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THE LIMIT BEHAVIOR OF SOLUTIONS TO THE
RADIATIVE TRANSFER EQUATION IN A SYSTEM
OF SEMITRANSPARENT BODIES AS THE ABSORPTION
AND SCATTERING COEFFICIENTS TEND TO INFINITY
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14, Krasnokazarmennaya St., Moscow 111250, Russia
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We consider the boundary value problem describing radiative transfer in a system of

semitransparent bodies with the diffuse reflection and diffuse refraction conditions. Un-

der the assumption that the absorption and scattering coefficients tend to infinity, we

study the limit behavior of the solutions. Bibliography: 6 titles.

1 Introduction

Let G =
m⋃

j=1
Gj be a system of bodies Gj ⊂ R

3 such that Gi ∩Gj for i �= j. Assume that body

Gj is a bounded domain with boundary ∂Gj of class C1+λj , 0 < λj < 1.

We assume that each body Gj is occupied by a semitransparent (under radiation) optically

homogeneous material with the extinction βj = sj + κj , scattering sj � 0, absorption κj > 0

and refraction kj � 1.

Propagation of a monochromatic radiation in G is described by the integro-differential ra-

diative transfer equation

ω · ∇I + βI = sS (I) + κk2F, (ω, x) ∈ D. (1.1)

The sought function I(ω, x) is defined on the set D = Ω×G, where Ω = {ω ∈ R
3 | |ω| = 1}

is the unit sphere in R
3 (the sphere of directions) and is interpreted as the intensity of the

radiation at the point x ∈ G propagating along the direction ω ∈ Ω.

In Equation (1.1), ω · ∇I =
3∑

i=1
ωi

∂

∂xi
I is the derivative of I along the direction ω. Here, S

denotes the operator

S (I)(ω, x) =
1

4π

∫

Ω

I(ω′, x) dω′, (ω, x) ∈ D.
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Furthermore, β(x) = βj , s(x) = sj , κ(x) = κj , k(x) = kj for x ∈ Gj , 1 � j � m; F = F (x) is

the density of isotropic volume of the radiation sources.

In this paper, we assume that for each body Gj the extinction coefficient βj tends to infinity,

i.e., βj = 1/εj , where εj → 0. We introduce the albedo �(x) = �j = sj/βj for x ∈ Gj ,

1 � j � m and assume that the values of �j are constant. We set ε(x) = εj for x ∈ Gj ,

1 � j � m, and assume that ε → 0, i.e., max
1�j�m

εj → 0.

In the case under consideration, the absorption and scattering coefficients take the form

κ = (1−�)/ε, s = �/ε and tend to infinity as ε → 0, whereas Equation (1.1) takes the form

ω · ∇Iε +
1

ε
Iε =

�

ε
S (Iε) +

1−�

ε
k2Fε, (ω, x) ∈ D. (1.2)

We denote by nj(x) the outward normal to the boundary ∂Gj at the point x ∈ ∂Gj . We

introduce the sets

Γ−
j = {(ω, x) ∈ Ω× ∂Gj | ω · nj(x) < 0}, Γ− =

m⋃

j=1

Γ−
j ,

Γ+
j = {(ω, x) ∈ Ω× ∂Gj | ω · nj(x) > 0}, Γ+ =

m⋃

j=1

Γ+
j .

We denote by Iε|Γ− and Iε|Γ+ the values (traces) of the solutions to Equation (1.2) on Γ− and

Γ+ respectively.

Let ∂Gj be the diffuse reflecting and diffuse refracting surfaces. We denote by θj the coeffi-

cient 0 < θj < 1 characterizing the reflection properties of ∂Gj . We set θ(x) = θj for x ∈ ∂Gj ,

1 � j � m.

For Equation (1.2) we consider the boundary condition of diffuse reflection and diffuse re-

fraction of radiation

Iε|Γ− = R−(Iε|Γ+) +P−(Jε), (ω, x) ∈ Γ− (1.3)

and the equation

Jε = T [R+(Jε) +P+(Iε|Γ+)] + J∗,ε, (ω, x) ∈ Γ−, (1.4)

describing the connection between the intensity Jε of radiation falling on ∂G and the intensities

of the reflected radiation R+(Jε), refracted radiation P+(Iε|Γ+), and the radiation J∗,ε coming

from outside.

Here, R− and R+ are the diffuse reflection operators, P− and P+ are the diffuse refraction

operators, and T is the translation operator. These operators will be defined in Section 2.

We note that Equation (1.4) is also necessary in the case where G consists of only one, but

nonconvex body. If G is a single convex body, then Jε = J∗,ε and Equation (1.4) is not necessary.

The goal of the paper is to study the limit behavior of solutions (Iε, Jε) to the problem

(1.2)–(1.4) as ε → 0. The limit behavior of the values Iε|Γ+ , Iε|Γ− of the solutions on Γ+ and

Γ− is of a particular interest. In the simplified version, when G consists of only one body and

Equation (1.4) is omitted, the limit behavior of the solution was studied in [1].

The paper is organized as follows. In Section 2, we introduce necessary function spaces and

operators and recall some their properties. In Section 3, we recall properties of the spatially
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one-dimensional problem for the transfer equation. In Section 4, we study an auxiliary problem

about the limit behavior of the solutions in the case where the set G is a single body. In Section

5, we establish the main result of the paper, the theorem about the limit behavior of solutions

to the problem (1.2)–(1.4) as ε → 0.

2 Function Spaces and Operators

Let Z be a set with a given measure dμ, and let Z1 be its measurable subset with respect to

the measure dμ. We denote by Lp(Z1; dμ), 1 � p < ∞, the Lebesgue space of functions f that

are defined on Z1, measurable with respect to the measure dμ, and possess the finite norm

‖f‖Lp(Z1;dμ) =

( ∫

Z1

|f(z)|p dμ(z)
)1/p

.

We note that D = Ω×G =
m∪
j=1

Dj , where Dj = Ω×Gj .

We denote by dσ(x) and dω the measures on ∂G and in Ω induced by the Lebesgue measure

in R
3. We set

Lp(∂Gj) = Lp(∂Gj ; dσ), Lp(Dj) = Lp(Dj ; dωdx), 1 � j � m,

Lp(∂G) = Lp(∂G; dσ), Lp(D) = Lp(D; dωdx),

introduce the following measures on Γ− and Γ+:

d̂Γ−(ω, x) = |ω · nj(x)| dωdσ(x), (ω, x) ∈ Γ−
j , 1 � j � m,

d̂Γ+(ω, x) = ω · nj(x) dωdσ(x), (ω, x) ∈ Γ+
j , 1 � j � m,

and define L̂p(Γ±
j ) = Lp(Γ±

j ; d̂Γ
±), 1 � j � m, and L̂p(Γ±) = Lp(Γ±; d̂Γ±).

On Γ−, we define the function

τ̂+(ω, x) = sup {t > 0 | x+ sω ∈ G ∀ s ∈ (0, t)}

and pay attention to the following formula [2, 4]:

∫

Dj

f(ω, x) dωdx =

∫

Γ−
j

[ τ̂+(ω,x)∫

0

f(ω, x+ tω) dt

]

d̂Γ−(ω, x) ∀ f ∈ L1(Dj). (2.1)

In what follows, we need the following property of τ̂+.

Lemma 2.1. Assume that μ0 ∈ (0, 1) and 1 � j � m. Then there exists �j(μ0) > 0 such that

τ̂+(ω, x0) � �j(μ0) for all (ω, x0) ∈ Γ−
j such that ω ∈ Ω−,μ0

j (x0) = {ω ∈ Ω | ω · nj(x0) < −μ0}.

Proof. We set Vr0 = {y′ = (y1, y2) ∈ R
2 | |y′| � r0}. By the assumption ∂Gj ∈ C1+λj ,

0 < λj < 1, for each point x0 ∈ ∂Gj there exists a Cartesian coordinate system with origin x0, a

basis e1, e2, e3 = nj(x0), a cylinder C (x0) = {x = x0 + y1e1 + y2e2 + y3nj(x0) | |y′| � r0, |y3| <

3



r0}, where r0 > 0 is independent of x0, and a function γx0 ∈ C1+λj (Vr0) depending on x0 such

that

Gj ∩ C (x0) = {x = x0 + y1e1 + y2e2 + y3nj(x0) | |y′| � r0, −r0 < y3 < γx0(y
′)}.

Furthermore, γx0(0, 0) = 0, ∇y′γx0(0, 0) = (0, 0) and

|γx0(y
′)| � C|y′|1+λj ∀ y′ ∈ Vr0 ,

where C is a constant independent of x0.

Assume that (ω, x0) ∈ Γ−
j and μ = ω · nj(x0) < −μ0. Then x0 + sω = x0 + y1e1 + y2e2 +

y3nj(x0), where y1 = s(ω · e1), y2 = s(ω · e2), y3 = sμ. We note that |y′| = s
√
1− μ2 and

−r0 < y3 = sμ < −Cs1+λj (1− μ2)(1+λj)/2 = −C|y′|1+λj � γx0(y
′)

if

0 < s < �j(μ0) = min
{
r0,

[ μ0

C(1− μ2
0)

(1+λj)/2

]1/λj
}
.

Consequently, x0 + sω ∈ Gj for all s ∈ (0, �j(μ0)). Therefore,

τ̂+(ω, x0) = sup {t > 0 | x0 + sω ∈ G ∀ s ∈ (0, t)} � �j(μ0) > 0.

The lemma is proved.

2.1. The spaces Ŵ p(Dj) and Ŵ p(D). By the weak derivative in direction ω of a function

f ∈ L1(Dj) we understand a function w ∈ L1(Dj), denoted by w = ω · ∇f , which satisfies the

identity

∫

Dj

[f(ω, x)ω · ∇ϕ(x) + w(ω, x)ϕ(x)]ψ(ω) dωdx = 0 ∀ϕ ∈ C∞
0 (Gj), ∀ψ ∈ L∞(Ω).

We denote by W p(Dj), 1 � p < ∞, the Banach space of functions f ∈ Lp(Dj) possessing

the weak derivatives ω · ∇f ∈ Lp(Dj), equipped with the norm

‖f‖W p(Dj) = (‖f‖pLp(Dj)
+ ‖ω · ∇f‖pLp(Dj)

)1/p.

We denote by f |Γ−
j
and f |Γ+

j
the traces of a function f ∈ W p(Dj) on Γ−

j and Γ+
j respectively.

In W p(Dj), we introduce the linear manifold Ŵ p(Dj) = {f ∈ W p(Dj) | f |Γ+
j
∈ L̂p(Γ+

j )}.
Let us list some properties of f ∈ Ŵ p(Dj).

1. If f ∈ Ŵ 1(Dj), then f |Γ−
j
∈ L̂1(Γ−

j ) and

∫

Dj

ω · ∇f dωdx =

∫

Γ+
j

f |Γ+
j
d̂Γ+ −

∫

Γ−
j

f |Γ−
j
d̂Γ−. (2.2)
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2. If f ∈ Ŵ p(Dj), then |f |p ∈ Ŵ 1(Dj), f |Γ−
j
∈ L̂p(Γ−

j ); moreover, p|f |p−1 sgn f (ω · ∇f) =

ω · ∇|f |p and
∫

Dj

ω · ∇|f |p dωdx = ‖f |Γ+
j
‖p
̂Lp(Γ+

j )
− ‖f |Γ−

j
‖p
̂Lp(Γ−

j )
. (2.3)

Let Ŵ p(D) = {f ∈ Lp(D) | f ∈ Ŵ p(Dj), 1 � j � m}. We denote by f |Γ− and f |Γ+ the

traces of f ∈ W p(D) on Γ− and f |Γ+ . For further properties of the functions f ∈ Ŵ p(Dj),

f ∈ Ŵ p(D) and their traces f |Γ±
j
, f |Γ± we refer to [3, 4].

2.2. The reflection and refraction operators. Let x ∈ ∂Gj , 1 � j � m. We set

Ω+
j (x) = {ω ∈ Ω | ω · nj(x) > 0}, Ω−

j (x) = {ω ∈ Ω | ω · nj(x) < 0}.

We define the operators M+ : L̂p(Γ+) → Lp(∂G), M− : L̂p(Γ−) → Lp(∂G) and M+
j :

L̂p(Γ+
j )→ Lp(∂Gj), M

−
j : L̂p(Γ−

j )→ Lp(∂Gj), 1 � j � m, by

M+(ϕ)(x) = M+
j (ϕ)(x) =

1

π

∫

Ω+
j (x)

ϕ(ω, x)ω · nj(x) dω, x ∈ ∂Gj , 1 � j � m,

M−(ψ)(x) = M−
j (ψ)(x) =

1

π

∫

Ω−
j (x)

ψ(ω, x) |ω · nj(x)| dω, x ∈ ∂Gj , 1 � j � m.

We note that M+
j (1) = 1, M−

j (1) = 1 and

‖M+
j ‖

̂Lp(Γ+)→Lp(∂Gj)
= 1/π, ‖M−

j ‖
̂Lp(Γ−)→Lp(∂Gj)

= 1/π. (2.4)

We introduce the diffuse reflection operators R− : L̂p(Γ+) → L̂p(Γ−), R−
j : L̂p(Γ+

j ) →
L̂p(Γ−

j ), R
+ : L̂p(Γ−) → L̂p(Γ+), R+

j : L̂p(Γ−
j ) → L̂p(Γ+

j ) and the diffuse refraction operators

P− : L̂p(Γ−) → L̂p(Γ−), P−
j : L̂p(Γ−

j ) → L̂p(Γ−
j ), P

+ : L̂p(Γ+) → L̂p(Γ+), P+
j : L̂p(Γ+

j ) →
L̂p(Γ+

j ) by the formulas

R−(ϕ)(ω, x) = R−
j (ϕ)(ω, x) = θjM

+
j (ϕ), (ω, x) ∈ Γ−

j , 1 � j � m,

R+(ψ)(ω, x) = R+
j (ψ)(ω, x) = θjM

−
j (ψ), (ω, x) ∈ Γ+

j , 1 � j � m,

P−(ψ)(ω, x) = P−
j (ψ)(ω, x) = (1− θj)k

2
jM

−
j (ψ), (ω, x) ∈ Γ−

j , 1 � j � m,

P+(ϕ)(ω, x) = P+
j (ϕ)(ω, x) =

1− θj
k2j

M+
j (ϕ), (ω, x) ∈ Γ+

j , 1 � j � m.

Here, ϕ ∈ L̂p(Γ+), ψ ∈ L̂p(Γ−).

2.3. The translation operator T . We recall the definition and some properties of the

translation operator (or the shooting operator) T [2, 4].

Let (ω, x) ∈ Γ−. We define the ray �−(ω, x) = {x− tω | t > 0} and introduce the set

∗
Γ− = {(ω, x) ∈ Γ− | �−(ω, x) ∩G = ∅}.
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Let (ω, x) ∈ Γ− \
∗
Γ−. Then the ray �−(ω, x) intersects G. We set

τ−(ω, x) = inf {t > 0 | x− tω ∈ G}, X−(ω, x) = x− τ−(ω, x)ω.

It is clear that X−(ω, x) is a point of the boundary ∂G from which the point x ∈ ∂G is “visible”

in the direction ω and τ−(ω, x) > 0 is the distance between the points x and X−(ω, x).
We introduce the set

Γ̃− = {(ω, x) ∈ Γ− \
∗
Γ− | (ω,X−(ω, x)) ∈ Γ+}

and define the operator T by the formula

Tϕ(ω, x) =

{
ϕ(ω,X−(ω, x)), (ω, x) ∈ Γ̃−,
0, (ω, x) ∈ Γ− \ Γ̃−.

As known, T : L̂p(Γ+) → L̂p(Γ−) for all p � 1; moreover, ‖T‖
̂Lp(Γ+)→̂Lp(Γ−)

� 1.

3 One-Dimensional Problem

The limit properties of the solutions to the problem under consideration are closely connected

with the values at τ = 0 of the solutions to the following problem with one spatial variable which

describes radiative transfer in the half-space:

− μ
dψj(μ, τ)

dτ
+ ψj(μ, τ) =

�j

2

1∫

−1

ψj(μ
′, τ) dμ′, μ ∈ [−1, 0) ∪ (0, 1], τ ∈ [0,+∞), (3.1)

ψj(μ, 0) = 2θj

1∫

0

ψj(μ
′, 0)μ′ dμ′ + 1− θj , μ ∈ [−1, 0), (3.2)

ψj(μ,+∞) = 0, μ ∈ (0, 1]. (3.3)

The properties of the solution to this problem which will be used below were studied in [1]. By

(3.2), the value ψ0,j = ψj(μ, 0) is independent of μ ∈ [−1, 0). From [1] it follows that

1− θj < ψ0,j �
(1− θj)(2−�j)

2−�j − θj�j
< 1. (3.4)

Furthermore,

0 < ψj(μ, 0) �
�j

2−�j
ψ0,j , 0 < μ � 1. (3.5)

On ∂G, we introduce a piecewise constant function ψ0 with the values ψ0(x) = ψ0,j for

x ∈ ∂Gj , 1 � j � m, and define the function ψ̂+ on Γ+ by

ψ̂+(ω, x) = ψ̂+,j(ω, x) = ψj(ω · nj(x), 0), (ω, x) ∈ Γ+
j , 1 � j � m.
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We note that

M+
j (ψ̂+,j) =

1

π

∫

Ω+
j (x)

ψj(ω · nj(x), 0) dω = 2

1∫

0

ψj(μ
′, 0)μ′ dμ′.

Therefore, from (3.2) it follows that θjM
+
j (ψ̂+,j) = ψ0,j − (1− θj), 1 � j � m. Hence

M+(ψ̂+) = 1− 1− ψ0

θ
, M+(1− ψ̂+) =

1− ψ0

θ
. (3.6)

4 Auxiliary Problem

We consider the auxiliary problem

ω · ∇Iε +
1

ε
Iε =

�

ε
S (Iε) +

1−�

ε
k2F, (ω, x) ∈ D, (4.1)

Iε|Γ− = R−(Iε|Γ+) + (1− θ)g, (ω, x) ∈ Γ−, (4.2)

where F ∈ W 1,1(G), g ∈ L1(∂G).

By a solution to the problem (4.1), (4.2) we mean a function Iε ∈ Ŵ 1(D) satisfying Equation

(4.1) almost everywhere in D and the boundary condition (4.2) almost everywhere on Γ−. From
[3, 4] it follows that the solution to this problem exists and is unique. By the boundary condition

(4.2), the value Iε|Γ− is independent of ω.

The problem (4.1), (4.2) naturally splits into m independent problems

ω · ∇Iε,j +
1

εj
Iε,j =

�j

εj
S (Iε,j) +

1−�j

εj
k2jFj , (ω, x) ∈ Dj , (4.3)

Iε,j |Γ−
j
= R−

j (Iε,j |Γ+
j
) + (1− θj)gj , (ω, x) ∈ Γ−

j . (4.4)

Here, Iε,j is the restriction of Iε on Dj , Fj is the restriction of F on Gj , and gj is the restriction

of g on ∂Gj , 1 � j � m. We denote by Fj |∂Gj
the trace of Fj on ∂Gj and by F |∂G the trace of

F on ∂G coinciding with Fj |∂Gj
for x ∈ ∂Gj .

4.1. The operators Aε and Aε,j. We introduce the operator Aε : L1(∂G) → L̂1(Γ+)

mapping a function g ∈ L1(∂G) to the trace Iε|Γ+ on Γ+ of the solution to the problem (4.1),

(4.2) with F = 0. We also introduce the operator Aε,j mapping a function gj ∈ L1(∂Gj) to the

trace Iε,j |Γ+
j
on Γ+

j of the solution to the problem

ω · ∇Iε,j +
1

εj
Iε,j =

�j

εj
S (Iε,j), (ω, x) ∈ Dj , (4.5)

Iε,j |Γ−
j
= R−

j (Iε,j |Γ+
j
) + (1− θj)gj , (ω, x) ∈ Γ−

j , (4.6)

i.e., the problem (4.3), (4.4) with Fj = 0.

We note that Aε(g)(ω, x) = Aε,j(gj)(ω, x), (ω, x) ∈ Γ+
j , 1 � j � m.
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From [1] it follows that

Aε(g) → ψ̂+g in L̂1(Γ+), ε → 0. (4.7)

Lemma 4.1. Let Iε,j be a solution to the problem (4.5), (4.6). Then

(1− θj)

∫

Γ+
j

Iε,j |Γ+
j
d̂Γ+ +

1−�j

εj

∫

Dj

Iε,j dωdx = (1− θj)π

∫

∂Gj

gj dσ. (4.8)

Proof. Integrating (4.5) over Dj , using formula (2.2), and taking into account that
∫

Dj

S (Iε,j) dωdx =

∫

Dj

Iε,j dωdx,

we arrive at the identity
∫

Γ+
j

Iε,j |Γ+
j
d̂Γ+ +

1−�j

εj

∫

Dj

Iε,j dωdx =

∫

Γ−
j

Iε,j |Γ−
j
d̂Γ−.

From (4.6) it follows that
∫

Γ−
j

Iε,j |Γ−
j
d̂Γ− =

∫

Γ−
j

[R−
j (Iε,j |Γ+) + (1− θj)gj ] d̂Γ

− = θj

∫

Γ+
j

Iε,j |Γ+
j
d̂Γ+ + (1− θj)π

∫

∂Gj

gj dσ.

Thus, the equality (4.8) holds. The lemma is proved.

Lemma 4.2. The following estimate holds:

lim
εj→0

‖Aε,j‖L1(∂Gj)→̂L1(Γ+
j )

� �jπ. (4.9)

Proof. We represent a solution to the problem (4.5), (4.6) in the form Iε,j = I+ε,j − I−ε,j ,
where I+ε,j and I−ε,j are the solutions corresponding to g+j = max{gj , 0} and g−j = max{−gj , 0}
instead of gj . It is clear that I

+
ε,j � 0 and I−ε,j � 0. We note that the equality (4.8) for I+ε,j takes

the form

(1− θj)‖I+ε,j |Γ+
j
‖
̂L1(Γ+

j )
+

1−�j

εj
‖I+ε,j‖L1(Dj) = (1− θj)π‖g+j ‖L1(∂Gj). (4.10)

Let us estimate ‖I+ε,j‖L1(Dj) from below. Since S (I+ε,j) � 0 and R−
j (I

+
ε,j |Γ+

j
) � 0, we have

I+ε,j � I+ε,j , where I+ε,j is the solution to the problem

ω · ∇I+ε,j +
1

ε
I+ε,j = 0, (ω, x) ∈ Dj , (4.11)

I+ε,j |Γ− = (1− θj)g
+
j , (ω, x) ∈ Γ−

j . (4.12)

Formula (2.1) applied to f = I+ε,j yields the equality

‖ I+ε,j‖L1(Dj) =

∫

Γ−
j

[ τ̂+(ω,x)∫

0

I+ε,j(ω, x+ tω) dt

]

d̂Γ−(ω, x).
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Using the explicit formula [4]–[6], for solutions to the problem (4.11), (4.12)

I+ε,j(ω, x+ tω) = e−t/εj (1− θj)g
+
j (x),

we have

‖I+ε,j‖L1(Dj) = εj

∫

∂Gj

[ ∫

Ω−
j (x)

(1− e−τ̂+(ω,x)/εj )|ω · nj(x)| dω
]

(1− θj)g
+
j (x) dσ(x).

Let 0 < μ0 < 1. Since τ̂+(ω, x) � �j(μ0) > 0 for ω ∈ Ω−,μ0
j (x) by Lemma 2.1, we get

1

εj
‖I+ε,j‖L1(Dj) �

∫

∂Gj

[ ∫

Ω
−,µ0
j (x)

(1− e−�j(μ0)/εj )|ω · nj(x)| dω
]

(1− θj)g
+
j (x) dσ(x)

=

∫

∂Gj

2π

−μ0∫

−1

|μ| dμ(1− e−�j(μ0)/εj )(1− θj)g
+
j (x) dσ(x)

= π(1− μ2
0)(1− e−�j(μ0)/εj )(1− θj)‖g+j ‖L1(∂Gj).

Thus, from (4.10) we obtain the estimate

‖I+ε,j |Γ+
j
‖
̂L1(Γ+

j )
� [1− (1−�j)(1− μ2

0)(1− e−�j(μ0)/εj )]π‖g+j ‖L1(∂Gj).

The following estimate is proved in a similar way:

‖I−ε,j |Γ+
j
‖
̂L1(Γ+

j )
� [1− (1−�j)(1− μ2

0)(1− e−�j(μ0)/εj )]π‖g−j ‖L1(∂Gj).

As a consequence,

‖Aε,j(gj)‖̂L1(Γ+
j )

= ‖Iε,j |Γ+
j
‖
̂L1(Γ+

j )
= ‖I+ε,j |Γ+

j
‖
̂L1(Γ+

j )
+ ‖I−ε,j |Γ+

j
‖
̂L1(Γ+

j )

� [1− (1−�j)(1− μ2
0)(1− e−�j(μ0)/εj )]π‖gj‖L1(∂G).

Hence

‖Aε,j‖L1(∂Gj)→̂L1(Γ+
j )

� [1− (1−�j)(1− μ2
0)(1− e−�j(μ0)/εj )]π

which implies

lim
εj→0

‖Aε,j‖L1(∂Gj)→̂L1(Γ+
j )

� [1− (1−�j)(1− μ2
0)]π.

Using the arbitrariness of the choice of μ0, we obtain the estimate (4.9).

Corollary 4.1. The following estimate holds:

lim
ε→0

‖Aε‖L1(∂G)→̂L1(Γ+)
� max

1�j�m
�j π. (4.13)
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Corollary 4.2. If gε, g ∈ L1(∂G) and gε → g in L1(∂G) as ε → 0, then

Aε(gε) → ψ̂+g in L̂1(Γ+), ε → 0. (4.14)

Corollary 4.2 follows from (4.7) and (4.13).

4.2. The operators Bε and Bε,j. We introduce the operator Bε mapping a function

F ∈ W 1,1(G) to the trace Iε|Γ+ on Γ+ of the solution to the problem (4.1), (4.2) with g = 0.

We also introduce the operator Bε,j mapping a function Fj ∈ W 1,1(Gj) to the trace Iε,j |Γ+
j
on

Γ+
j of the solution to the problem

ω · ∇Iε,j +
1

εj
Iε,j =

�j

εj
S (Iε,j) +

1−�j

εj
k2jFj , (ω, x) ∈ Dj , (4.15)

Iε,j |Γ−
j
= R−

j (Iε,j |Γ+
j
), (ω, x) ∈ Γ−

j , (4.16)

i.e., the problem (4.3), (4.4) with gj = 0. We recall that Fj is the restriction of F on Gj .

It is clear that Bε(F )(ω, x) = Bε,j(Fj)(ω, x), (ω, x) ∈ Γ+
j , 1 � j � m. From [1] it follows

that

Bε(F ) → (1− ψ̂+)k
2F |∂G in L̂1(Γ+), ε → 0. (4.17)

Lemma 4.3. Let Fε, F ∈ W 1,1(G), and let Fε|∂G → F |∂G in L1(∂G) as ε → 0. Assume

that for every 1 � j � m there exists pj > 1 such that

∇Fε,j ∈ Lpj (Gj), ε
1−1/pj
j ‖∇Fε,j‖Lpj (Gj) → 0, εj → 0. (4.18)

Then

Bε(Fε) → (1− ψ̂+)k
2F |∂G in L̂1(Γ+). (4.19)

Proof. It suffices to show that Bε,j(Fε,j) → (1− ψ̂+,j)k
2
jFj |∂Gj

in L̂1(Γ+
j ) for all 1 � j � m.

We express the solution to the problem (4.15), (4.16) in the form Iε,j = k2jFε,j + I
(1)
ε,j + I

(2)
ε,j ,

where I
(1)
ε,j is the solution to the problem (4.5), (4.6) with gj = −k2jFε,j |∂Gj

, and I
(2)
ε,j is the

solution to the problem

ω · ∇I
(2)
ε,j +

1

εj
I
(2)
ε,j =

�j

εj
S (I

(2)
ε,j )− k2j (ω · ∇Fε,j), (ω, x) ∈ Dj , (4.20)

I
(2)
ε,j |Γ−

j
= R−

j (I
(2)
ε,j |Γ+

j
), (ω, x) ∈ Γ−

j . (4.21)

It is clear that Bε,j(Fε,j) = k2jFε,j |∂Gj
+Aε,j(−k2jFε,j |∂Gj

)+ I
(2)
ε,j |Γ+

j
, where Aε,j(−k2jFε,j |∂Gj

) →
−ψ̂+,jk

2
jFj |∂Gj

in L̂1(Γ+
j ) by Corollary 4.2. Therefore, it suffices to prove that I

(2)
ε,j |Γ+

j
→ 0 in

L̂1(Γ+
j ).

Since ω · ∇Fε,j ∈ Lpj (Dj), from [3, 4] it follows that I
(2)
ε,j ∈ Ŵ pj (Dj).

Multiplying (4.20) by |I(2)ε,j |pj−1 sgn I
(2)
ε,j and using (2.3), we obtain the inequality

1

pj
ω · ∇|I(2)ε,j |pj +

1

εj
|I(2)ε,j |pj �

�j

εj
S (|I(2)ε,j |)|I(2)ε,j |pj−1 + k2j |∇Fε||I(2)ε,j |pj−1, (ω, x) ∈ Dj .
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Integrating over Dj and taking into account that ‖S (|I(2)ε,j |)‖Lpj (Dj) � ‖I(2)ε,j ‖Lpj (Dj), we have

1

pj
‖I(2)ε,j |Γ+

j
‖pj
̂Lpj (Γ+

j )
+

1

εj
‖I(2)ε,j ‖pjLp(Dj)

� 1

pj
‖I(2)ε,j |Γ−

j
‖pj
̂Lpj (Γ−

j )
+

�j

εj
‖I(2)ε,j ‖pjLpj (Dj)

+ k2j (4π)
1/pj‖∇Fε‖Lpj (Gj)‖I

(2)
ε,j ‖pj−1

Lpj (Dj)
. (4.22)

By (4.21),

‖I(2)ε,j |Γ−
j
‖
̂Lpj (Γ−

j )
= ‖R−

j (I
(2)
ε,j |Γ+

j
)‖

̂Lpj (Γ−
j )

� θj‖I(2)ε,j |Γ+
j
‖
̂Lpj (Γ+

j )
.

Therefore, from (4.22) we obtain the inequality

1− θ
pj
j

pj
‖I(2)ε,j |Γ+

j
‖pj
̂Lpj (Γ+

j )
+

1−�j

εj
‖I(2)ε,j ‖pjLp(Dj)

� 1

pj

( εj
1−�j

)pj−1
k
2pj
j 4π‖∇Fε‖pjLpj (Gj)

+
pj − 1

pj

1−�j

εj
‖I(2)ε,j ‖pjLpj (Dj)

which implies

(1− θ
pj
j )‖I(2)ε,j |Γ+

j
‖pj
̂Lpj (Γ+

j )
+

1−�j

εj
‖I(2)ε,j ‖pjLp(Dj)

�
( εj
1−�j

)pj−1
k
2pj
j 4π‖∇Fε‖pjLpj (Gj)

→ 0

as εj → 0. Consequently, I
(2)
ε,j |Γ+

j
→ 0 in L̂1(Γ+

j ) as εj → 0. The lemma is proved.

4.3. The operators Cε and Cε,j. We define operators Cε : L̂1(Γ−) → L̂1(Γ+) and Cε,j :

L̂1(Γ−
j ) → L̂1(Γ+

j ) by Cε = R+ + P+Aεk
2M− and Cε,j = R+

j + P+
j Aε,jk

2
jM

−
j . We note

that Cε(J)(ω, x) = Cε,j(Jj)(ω, x), (ω, x) ∈ Γ+
j , 1 � j � m, forall J ∈ L̂1(Γ−), where Jj is the

restriction of J on Γ−
j .

Lemma 4.4. The following estimate holds:

lim
εj→0

‖Cε,j‖̂L1(Γ−
j )→̂L1(Γ+

j )
� θj + (1− θj)�j . (4.23)

Proof. Taking into account that

‖R+
j ‖̂L1(Γ−

j )→̂L1(Γ+
j )

� θj , ‖P+
j ‖

̂L1(Γ+
j )→̂L1(Γ+

j )
� 1− θj

k2j
, ‖M−

j ‖
̂L1(Γ−

j )→L1(∂Gj)
=

1

π
,

we have

‖Cε,j‖̂L1(Γ+
j )→̂L1(Γ+

j )
� θj +

1− θj
π

‖Aε,j‖L1(∂Gj)→̂L1(Γ+
j )
.

By the estimate (4.9), we obtain (4.23). The lemma is proved.

Corollary 4.3. The following estimate holds:

lim
ε→0

‖Cε‖̂L1(Γ−)→̂L1(Γ+)
� max

1�j�m
[θj + (1− θj)�j ]. (4.24)
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4.4. The operator R+
lim. We introduce the operator R+

lim : L̂1(Γ−) → L̂1(Γ+) by the

equality R+
lim(J)(ω, x) = θlim(x)M

−(J)(x), (ω, x) ∈ Γ+, where

θlim = θ + (1− θ)
(
1− 1− ψ0

θ

)
.

From (3.4) it follows that

0 < 1− 1− ψ0

θ
� (1− θ)�

(1− θ)� + 2(1−�)
< �.

Thus, θ < θlim � θ + (1− θ)� < 1. Consequently,

‖R+
lim‖̂L1(Γ−)→̂L1(Γ+)

� θlim = max
1�j�m

[θj + (1− θj)�j ] < 1. (4.25)

Lemma 4.5. Let ϕε, ϕ ∈ L̂1(Γ−), and let ϕε → ϕ in L̂1(Γ−) as ε → 0. Then

Cε(ϕε) → R+
lim(ϕ) in L̂1(Γ−), ε → 0. (4.26)

Proof. By (4.14) and the first formula in (3.6), we have

Cε(ϕε) = R+(ϕε) +P+Aεk
2M−(ϕε) = θM−(ϕε) + (1− θ)M+AεM

−(ϕε)

→ θM−(ϕ) + (1− θ)M+(ψ̂+)M
−(ϕ) =

[
θ + (1− θ)

(
1− 1− ψ0

θ

)]
M−(ϕ) = R−

lim(ϕ)

in L̂1(Γ−). The lemma is proved.

5 Theorem on Limit Behavior of Solutions

We recall that our goal is to study the limit behavior of the solutions to the problem

ω · ∇Iε +
1

ε
Iε =

�

ε
S (Iε) +

1−�

ε
k2Fε, (ω, x) ∈ D, (5.1)

Iε|Γ− = R−(Iε|Γ+) +P−(Jε), (ω, x) ∈ Γ−, (5.2)

Jε = T [R+(Jε) +P+(Iε|Γ+)] + J∗,ε, (ω, x) ∈ Γ−, (5.3)

as ε → 0 where Fε ∈ W 1,1(G), J∗,ε ∈ L̂1(Γ−). By a solution to this problem we understand

a couple of functions (Iε, Jε) ∈ Ŵ 1(D) that satisfy Equation (5.1) almost everywhere in D,

the boundary condition (5.2) and Equation (5.3) almost everywhere on Γ−. The existence and

uniqueness of a solution to the problem (5.1)–(5.3) follow from [3, 4].

Theorem 5.1. Assume that F ∈ W 1,1(G), J∗ ∈ L̂1(Γ−), Fε|∂G → F |∂G in L1(∂G), and

J∗,ε → J∗ in L̂1(Γ−) as ε → 0. If for all 1 � j � m the condition (4.18) holds, then the solutions

(Iε, Jε) to the problem (5.1)–(5.3) possess the following limit properties as ε → 0 :

Iε → k2F in L1(D), (5.4)

Iε|Γ+ → ψ̂+k
2M−(Jlim) + (1− ψ̂+)k

2F |∂G in L̂1(Γ+), (5.5)

Iε|Γ− → ψ0k
2M−(Jlim) + (1− ψ0)k

2F |∂G in L1(∂G), (5.6)

Jε → Jlim in L̂1(Γ+), (5.7)

where Jlim is a solution to the equation

Jlim = TR+
lim(Jlim) + T [(1− θlim)F |∂G] + J∗, (ω, x) ∈ Γ−. (5.8)
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Proof. From the estimate (4.25) it follows that

‖TR+
lim‖̂L1(Γ−)→̂L1(Γ−)

� ‖R+
lim‖̂L1(Γ−)→̂L1(Γ+)

� θlim < 1.

Therefore, a solution to Equation (5.8) exists, is unique, and is expressed by the convergent

Neumann series in L̂1(Γ−)

Jlim =

∞∑

k=0

(TR+
lim)

k(T [(1− θlim)F |∂G] + J∗). (5.9)

Since P− = (1− θ)k2M−, we have

Iε|Γ+ = Aεk
2M−(Jε) +Bε(Fε). (5.10)

Hence P+(Iε|Γ+) = P+Aεk
2M−(Jε) + P+Bε(Fε). Substituting this formula into (5.3), we

obtain the equation

Jε = TCε(Jε) + TP+Bε(Fε) + J∗,ε, (ω, x) ∈ Γ−, (5.11)

for Jε. We recall that Cε = R+ +P+Aεk
2M−. Using the estimate (4.24), we find

lim
ε→0

‖TCε‖̂L1(Γ−)→̂L1(Γ−)
� lim

ε→0
‖Cε‖̂L1(Γ−)→̂L1(Γ+)

� θlim < 1.

Consequently, for sufficiently small ε the solution Jε to Equation (5.11) is represented by the

Neumann series convergent in L̂1(Γ−)

Jε =
∞∑

k=0

(TCε)
k[TP+Bε(Fε) + J∗,ε],

where we can pass term-by-term to the limit as ε → 0. Thus, using (4.19) and (4.26), we find

Jε → Jlim =

∞∑

k=0

(TR+
lim)

k(TP+[(1− ψ̂+)k
2F |∂G] + J∗) in L̂1(Γ−).

Taking into account that, in view of the second formula in (3.6),

P+[(1− ψ̂+)k
2F |∂G] = (1− θ)M+(1− ψ̂+)F |∂G = (1− θ)

1− ψ0

θ
= 1− θlim,

we see that Jlim coincides with the solution (5.9) to Equation (5.8). Passing to the limit in the

identities (5.10) and (5.2) and taking into account (4.14) and (4.19), we find

Iε|Γ+ = Aεk
2M−(Jε) +Bε(Fε) → ψ̂+k

2M−(Jlim) + (1− ψ̂+)k
2F |∂G in L̂1(Γ+),

Iε|Γ− = R−(Iε|Γ+) +P−(Jε) → R−(ψ̂+k
2M−(Jlim)) +R−((1− ψ̂+)k

2F |∂G) +P−(Jlim)

= [θM+(ψ̂+) + (1− θ)]k2M−(Jlim) + θM+(1− ψ̂+)k
2F |∂G

= ψ0k
2M−(Jlim) + (1− ψ0)k

2F |∂G in L1(∂G).

By [1, Lemma 4.2] for all 1 � j � m the following estimate holds:

‖Iε,j − k2jFε,j‖L1(Dj) �
εjk

2
j

1−�j
[4π‖∇Fε,j‖L1(Gj) + (1− θj)π‖M−

j (Jε)− Fε,j |∂Gj
‖L1(∂Gj)],

which implies Iε → k2F in L1(D) as ε → 0. The theorem is proved.

Remark 5.1. In the case Fε = F , i.e., if the right-hand side of (5.1) is independent of ε,

the assumption (4.18) is not required. This assumption was used only to justify that Bε(Fε) →
(1− ψ̂+)k

2F in L̂1(Γ+). In this case, it suffices to use (4.17).
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