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ENUMERATION OF LABELED SERIES-PARALLEL TRICYCLIC GRAPHS

V. A. Voblyi UDC 519.175.3

Abstract. A series-parallel graph is a graph that does not contain a complete graph with four vertices
as a minor. An explicit formula for the number of labeled series-parallel tricyclic graphs with a given
number of vertices is obtained, and the corresponding asymptotics for the number of such graphs
with a large number of vertices is found. We prove that under a uniform probability distribution, the
probability that the labeled tricyclic graph is a series-parallel graph is asymptotically equal to 13/15.
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1. Introduction.

Definition 1 (see [1]). A graph is said to be series-parallel if it does not contain a subdivision of the
complete graph K4.

Definition 2. The cyclomatic number of a connected graph is the difference between the number
of edges and the number of vertices increased by one. A k-cyclic graph is a graph with cyclomatic
number k.

Series-parallel graphs are used for constructing reliable communication networks (see [6]).
Asymptotics for the numbers of labeled connected and 2-connected series-parallel graphs with a large

number of vertices were found in [1]. Labeled series-parallel connected and 2-connected graphs were
listed according to the number of vertices in [10]. The numbers of labeled series-parallel tricyclic and
tetracyclic 2-connected graphs with a given number of vertices were found in [12] and [9], respectively.

In this paper, we obtain an explicit formula for the number of labeled, connected, series-parallel,
tricyclic graphs with a given number of vertices and find an asymptotics for the number of such
graphs with a large number of vertices. We prove that under a uniform probability distribution, the
probability that a labeled tricyclic graph is a series-parallel graph is asymptotically equal to 13/15.

2. Enumeration of graphs. We consider undirected, simple connected graphs.

Theorem 1. The number SP (n, 3) of labeled, connected, series-parallel, tricyclic graphs with n ver-
tices, n ≥ 5, is expressed by the formula
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(n − 1)!
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Proof. For the number S(n, k) of labeled, connected, k-cyclic graphs with n vertices, the following
expression was obtained in [8]:
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(n− 1)!
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where [z−1] is the formal residue operator (see [2]), Bk(z) is the exponential generating function for the
number of labeled k-cyclic blocks, and Yk(x1, . . . , xk) are the partition polynomials (Bell polynomials).
These polynomials can be expressed by the formulas (see [7])
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∑
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(x1
1!

)m1

. . .
(xk
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,

where the summation is performed over all partitions π(k) of the number k, i.e., over all nonnegative
solutions (m1,m2, . . . ,mk) of the equation m1 + 2m2 + · · ·+ kmk = k, mi ≥ 0, i = 1, . . . , k.

Now we assume that the numbers S(n, k) and the functions Bk(z) belong to the class of labeled
series-parallel graphs. The formula (2) may be invalid for the subclass of connected graphs (see [10]).

Definition 3 (see [3]). A class of graphs is said to be block stable if a graph belongs to this class if
and only if every block of this graph also belongs to this class.

For a block stable class of graphs, the formula (2) is valid (see [10]). It is known that the class of
series-parallel graphs is a block stable class of graphs (see [3]).

Since (see [7]) Y3(x1, x2, x3) = x31 + 3x1x2 + x3 and xi = ni!B′
i(z), we have
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A unicyclic block is a simple cycle (series-parallel graph), and hence B(n, 1) = (n−1)/2. All bicyclic
blocks are series-parallel graphs, and in [14] and [12], respectively, the following formulas were found:

B(n, 2) =
n!(n− 3)(n + 2)
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Summation and differentiation of the series for B2(z) and B3(z) were performed using the Maple
software package.

Using the well-known expansion from [7, p. 141], we obtain
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The upper limit in the sum has been replaced by n − 5 since the corresponding factorials in the
denominator vanish for i > n− 5. The proof is complete. �

In the following table, we present the numbers SP (n, 3) calculated by Theorem 1 and the Maple
software:

n 5 6 7 8 9 10
SP (n, 3) 70 4275 190995 7832440 317391480 13111660800

3. Asymptotics and probability.

Lemma. Let U(a, b, z) be the Tricomi confluent hypergeometric function. Then the following expan-
sions holds:
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Using the transformation formula U(a, b; z) = z1−bU(1+ a− b, 2− b; z) (see [5, p. 584]), we obtain the
required fact. �

Theorem 2. The number SP (n, 3) of labeled connected series-parallel tricyclic graphs with n vertices
has the following asymptotics as n → ∞

SP (n, 3) ∼ 13
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Proof. Using Lemma 3, we obtain from (3)
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If a and m are fixed and n → ∞, we have the asymptotics

U(a, n −m,n) ∼
√
π

(2n)a/2Γ
(
a+1
2

)

(see [11]). Since (n+ k)!/n! ∼ nk as n → ∞ for fixed k and

SP (n, 3) ∼ nn+4√π

48(2n)3/2Γ(2)
+

nn+5√π

2(2n)5/2Γ(3)
− 13nn+5√π

24(2n)5/2Γ(3)
+

nn+5√π

6(2n)5/2Γ(3)

+
70nn+6√π

24(2n)7/2Γ(4)
− 127nn+6√π

24(2n)7/2Γ(4)
+

98nn+6√π

24(2n)7/2Γ(4)
− 38nn+6√π

24(2n)7/2Γ(4)
+

nn+6√π

4(2n)7/2Γ(4)

∼
√

π

2
nn+5/2

(
1

96
+

1

16
− 13

192
+

1

48
+

35

576
− 127

1152
+

49

576
− 19

576
+

1

192

)
=

13

384

√
π

2
nn+5/2.

The proof is complete. �
On the set of labeled tricyclic graphs with n vertices, introduce the uniform probability distribution.

Corollary. The probability P of a labeled tricyclic graph to be a series-parallel graph is asymptotically
equal to 13/15.

Proof. Let f(n, n + 2) be the number of labeled connected graphs with n and n+ 2 edges (tricyclic
graphs). E. Wright found the following asymptotics as n → ∞ (see [13]):
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as n → ∞. The proof is complete. �
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