ENUMERATION OF LABELED SERIES-PARALLEL TRICYCLIC GRAPHS

V. A. Voblyi UDC 519.175.3

Abstract. A series-parallel graph is a graph that does not contain a complete graph with four vertices as a minor. An explicit formula for the number of labeled series-parallel tricyclic graphs with a given number of vertices is obtained, and the corresponding asymptotics for the number of such graphs with a large number of vertices is found. We prove that under a uniform probability distribution, the probability that the labeled tricyclic graph is a series-parallel graph is asymptotically equal to 13*/*15.

*Keywords and phrases***:** enumeration, labeled graph, series-parallel graph, asymptotics, probability.

*AMS Subject Classification***:** 05C30

1. Introduction.

Definition 1 (see [1])**.** A graph is said to be *series-parallel* if it does not contain a subdivision of the complete graph K_4 .

Definition 2. The *cyclomatic number* of a connected graph is the difference between the number of edges and the number of vertices increased by one. A k*-cyclic graph* is a graph with cyclomatic number k.

Series-parallel graphs are used for constructing reliable communication networks (see [6]).

Asymptotics for the numbers of labeled connected and 2-connected series-parallel graphs with a large number of vertices were found in [1]. Labeled series-parallel connected and 2-connected graphs were listed according to the number of vertices in [10]. The numbers of labeled series-parallel tricyclic and tetracyclic 2-connected graphs with a given number of vertices were found in [12] and [9], respectively.

In this paper, we obtain an explicit formula for the number of labeled, connected, series-parallel, tricyclic graphs with a given number of vertices and find an asymptotics for the number of such graphs with a large number of vertices. We prove that under a uniform probability distribution, the probability that a labeled tricyclic graph is a series-parallel graph is asymptotically equal to 13/15.

2. Enumeration of graphs. We consider undirected, simple connected graphs.

Theorem 1. The number $SP(n, 3)$ of labeled, connected, series-parallel, tricyclic graphs with n ver*tices,* $n \geq 5$ *, is expressed by the formula*

$$
SP(n,3) = \frac{(n-1)!}{24} \sum_{i=0}^{n-5} \left(\binom{i+2}{2} \frac{n^{n-i-5}}{2(n-i-7)!} + \binom{i+4}{4} \left(\frac{12n^{n-i-5}}{(n-i-6)!} - \frac{13n^{n-i-6}}{(n-i-7)!} + \frac{4n^{n-i-7}}{(n-i-8)!} \right) + \binom{i+6}{6} \left(\frac{70n^{n-i-5}}{(n-i-5)!} - \frac{127n^{n-i-6}}{(n-i-6)!} + \frac{98n^{n-i-7}}{(n-i-7)!} - \frac{38n^{n-i-8}}{(n-i-8)!} + \frac{6n^{n-i-9}}{(n-i-9)!} \right) \right). \tag{1}
$$

Proof. For the number $S(n, k)$ of labeled, connected, k-cyclic graphs with n vertices, the following expression was obtained in [8]:

$$
S(n,k) = \frac{(n-1)!}{nk!} [z^{-1}] e^{nz} Y_k \left(n! B_1'(z), n! B_2'(z), \dots, nk! B_k'(z) \right) z^{-n}, \tag{2}
$$

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 177, Algebra, 2020.

where $[z^{-1}]$ is the formal residue operator (see [2]), $B_k(z)$ is the exponential generating function for the number of labeled k-cyclic blocks, and $Y_k(x_1,...,x_k)$ are the partition polynomials (Bell polynomials). These polynomials can be expressed by the formulas (see [7])

$$
Y_k(x_1,\ldots,x_k)=\sum_{\pi(k)}\frac{k!}{m_1!\ldots m_k!}\left(\frac{x_1}{1!}\right)^{m_1}\ldots\left(\frac{x_k}{k!}\right)^{m_k},
$$

where the summation is performed over all partitions $\pi(k)$ of the number k, i.e., over all nonnegative solutions $(m_1, m_2,..., m_k)$ of the equation $m_1 + 2m_2 + \cdots + km_k = k, m_i \ge 0, i = 1,..., k$.

Now we assume that the numbers $S(n, k)$ and the functions $B_k(z)$ belong to the class of labeled series-parallel graphs. The formula (2) may be invalid for the subclass of connected graphs (see [10]).

Definition 3 (see [3])**.** A class of graphs is said to be *block stable* if a graph belongs to this class if and only if every block of this graph also belongs to this class.

For a block stable class of graphs, the formula (2) is valid (see [10]). It is known that the class of series-parallel graphs is a block stable class of graphs (see [3]).

Since (see [7]) $Y_3(x_1, x_2, x_3) = x_1^3 + 3x_1x_2 + x_3$ and $x_i = ni!B_i'(z)$, we have

$$
SP(n,3) = \frac{(n-1)!}{6n} [z^{-1}] e^{nz} \left(n^3 (B_1'(z))^3 + 6n^2 B_1'(z) B_2'(z) + 6n B_3'(z) \right) z^{-n}.
$$

A unicyclic block is a simple cycle (series-parallel graph), and hence $B(n, 1) = (n-1)/2$. All bicyclic blocks are series-parallel graphs, and in [14] and [12], respectively, the following formulas were found:

$$
B(n,2) = \frac{n!(n-3)(n+2)}{24}, \quad B(n,3) = \frac{n!(n-3)(n-4)}{5760}(3n^3 + 36n^2 + 71n + 50).
$$

Thus, we have

$$
B_1(z) = \sum_{n=3}^{\infty} \frac{1}{2}(n-1)!\frac{z^n}{n!}, \quad B'_1(z) = \frac{z^2}{2(1-z)},
$$

$$
B_2(z) = \frac{z^4(3-2z)}{12(1-z)^3}, \quad B'_2(z) = \frac{12z^3 - 13z^4 + 4z^5}{12(1-z)^4},
$$

$$
B_3(z) = \frac{z^5(28-47z+28z^2-6z^3)}{48(1-z)^6}, \quad B'_3(z) = \frac{70z^4 - 127z^5 + 98z^6 - 38z^7 + 6z^8}{24(1-z)^7}.
$$

Summation and differentiation of the series for $B_2(z)$ and $B_3(z)$ were performed using the Maple software package.

Using the well-known expansion from [7, p. 141], we obtain

$$
(1-z)^{-p-1} = \sum_{i=0}^{\infty} {i+p \choose p} z^i,
$$

$$
SP(n,3) = \frac{(n-1)!}{6} [z^{-1}] e^{nz} \times
$$

\n
$$
\times \left(\frac{n^2 z^6}{8(1-z)^3} + \frac{n z^2 (12z^3 - 13z^4 + 4z^5)}{4(1-z)^5} + \frac{70z^4 - 127z^5 + 98z^6 - 38z^7 + 6z^8}{4(1-z)^7} \right) z^{-n}
$$

\n
$$
= \frac{(n-1)!}{6} [z^{-1}] \sum_{p=0}^{\infty} \frac{n^p z^p}{p!} \times
$$

\n
$$
\times \left(\frac{n^2}{8} \sum_{i=0}^{\infty} {i+2 \choose 2} z^{i+6-n} + \frac{12n}{4} \sum_{i=0}^{\infty} {i+4 \choose 4} z^{i+5-n} - \frac{13n}{4} \sum_{i=0}^{\infty} {i+4 \choose 4} z^{i+6-n} + \frac{12n}{4} \sum_{i
$$

779

$$
+\frac{4n}{4}\sum_{i=0}^{\infty} {i+4 \choose 4} z^{i+7-n} + \frac{70n}{4}\sum_{i=0}^{\infty} {i+6 \choose 6} z^{i+4-n} - \frac{127n}{4}\sum_{i=0}^{\infty} {i+6 \choose 6} z^{i+5-n} +
$$

$$
+\frac{98n}{4}\sum_{i=0}^{\infty} {i+6 \choose 6} z^{i+6-n} - \frac{38n}{4}\sum_{i=0}^{\infty} {i+6 \choose 6} z^{i+7-n} + \frac{6n}{4}\sum_{i=0}^{\infty} {i+6 \choose 6} z^{i+8-n} =
$$

$$
=\frac{(n-1)!}{6}\sum_{i=0}^{n-5} {n^{n-i-5} \choose 8(n-i-7)!} {i+2 \choose 2} + \frac{12n^{n-i-5}}{4(n-i-6)!} {i+4 \choose 4} - \frac{13n^{n-i-6}}{4(n-i-7)!} {i+4 \choose 4} +
$$

$$
+\frac{4n^{n-i-7}}{4(n-i-8)!} {i+4 \choose 4} + \frac{70n^{n-i-5}}{4(n-i-5)!} {i+6 \choose 6} - \frac{127n^{n-i-6}}{4(n-i-6)!} {i+6 \choose 6} +
$$

$$
+\frac{98n^{n-i-7}}{4(n-i-7)!} {i+6 \choose 6} - \frac{38n^{n-i-8}}{4(n-i-8)!} {i+6 \choose 6} + \frac{6n^{n-i-9}}{4(n-i-9)!} {i+6 \choose 6}.
$$
 (3)

The upper limit in the sum has been replaced by $n-5$ since the corresponding factorials in the denominator vanish for $i>n-5$. The proof is complete. \Box

In the following table, we present the numbers $SP(n, 3)$ calculated by Theorem 1 and the Maple software:

3. Asymptotics and probability.

Lemma. Let $U(a, b, z)$ be the Tricomi confluent hypergeometric function. Then the following expan*sions holds*:

$$
\frac{e^{nz}}{(1-z)^m} = \sum_{p=0}^{\infty} \frac{n^{p+m}}{p!} U(m, m+p+1, n) z^p.
$$

Proof. Recall the following well-known expansion:

$$
(1+z)^{\alpha}e^{-tz} = \sum_{p=0}^{\infty} L_p^{\alpha-p}(z)t^p
$$

(see [4, p. 706]), where L_p^k are Laguerre polynomials. In our case $t = -z$, $\alpha = -m$, $z = n$, and

$$
\frac{e^{nz}}{(1-z)^m} = \sum_{p=0}^{\infty} (-1)^p L_p^{-m-p}(n) z^p.
$$

Using the relationship

$$
U(-n, b; z) = (-1)^n n! L_n^{b-1}(z) \quad \text{or} \quad L_n^a(z) = \frac{(-1)^n}{n!} U(-n, a+1; z)
$$

between the Laguerre polynomials with the Tricomi confluent hypergeometric function (see [5, p. 584]), we obtain

$$
\frac{e^{nz}}{(1-z)^m} = \sum_{p=0}^{\infty} \frac{1}{p!} U(-p, -p-m+1; n) z^p.
$$

Using the transformation formula $U(a, b; z) = z^{1-b}U(1+a-b, 2-b; z)$ (see [5, p. 584]), we obtain the required fact. \Box

Theorem 2. The number $SP(n, 3)$ of labeled connected series-parallel tricyclic graphs with n vertices *has the following asymptotics as* $n \to \infty$

$$
SP(n, 3) \sim \frac{13}{384} \sqrt{\frac{\pi}{2}} n^{n+5/2}.
$$

780

Proof. Using Lemma 3, we obtain from (3)

$$
SP(n,3) = \frac{(n-1)!}{6} [z^{-1}] \frac{n^2 z^6}{8} \sum_{p=0}^{\infty} \frac{n^{p+3}}{p!} U(3, p+4; n) z^{p-n} +
$$

+ $\frac{n z^2}{4} (12z^3 - 13z^4 + 4z^5) \sum_{p=0}^{\infty} \frac{n^{p+5}}{p!} U(5, p+6; n) z^{p-n} +$
+ $\frac{1}{4} (70z^4 - 127z^5 + 98z^6 - 38z^7 + 6z^8) \sum_{p=0}^{\infty} \frac{n^{p+7}}{p!} U(7, p+8; n) z^{p-n}$
= $\frac{(n-1)!}{6} \left(\frac{n^{n-2}}{8(n-7)!} U(3, n-3; n) + \frac{12n^n}{4(n-6)!} U(5, n; n) - \frac{13n^{n-1}}{4(n-7)!} U(5, n-1; n) + \frac{4n^{n-2}}{4(n-8)!} U(5, n-2; n) + \frac{70n^{n+2}}{4(n-5)!} U(7, n+3; n) - \frac{127n^{n+1}}{4(n-6)!} U(7, n+2; n) + \frac{98n^n}{4(n-7)!} U(7, n+1; n) - \frac{38n^{n-1}}{4(n-5)!} U(7, n; n) + \frac{6n^{n-2}}{4(n-9)!} U(7, n-1; n).$

If a and m are fixed and $n \to \infty$, we have the asymptotics

$$
U(a, n-m, n) \sim \frac{\sqrt{\pi}}{(2n)^{a/2} \Gamma\left(\frac{a+1}{2}\right)}
$$

(see [11]). Since $(n + k)!/n! \sim n^k$ as $n \to \infty$ for fixed k and

$$
SP(n,3) \sim \frac{n^{n+4}\sqrt{\pi}}{48(2n)^{3/2}\Gamma(2)} + \frac{n^{n+5}\sqrt{\pi}}{2(2n)^{5/2}\Gamma(3)} - \frac{13n^{n+5}\sqrt{\pi}}{24(2n)^{5/2}\Gamma(3)} + \frac{n^{n+5}\sqrt{\pi}}{6(2n)^{5/2}\Gamma(3)} + \frac{70n^{n+6}\sqrt{\pi}}{24(2n)^{7/2}\Gamma(4)} - \frac{127n^{n+6}\sqrt{\pi}}{24(2n)^{7/2}\Gamma(4)} + \frac{98n^{n+6}\sqrt{\pi}}{24(2n)^{7/2}\Gamma(4)} - \frac{38n^{n+6}\sqrt{\pi}}{24(2n)^{7/2}\Gamma(4)} + \frac{n^{n+6}\sqrt{\pi}}{4(2n)^{7/2}\Gamma(4)} + \frac{n^{n+6}\sqrt{\pi}}{4(2n)^{7/2}\Gamma(4)} + \frac{n^{n+6}\sqrt{\pi}}{4(2n)^{7/2}\Gamma(4)} - \frac{\sqrt{\pi}}{2n^{n+5/2}\left(\frac{1}{96} + \frac{1}{16} - \frac{13}{192} + \frac{1}{48} + \frac{35}{576} - \frac{127}{1152} + \frac{49}{576} - \frac{19}{576} + \frac{1}{192}\right) = \frac{13}{384}\sqrt{\frac{\pi}{2}} n^{n+5/2}.
$$

ne proof is complete.

The proof is complete.

On the set of labeled tricyclic graphs with n vertices, introduce the uniform probability distribution.

Corollary. *The probability* P *of a labeled tricyclic graph to be a series-parallel graph is asymptotically equal to* 13/15*.*

Proof. Let $f(n, n+2)$ be the number of labeled connected graphs with n and $n+2$ edges (tricyclic graphs). E. Wright found the following asymptotics as $n \to \infty$ (see [13]):

$$
f(n, n+k) \sim \rho_k n^{n+(3k-1)/2}
$$
, $\rho_k = \frac{\sqrt{\pi} \sigma_k}{2^{(3k-1)/2} \Gamma(3k/2+1)}$, $\sigma_2 = \frac{15}{16}$.

Therefore, we have

$$
f(n, n+2) \sim \frac{\sqrt{\pi}\sigma_2}{2^{5/2}\Gamma(4)} n^{n+5/2} = \frac{15\sqrt{\pi}}{384\sqrt{2}} n^{n+5/2}
$$

and hence

$$
P = \frac{SP(n, 3)}{f(n, n+2)} \sim \frac{13}{15}
$$

as $n \to \infty$. The proof is complete.

 \Box

REFERENCES

- 1. M. Bodirsky, O. Gimenez, M. Kang, and M. Noy, "Enumeration and limit laws of series-parallel graphs," *Eur. J. Combin.*, **28**, No. 8, 2091–2105 (2007).
- 2. I. P. Goulden and D. M. Jackson, *Combinatorial Enumeration*, Wiley, New York (1990).
- 3. C. McDiarmid, A. Scott, "Random graphs from a block-stable class," *Eur. J. Combin.*, **58**, 96–106 (2016).
- 4. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, *Integrals and Series. Vol. 2* [in Russian], Nauka, Moscow (1983).
- 5. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, *Integrals and Series. Vol. 3* [in Russian], Nauka, Moscow (1986).
- 6. S. Radhavan, "Low-connectivity network design on series-parallel graphs," *Networks*, **43**, No. 3, 163–176 (2004).
- 7. J. Riordan, *Combinatorial Identities*, Wiley, New York (1982).
- 8. V. A. Voblyi, "Enumeration of labeled connected graphs with given order and number of edges," *J. Appl. Industr. Math.*, **10**, No. 2, 302–310 (2016).
- 9. V. A. Voblyi, "The number of labeled tetracyclic series-parallel blocks," *Prill. Diskr. Mat.*, No. 47, 57–61 (2020).
- 10. V. A. Voblyi, "The second Riddel relation and its consequences," *2019*, **13**, No. 1, 168–174.
- 11. V. A. Voblyi, "The number of labeled outerplanar k-cyclic graphs," *Mat. Zametki*, **103**, No. 5, 657–666 (2018).
- 12. V. A. Voblyi and A. M. Meleshko, "On the number of labeled series-parallel tricyclic blocks," in: Proc. XV Int. Conf. "Algebra, Number Theory, and Discrete Geometry. Contemporary Problems and Applications" (Tula, May 28-31, 2018), Tula, Tula Pedagogical State Univ., pp. 168–170.
- 13. E. M. Wright, "The number of connected sparsely edged graphs," *J. Graph Theory.*, **1**, No. 4 (1977), pp. 317–330.
- 14. E. M. Wright, "The number of connected sparsely edged graphs," *J. Graph Theory.*, **2**, No. 4 (1978), pp. 299–305.

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The author declares no conflict of interest.

Funding. The author did not receive support from any organization for the submitted work.

Financial and non-financial interests. The author has no relevant financial or non-financial interests to disclose.

V. A. Voblyi

Russian Institute for Scientific and Technical Information, Moscow, Russia E-mail: vitvobl@yandex.ru