̃ the simply connected covering of the set K. Then the preimage T̃ ⊂ K̃ of the set

T ⊂ K is a discrete set of points ai ∈ K̃. On K̃ \ T̃ , an analytic Riemannian metric is uniquely defined
such that the covering is locally isometric. Then the metric in neighborhoods of the points ai has the
form

ds2 = |w|−2(m−1)/mds21(w,w).

A simply connected manifold K̃ is diffeomorphic either to the complex plane, to the disk, or to the
sphere.

Consider the case where K̃ is identified with the complex plane C. Then there exists a holomorphic

function f on K̃ \ T̃ , which has branching of order mi at the points ai. This function is called the
Weierstrass function with zeros of given order at given point:

f(z) =

∞∏

i=1

mi

√
1− z

ai
exp

(
1

mi

(
z

ai
+

1

2

(
z

ai

)2

+ · · ·+ 1

pi

(
z

ai

)pi
))

,

where the numbers pi ∈ N are such that for any z ∈ C, the series

∞∑

i=1

(
z

ai

)pi

converges. Consider the Riemannian surfaceM of the function f(z). The surfaceM covers the complex
plane C such that the covering mapping π : M → C has branching of order mi at the points ai ∈ C

and has no branching at other points. We define the following Riemannian metric on M : g(X,Y ) =
g(π∗X,π∗Y ), where X,Y ∈ TxM and π∗X,π∗Y ∈ Tπ(x)K. This metric has no singularities at points
xi ∈ M such that π(xi) = ai. It is easy to prove that for any simply connected manifold N locally
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isometric to M , each local isometry φ from N into M can be analytically prolonged to a locally
isometric mapping φ : N → M . Thus, M is a unique analytic prolongation of the given germ to a
pseudo-complete manifold.

In the case where K̃ is a disk, similarly to the case of the complex plane, we can construct a unique
analytic prolongation of the given germ to a pseudo-complete manifold. This manifold is also the

Riemannian surface of a holomorphic function f(z) on K̃ with branching og order mi at the points

ai ∈ T̃ ⊂ K̃:

f(z) =
∞∏

i=1

mi

√
z − ai
z − αi

exp

qi∑

k=1

(ai − αi)
k

k(z − αi)k
,

where αi is the point on the boundary of the disk closest to ai and the numbers qi ∈ N are such that
∣
∣∣
∣∣
ln

z − ai
z − αi

+

qi∑

k=1

(ai − αi)
k

k(z − αi)k

∣
∣∣
∣∣
≤ 1

2i
.

Consider the case where K̃ is the sphere. In this case, the set T̃ ⊂ K̃ consists of a finite number of
points α0, α1,. . . ,αl, at each of which the metric has a singularity of the form

ds2 = |w|−2(m−1)/mds21(w,w).

The function

f(z) =
∞∏

i=1

mi

√
z − ai
z − α0

on the sphere has branching of order mi at the points ai, i = 1, 2, . . . , l, and branching of order m
at the point α0. As above, we consider the Riemannian surface M of the function f(z). The covering

mapping π : M → K̃ = S2 is a covering over K̃ \ T̃ and has branching at the points ai ∈ T̃ ⊂ K̃,

i = 1, 2, . . . , l, and α0 of orders indicated above. Then the metric on M induced by the metric on K̃
and the covering mapping π has no singularities at the points π−1(ai), but in the case where m 	= m0,
it has a singularity at the point π−1(a0). The manifold obtained is a regular pseudo-complete manifold.

Instead of the points ai ∈ T̃ ⊂ K̃, one can choose any other point aj ∈ T̃ ⊂ K̃ and construct another
regular pseudo-complete manifold as was described above. Thus, we obtain all analytic prolongations
of a given germ to a regular manifold.

Now we describe three-dimensional pseudo-complete manifolds. As above, we denote by z the center
of the Lie algebra g of all Killing vector fields on the manifolds considered. If dim z = 3, then the germ
of a Riemannian manifold is homogeneous and, due to Mostow’s result (see [4]), it can be prolonged
to a homogeneous manifold. If dim z = 2, then, by the corollary of Theorem 5, there exists at most
two analytic prolongations of a given germ to a regular pseudo-complete manifold. The case where the
algebra g has no center, dim z = 0, was analyzed in the proof of Theorem 4.

Consider the case where dim z = 2. First, we examine the case where K̃ is diffeomorphic to the

plane. Consider the manifold M0 ≈ K̃ × z. Let U0 be a small ball endowed with a Riemannian metric

and V0 = U0/Z(U0) ⊂ K̃. We extend the metric defined on U0 to the manifold V0× z. Let x1, x2, x3 be
coordinates on V0× z such that x1 and x2 are the coordinates on V0 and x3 is the coordinate on z. The
components of the metric tensor gij(x

1, x2) are independent of x3. The functions gij(x
1, x2) can be

analytically prolonged along any curve K̃; they define a metric on M0 ≈ K̃×z. Then M0\Z(M0) = K;

therefore, Z(M0) = K × Γ, where Γ is the group of the covering K̃ → K. Then for a regular pseudo-
complete manifold M , we obtain the manifold M/S = K × z/Γ0, where Γ0 is a discrete subgroup of
the group z.

Now we consider the case where the factor-manifold K is diffeomorphic to the sphere. We split K
into the union of two open disks K = K1∪K2. As above, we construct the Riemannian manifoldsM1 =
K1×R and M2 = K2×R, which are analytic prolongations of the initial germ, whose submanifolds R
are integral curves of the vector field X ∈ z. The local isometries f from M1 into M2 can be prolonged
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along any curve to (K1 ∩K2)× R. If such a prolongation is unique, then obtain a complete manifold
M ≈ S2 × R, which is a prolongation of the given germ. Now we assume that there exists a closed
curve γ(t), 0 ≤ t ≤ 1, on (K1 �K2)× R, such that the prolongation of the isometry f along it is not
single-valued, f(Γ(0)) = y1 	= y2 = f(γ(1)). Let x1, x2, and x3 be coordinates on M1 such that x1

and x2 are the coordinates on K1 and x3 is the coordinate onR. Let y1, y2, and y3 be coordinates
on M2 such that y1 and y2 are the coordinates on K2 and y3 is the coordinate on R. Since x3 and
y3 are the coordinates on the Lie algebra z, the isometry f in the coordinates x1, x2, x3, y1, y2, and
y3 has the form y1 = y1(x1, x2), y2 = y2(x1, x2), y3 = x3 + f(x1, x2), where the functions y1 and y2

are the transition functions from the chart K1 to the chart K2 on the sphere and hence single-valued.
The function f(x1, x2) can be prolonged along the closed curve δ(t), 0 ≤ t ≤ 1 to K1 ∩K2, but the
prolongation is not single-valued. Let f(δ(1))− f(δ(0)) = a ∈ R. Consider the circle S1 = R/Z. Then
the prolongation of the function f along the curve δ is single-valued if we assume that f takes values
not on the straight line R but on the circle S1. Then the prolongation of the function f along the
curves δn, n ∈ Z, is also single-valued. Since any curve on K1 ∩K2 is homotopic to the curve δn, the
prolongation of the function f : U0 → S1 along various curves is single-valued on K1 ∩ K2. In this
case, the function f is the transition function of the bundle into circles over the sphere S2, and we
obtain compact lens spaces as analytic prolongations of the given germ.

3. Locally homogeneous manifolds whose Lie algebras of Killing vector fields have non-
trivial centers. Now we examine the case where the Lie algebra g has nonzero center z and indicate
the properties of the algebras g, h, and z that provide the closedness of the subgroup H in G.

Define local group of local isometries. Consider an arbitrary analytic Riemannian manifold M ,
the Lie algebra g of Killing vector fields on it, and the Lie group G with the Lie algebra g. A local
group (chunk of a group) of local isometries of the manifold M is a small neighborhood of the neutral
element of the group G. As a rule, the Lie algebra g does not generate the group of isometries of
the manifold M , but generates a pseudogroup of local isometries. We denote the local group by the
same letter G as the group. The orbit of the local group of local isometries of the manifold M is a
locally homogeneous manifold N . We also note that the local group H generated by the stationary
subalgebra h is the group of isometries of some ball centered at the marked point of the manifold M .

First, we examine some properties of the local group of local isometries from the point of view
of abstract transformation groups. Consider the local group G as a subgroup of the group of local
diffeomorphisms of the manifold M with a marked point, G ⊂ Diff M . An element ñ ∈ G ⊂ Diff M
is called a right multiplication if there exists an element n ∈ G such that for all x ∈ M such that
x = g(e), we have ñ(x) = gn(e). A right multiplication by an element n is well defined if for any
h ∈ H, there exists h1 ∈ H such that for any local isometry g ∈ G, the equality ghn = gnh1 holds.
In other words, n belongs to the normalizer N(H) of the group H in G. We denote by N the local
group consisting of elements n ∈ G such that right multiplication by these elements in the group G
generate local isometries of the manifold M and by n its Lie algebra. Then h�n ⊂ G. Note that right
multiplications, i.e., elements ñ, and also elements of the center Z of the local group G belong to N .
We denote by M0 the orbit of the local group N on M . The adjoint action of elements n ∈ N , i.e.,
g �→ n−1gn, determines local isometries on M0.

We find a subgroup G0 ⊂ G consisting of “left multiplications.” Consider the mapping f from the
group G defined as the transformation group of the set G: f(g) = g(e) = ge, where e is the identity local
isometry. Since ñ(e) = en = n, we assume that f(ñ) = n. On the set f(G), we define multiplication
g1g2 = g1(e)g2(e), which turns f(G) into a subgroup G0 ⊂ G. Left multiplications g ∈ G0 can be
complemented by right multiplications ñ, i.e., any element g ∈ G ⊂ Diff G such that g(x) = gx for all
x ∈ G, can be represented in the form g = g0ñ, g0ñ(x) = gxn for all x ∈ G. Therefore, G = G0N and
g = g0 + n.
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Theorem 8. Let g be the Lie algebra of all Killing vector fields on a locally homogeneous analytic
Riemannian manifold M and h be its stationary subalgebra. Let G be a simply connected group gen-
erated by the algebra g and H be its subgroup generated by the subalgebra h. Let z be the center of the
algebra g and [g, g] be its commutator subgroup. If h ∩ (z+ [g, g]) = h ∩ [g, g], then H is closed in G.

Proof. Assume the contrary. Consider the closure H̄ of the group H in G and the subalgebra h̄ ⊂ g of
the subgroup H̄ ⊂ G. The subalgebra h is a normal subalgebra of the algebra h̄ (see [3]). We assume
that X ∈ h ⇐⇒ X(p) = 0 for the marked point p ∈ M . Consider the one-parameter subgroup
h̄t ∈ H̄, h̄t /∈ H, defined by the vector field X̄ ∈ h̄, X̄ /∈ h. It was proved in [3] that there exists a
torus T in a simple compact subgroup P ∈ G such that H ∩ T is an everywhere dense winding of the
torus T . Therefore, we may assume that h̄t ∈ T ⊂ P . Then the Killing vector field X̄ of tangent vectors
of orbits of the local one-parameter group h̄t belongs to the algebra t of the group T and, therefore,
X̄ ∈ t ⊂ p, where p is the Lie algebra of the group P . There exist a neighborhood U of the neutral
elements in the group G and the ball Bδ of radius δ centered at the marked point p ∈ M such that all
elements g ∈ U of the group G define local isometries from the ball Bδ into the ball B2δ of radius 2δ
centered at ∈ M . Since elements h̄t belong to the closure H̄ of the group H in G, for any small t the
inner automorphism x �→ h̄txh̄

−1 of the group G is the limit of the sequence of inner automorphisms
x �→ hnxh

−1
n , hn ∈ H. For small t and large n, these automorphisms define local isometries from the

ball Bδ into the ball B2δ.
All right multiplications commute with left multiplications, i.e., with elements of the group G0,

but they may note commute with each other. We prove that the local isometry h̄t commutes with
all right multiplications. For this we prove that the action of the element h̄t in the group of inner
automorphisms of the group G, g �→ h̄−1

t gh̄t, defines the identity mapping on M0. Consider a sequence
hn ∈ H converging to h̄t. SinceH is a normal subgroup in N , we conclude that nhn = hnnh

′
n, where h

′
n

∈ H, and nH = h−1
n nhnH. Therefore, inner automorphisms g �→ h−1

n ghn induce the identity mapping
on M0. Passing to the limit, we obtain that the inner automorphisms g �→ h̄−1

t gh̄t induce the identity
mapping on M0.

Since the vector fieldX generating the local one-parameter group h̄t belongs to a compact subalgebra
of the algebra g, we conclude that X belongs to the commutator subgroup [g, g] of the algebra g.

The vector field Z of tangent vectors of the orbits of the local one-parameter group zt of right
multiplications by h̄t is a Killing vector field. We prove that Z commutes with all other Killing vector
fields onM , i.e., Z ∈ z. Since for any n ∈ n, the elements h̄tn and nh̄t induce the same local isometry on
M0, we conclude that h̄t induces the identity mapping on the algebra n. Therefore, the Killing vector
fields Z and X belong to the center of the algebra n. For any elements g0 ∈ G0 and ñ ∈ ñ considered
as automorphisms of the group G, the equalities g0ñ(x) = g0(xn) = g0xn and ñg0(x) = (g0x)n = g0xn
are fulfilled. This means that the algebras ñ and g0 mutually commute. Therefore, the vector field Z
commutes with the algebra g0 and with the algebra g0 + n, i.e., Z ∈ z.

Since zth̄
−1
t H = h̄−1

t Hh̄t, we have

Exp(tZ) Exp(−tX) = zth̄
−1
t ∈ H.

Therefore, Z − X̄ ∈ H. Moreover, X̄ ∈ p = [p, p] ⊂ [g, g]. One can prove that Z /∈ [g, g]. Then
Z − X̄ /∈ [g, g], i.e.,

Z − X̄ ∈ h ∩ (z+ [g, g]).

On the other hand, since Z − X̄ ∈ h and Z − X̄ /∈ [g, g], we have

Z − X̄ ∈ h ∩ (z+ [g, g]), Z − X̄ /∈ h ∩ [g, g].

Then the vector field Z−X̄ is stationary but does not belong to the commutator subgroup. Therefore,
h ∩ (z+ [g, g]) 	= h ∩ [g, g]. �

Theorem 9. Let g be the Lie algebra of all Killing vector fields on a locally homogeneous analytic
pseudo-Riemannian manifold M , h be its stationary subalgebra, z be the center of the algebra g, and r
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be its redical. Let G be the simply connected subgroup generated by the algebra g and H be its subgroup
generated by the subalgebra h. If for any semisimple algebra p ⊂ g satisfying the condition p+ r = g,
the equality (p+ z) ∩ h = p ∩ h holds, then H is closed in G.

Proof. Assume the contrary and consider the closure H̄ of the group H in G. As in the proof of
Theorem 5, we consider the one-parameter subgroup zt generated by right multiplications by elements
of the one-parameter group of local isometries h̄t in the group G. Let X̄ be the Killing vector field of
tangent vectors of the orbits of the local one-parameter group of local isometries h̄−1

t and Z be the
Killing vector field of the local one-parameter group of local isometries zt.

Let p be a semisimple subalgebra of the algebra g containing the vector field X̄, X̄ ∈ p ⊂ g. We
prove that Z+ X̄ ∈ h and Z+ X̄ /∈ p. In the simply connected Lie group G, we consider the radical R
(the subgroup corresponding to the subalgebra r) and the semisimple subgroup P corresponding to the
subalgebra p. Then R is a normal subgroup of the group G, r is a normal subalgebra of the algebra g,
R ∩ P = e, r ∩ p = 0, and the Levy–Malcev decomposition G = RP holds.

The group G contains an open neighborhood of the identity element, which acts as a local group of
local isometries in a neighborhood of the marked point p ∈ M . Since zt belongs to the center R of the
group G, we obtain that zt ∈ R; since the subgroup H is a normal subgroup of the group H̄ (see [1]),
we have

h̄−1
t ztH = h̄−1

t Hh̄t = H.

Therefore, local isometries h̄−1
t zt fix the point p and hence they belong to the stationary subgroup H.

Since X̄ ∈ p and Z /∈ p, we conclude that (Z + X̄) /∈ p. Since (Z + X̄) ∈ h, this means that for a
chosen maximal semisimple algebra p, the assertion (p+ z)∩ h 	= p ∩ h holds. Theorem 9 is proved. �

4. Conclusion. In conclusion, we outline some unsolved problems associated with generalizing the
completeness of analytic Riemannian manifolds.

(1) Obtain necessary and sufficient conditions for the closedness of a stationary subgroup of the
group of local isometries on a Riemannian manifold. These conditions must be expressed in
local terms, i.e., as properties of the Lie algebra of all Killing vector fields.

(2) Develop a theory of generalized complete manifolds for the case of a nontrivial center in the
Lie algebra of all Killing vector fields. In particular, give a generalization of a quasi-complete
manifold in the general case.

(3) Describe pseudo-complete manifolds in more detail in the general case and for specific Riemann-
ian metrics.

(4) The conditions for the closedness of a stationary subgroup given in Theorems 8 and 9, are
necessary and “almost sufficient.” A problem is to find necessary and sufficient conditions for
the closedness of a stationary subgroup in a simply connected group defined by the Lie algebra
of all Killing vector fields.
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