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PROPERTIES OF TOPOLOGICAL PARTITIONS
AND MAPPINGS OF TOPOLOGICAL GROUPS
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Abstract. In this paper, we examine topological partitions of topological spaces that arise in con-

nection with continuous mappings of topological spaces. The content of the paper is closely related

to such classical fundamental concepts of general topology as compactness, homogeneity, and Čech

completeness. New facts related to these concepts are obtained.
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1. Introduction. In the theory of general topological spaces (also called general or “set-theoretic”

topology) and in topological algebra, so-called topological partitions naturally appear; their mathe-
matical structure is more general than the nature of topological spaces. The notion of a topological
partition arose a long time ago. This notion is based of the concept of a continuous mapping, which

plays a major role in comparing topological spaces. It seems that topological partitions will play an
increasingly important role in the theory of topological spaces and in topological algebra. In this pa-
per, we take several steps in this direction: we introduce a number of notions related immediately to

topological partitions and outline new questions. At the same time, the content of the paper is closely
related to many classical fundamental concepts of general topology, namely, compactness, homogeneity,
and completeness in the sense of Čech; we also obtain new facts related to these concepts.

In general, the notation and terminology used are the same as in [8, 11]. However, we recall that the
tightness of a topological space X is countable if for each set A ⊂ X and each point x in the closure of
the set A, there is a countable subset B of the set A whose closure contains the point x. The cardinality

of a set X is denoted by |X|. If the assumption of separability in a space is not explicitly stated, then
this space should be considered Hausdorff. Unless otherwise stated, all topological spaces are assumed
to be Hausdorff spaces. A Tychonoff space X is said to be Čech complete if it is a Gδ-type set in some

of its compact Hausdorff extensions. We also recall that a continuous mapping f of a space X onto a
space Y is called a k-covering (or compactly covering) mapping if for each compactum F ⊂ Y , there
exists a compactum K ⊂ X such that f(K) = F (see [1, 3]. Here and below, by a “compactum” we

mean a compact Hausdorff space.
Topological partitions naturally arise in topological algebra. Recall that a group G with a topology T

is called a left topological group if the left shift lx : G → G defined by the formula lx(y) = xy for each

y ∈ G, is a homeomorphism of the space (G,T) onto itself for every x ∈ G. More general examples of
topological partitions are related to arbitrary continuous mappings.

In this paper, we discuss some directions of topological algebra developed in the classical works of
V. V. Uspensky [16, 17], M. M. Choban [9, 10], E. Michael [13, 14], Jan van Mill [15], etc. (see also [4,

7]). Recall that dyadic compacts are continuous images of the Cantor cubesDτ , whereD is the discrete
two-set space. A compactum X is called a Dugundji compact if for each zero-dimensional compactum Z
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and its closed subset A, any continuous mapping f of the space A into the space X can be extended

to a continuous mapping of the compactum Z into the compactum X (see [16, 17]).
The main results of the paper are, in particular, Theorems 4.3, 4.4, 4.9, and 4.11 and Corollary 4.6.

They concern the properties of compacta, which are continuous images of topological groups under
continuous closed or open mappings.

2. Preliminaries. A partition of a set X or a topological space (X,T) is a covering γ of the set X
by nonempty, pairwise disjoint subsets. A topological partition of a topological space (X,T) is s pair

[(X,T), γ], where γ is a partition of the set X. Thus, a topological partition [(X,T), γ] can be identified
with the triple [X,T, γ]. In this case, one can introduce a topology Tγ on the set γ; it is called the
factor topology on the partition γ (see [11]).

Below we introduce a number of properties of topological partitions [(X,T), γ] immediately in terms
of properties of the space (X,T) and the partition γ . These properties are not always properties of
the factor topology, but are closely related to the latter.

We present a few definitions of this kind. A topological partition [(X,T), γ] is called a T1-partition
if each element P of the family γ is a closed set in the space (X,T). A subset A of a set X is said
to be γ-separated or separated in the topological partition Z = [(X,T), γ] if no two points from A are

contained in the same element of the family γ.
A subset A ⊂ X is called a saturated subset of a topological partition Z = [(X,T), γ] if it contains

each element of the partition γ that it intersects with.

A subset A of a set X is called a covering subset of a topological partition Z = [(X,T), γ] if it
intersects with each element’ of the partition γ. Subsets A and B of a set X are said to be γ-similar
(or simply similar) if an element P of the family γ intersects with A if and only if P intersects with B.

A topological partition [(X,T), γ] is said to be α1-compact if there exists a compact subspace K of

the space X such that K ∩ P �= ∅ for each P ∈ γ.
We say that a topological partition [(X,T), γ] is sensely compact if there exists a covering subset A

of the set X such that each infinite subset of the set A has a complete accumulation point in the

space X.
A topological partition [(X,T), γ] is said to be α3-compact if for any infinite γ-separated subset A

of the set X, there exists a γ-separated subset B of the set X such that A and B are γ-similar and B

possesses a complete accumulation point in (X,T).
A topological partition [(X,T), γ] is said to be factor compact if the factor space (γ,Tγ) is compact.

Similarly, a topological partition [(X,T), γ] is called a factor Hausdorff space if the factor space (γ,Tγ)

is a Hausdorff space. As usually, the cardinality of a topological partition [(X,T), γ] is the cardinality
of the family γ.

In the following assertion, we state three clear sufficient conditions of the compactness of the factor

space (γ,Tγ).

Proposition 2.1. If a topological partition [(X,T), γ] is α1-compact (respectively, densely compact
or α3-compact), then the factor space (γ,Tγ) is compact (i.e., the topological partition [(X,T), γ] is

factor compact).

We omit the simple proof of this assertion for all three cases.
The concept of homogeneity that arises in connection with the concept of topological partitions is

also of great interest. Recall that a topological space is said to be homogeneous if each of its points can

be translated into another point by a homeomorphism. A similar definition for topological partitions
is as follows: A topological partition [(X,T), γ] is said to be homogeneous if for any P1, P2 ∈ γ, there
exists a homeomorphism g of the space X onto itself such that g(P1) = P2 and g(P ) ∈ γ for each

P ∈ γ. The following assertion holds.
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Proposition 2.2. If a topological partition [(X,T), γ] is homogeneous, then the factor space (γ,Tγ)

is homogeneous.

A task is to find out additional restrictions under which the converse assertion is valid. The fol-
lowing specific question about topological partitions deserves attention: Does a homogeneous, finite
topological partition exist on the disk?

The notion of a homogeneous topological partition of a space (X,T) allows one to give a new
definition of the notion of the homogeneity of the space (X,T) itself. Namely, we say that a space
(X,T) is potentially τ -homogeneous, where τ is a finite or infinite cardinal number, if there exists a
topological partition Z = [(X,T), γ] on (X,T) of cardinality τ . Moreover, if γ can be inscribed in an

arbitrary finite open covering of the space (X,T), then (X,T) is called a completely τ -homogeneous.
Topological partitions are naturally related to the notion of dimension. We say that a topological

partition Z = [(X,T), γ] has dimension 0 (or is ind-zero-dimensional) if the space (X,T) possesses a

base B consisting of sets whose saturations in Z is closed in the space (X,T). Moreover, the saturation
of a set A ⊂ X in a topological partition Z = [(X,T), γ] is the set

⋃{P ∈ γ : P ∩A �= ∅}.
3. Some results. Assume that (G,T) if a left topological group andH is a subgroup of the group G.
The set {xH : x ∈ G} of all left cosets xH of the group G is a disjunct covering γH of the group G
by nonempty sets xH. Thus, [(G,T), γH ] is a topological partition; it is denoted by GH and is called
a topological partition generated on G by the subgroup H.

If the set {xH : x ∈ G} of all left cosets xH of a left topological group G with respect to a
subgroup H is chosen as the set of points of a new topological space endowed with the factor topology
(see [11]), then the space obtained in this way is called the left coset space (or the left factor space) of

the left topological group G with respect to the subgroup H; notation G/H (see [8, Theorem 1.5.1]).
The natural mapping of the set G onto the set G/H is usually denoted by q or qH .

Theorem 3.1. If G is a Lindelöf closed left topological group with countable tightness and H is a
closed subgroup of the group G such that the factor space G/H is a compact Hausdoreff space, then

|G/H| ≤ 2ω.

Proof. Since the tightness does not increase under factor mappings, we conclude that the tightness of
the factor space G/H is countable. However, the space G/H is homogeneous as a coset space of any left

topological group (see [8, Theorem 1.5.1]). De la Vega’s theorem (see [18]) states that the cardinality
of any homogeneous compactum of countable tightness does not exceed 2ω. Therefore, |G/H| ≤ 2ω. �

Theorem 3.2. Assume that G is a Lindelöf left topological group of countable tightness and let the
continuum hypothesis CH be adopted. We also assume that H is a closed subgroup of the group G such

that the left factor space G/H is a compact Hausdorff space. Then G/H satisfies the first countability
axiom.

Proof. By Theorem 3.1 we have |G/H| ≤ 2ω. Since the coset space G/H is a compact Hausdorff space,

the Čech–Posṕı̌sil theorem implies that G/H satisfies the first countability axiom at least at one point
(see [11]). The homogeneity of the space G/H implies that G/H satisfies the first countability axiom
at all points. �

The above arguments show that the following more general assertion holds. We say that a space X
is an FSC-space if each free sequence in X is countable. It is well known that any Lindelöf space of
countable tightness is an FSC-space (see [4]). Moreover, we have the following assertion.

Proposition 3.3. If a space X is the union of a countable family of Lindelöf spaces of countable

tightness, then X is an FSC-space.

355



The proof is standard and we omit it. Now we see that the following two assertions are obvious.

Theorem 3.4. If G is a left topological group, which is an FSC-space, and H is a closed subgroup
of the group G such that the factor space G/H is a compact Hausdorff space, then |G/H| ≤ 2ω.

Theorem 3.5. Assume that G is a left topological group, which is an FSC-space. Let the continuum
hypothesis CH be adopted. Also, we assume that H is a closed subgroup of the group G such that the
factor space G/H is a compact Hausdorff space. Then G/H satisfies the first countability axiom.

4. Groups that are complete in the Čech sense and their images. Results obtained above
can be applied to the study of continuous images of topological groups that are complete in the Čech

sense (briefly, Čech-complete groups).

Proposition 4.1. Assume that G is a left topological group, which is a Čech-complete space, and H

is a closed subgroup of the group G such that the left coset space G/H is a Hausdorff space. The space
G/H is compact if and only if there exists a compact subspace K of the space G such that q(K) = G/H,
where q is the factor mapping of the topological group G onto the left factor space G/H.

Proof. If such a compactum K exists, then G/H is compact since q(K) = G/H and q is continuous.
Now we assume that G/H is compact. Since the mapping q : G → G/H is open and continuous

and the space G is Čech-complete, we conclude that there exists a compact subspace K of the space

G such that q(K) = G/H (see [3, Theorem 1.2]. �

Corollary 4.2. Assume that G is a Čech-complete, left topological group and H is a closed subgroup
of the group G such that the left coset space G/H is a Hausdorff space. Then the following conditions

are pairwise equivalent :

(1) the factor space G/H is compact ;
(2) the topological partition [(G,T), γH ], where γH = {xH : x ∈ G}, is α3-compact ;

(3) the topological partition [(G,T), γH ], where γH = {xH : x ∈ G}, is densely compact ;
(4) the topological partition [(G,T), γH ], where γH = {xH : x ∈ G}, is α1-compact.

Corollary 4.2 follows from Propositions 2.1 and 4.1.
In the study of topological partitions, we must not restrict ourselves to topological groups and their

coset spaces. Note that each (surjective) mapping f of a topological space X onto a set Y generates a
topological partition γf = {f−1(y) : y ∈ Y } of the space X into the preimages of points of Y under f .

We denote this partition by [X,T, f ], where T is the topology on X.

Theorem 4.3. Assume that G is a Čech-complete subspace of a topological group M , which is a Gδ-

type set in M , and f is a continuous open mapping of the space G onto a Hausdorff space Y . Then
an arbitrary compactum F ⊂ Y is contained in some dyadic compactum F1 ⊂ Y . In particular, if the
space Y itself is a compactum, then this compactum is dyadic.

Proof. As is known, each continuous open mapping f of a Čech-complete space X onto a Hausdorff
space Y is a compactly covering mapping, i.e., for each compactum P ⊂ Y , there exists a compactum
B ⊂ X such that f(B) = P (see [3, Theorem 1.2]). This means that, within the conditions of

Theorem 4.3, there exists a compactum K ⊂ G such that f(K) = F . However, G is a space of
countable type since G is Čech-complete (see [2]). Therefore, there exists a compactum K0 ⊂ G of the
type Gδ in G such that K ⊂ K0. Since G is a set of the type Gδ in M and K0 is a set of the type Gδ

in G, we see that K0 is a set of the type Gδ in the topological group M . Clearly, F ⊂ f(K0). Choban
proved (see [9]) that each compactum of the type Gδ is a topological group is dyadic. Therefore, K0

is a dyadic compactum. Then f(K0) is also dyadic compactum. Now we set F1 = f(K0). �
The following assertion is similar to Theorem 4.3.
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Theorem 4.4. Assume that (G,T) is a topological group and a subspace P ⊂ G is a set of the type Gδ

in (G,T) and a cirrus space. We also assume that a Hausdorff space Y is the continuous image of
the space P and a compactum F ⊂ Y is the image of a compact K ⊂ P under f . Then there exists a
dyadic compactum F0 ⊂ Y such that F ⊂ F0.

The proof of Theorem 4.4 is similar to the proof of Theorem 4.3. Theorem 4.3 easily implies that

following well-known fact (see [9]).

Corollary 4.5. Assume that G is a Čech-complete topological group and H is a closed subgroup of
the group G such that the left factor space G/H is a compact space. Then G/H is a dyadic compactum
and the factor mapping q : G → G/H is a compactly covering mapping.

Indeed, it was proved in [9] that each compact coset space of a Čech-complete topological group

can be represented as a coset space of an ω-narrow of a topological group. Uspenskii proved (see [16])
that if an ω-narrow topological group acts continuously and transitively on a compactum F then F
is a Dugunji compactum.

Corollary 4.6. Assume that G is a Čech-complete subspace of a topological group M , which is a set

of the type Gδ in M , and f is a continuous open mapping of the space G onto a Hausdorff space Y
of countable tightness. Then any arbitrary compact F ⊂ Y is metrizable. In particular, if the space Y
itself is a compactum, then the compactum Y is metrizable.

Proof. By Theorem 4.3, the compactum F is contained in some dyadic compactum F1 ⊂ Y . The

tightness of the compactum F1 is countable since it does not exceed the tightness of the space Y . It
remains to apply the well-known fact: each dyadic compactum of countable tightness is metrizable
(see [7]). We conclude that the compactum F1 is metrizable and, therefore, the compactum F is

metrizable. �
In particular, Corollary 4.6 is applicable to Čech-complete topological groups. In this connection,

we introduce the following notion. A topological space X is said to be Gδ-encircled if there exists a

topological group G containing X as a subspace, which is a set of the type Gδ in G.
It was proved in [5] that if G is a topological group and f is a continuous mapping of the space G

onto a Hausdorff space F satisfying the first countability axiom such that f(K) = F , where K is a

compact subspace of the space G, then F is separable and metrizable. This assertion generalizes a
classical theorem proved by Esenin-Volpin (see [11, 12]): each dyadic compactum F satisfying the first
countability axiom is metrizable. However, as far as the author knows, the following questions remain

open.

Problem 4.7. Assume that G is a Lindelöf topological group of countable tightness and F is a com-
pactum satisfying the first countability axiom, which is the continuous image of the space G. Is the
compactum F metrizable?

Problem 4.8 (see [5]). Assume that G is a topological group and K is a compact subspace of it. We

also assume that f is a continuous mapping of the space G onto the compactum F such that f(K) = F .
Is the compactum F dyadic?

We note that Theorem 4.3 and Corollary 4.6 can be partially extended to continuous closed map-

pings.

Theorem 4.9. Assume that G is a Čech-complete topological group and f is a continuous closed
mapping of the space G onto a Hausdorff space Y . Then an arbitrary compactum F ⊂ Y is contained
in some dyadic compactum F1 ⊂ Y . In particular, if the space Y itself is a compactum, then this

compactum is dyadic.
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Proof. It is well known that each Čech-complete topological group is paracompact (see [8]). E. Michael

proved that each continuous closed mapping f of a paracompact Hausdorff space X onto an arbitrary
topological space Y is a compactly covering mapping (see [14]). Therefore, the following assertion
holds.

Proposition 4.10. Each continuous closed mapping of a Čech-complete topological group onto an
arbitrary space is a compactly covering mapping.

This implies that there exists a compactum K lying in G such that f(K) = F . Next, we argue as
in the proof of Theorems 4.3. �

Theorem 4.11. Assume that G is a Čech-complete topological group and f is a continuous closed
mapping of the space G onto a Hausdorff space Y of countable tightness. Then any compactum F ⊂ Y
is metrizable. In particular, if the space Y itself is a compactum, then it is metrizable.

.
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