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We consider the motion of a heavy rigid body with a fixed point in a uniform gravitational

field under the assumption that the principal moments of inertia satisfy the Goryachev–

Chaplygin condition at the fixed point. We study the orbital stability problem for small

pendulum oscillations of the body. We derive the equations of perturbed motion and

reduce the problem to the study of the stability of the equilibrium position of a second

order 2π-periodic Hamiltonian system. We find regions of parametric resonance and

perform the nonlinear analysis of orbital stability outside these regions. Bibliography:

14 titles.

Periodic motions play a special role in rigid body dynamics. The study of such motions often

makes it possible to draw important conclusions on motion properties of a considered mechanical

system, as well as it helps to perform qualitative analysis of the phase space of the system. By

this reason, the problem of orbital stability of pendulum periodic motions of a heavy rigid body

with a fixed point is of considerable interest for both theoretical mechanics and its applications.

Modern methods of the theory of dynamical systems, including the method of normal forms,

the methods of the Kolmogorov–Arnold–Moser theory and general theory of stability allow one

to obtain rigorous conclusions about the orbital stability of periodic motions of this type.

In the general case, the problem of orbital stability of pendulum periodic motions of a heavy

rigid body with one fixed point contains four parameters. To reduce the number of parameters

in the problem, the most interesting special cases are usually considered. The Kovalevskaya
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case and the Goryachev–Chaplygin case, where the orbital stability problem has one parameter,

were considered in [1]–[5], as well as the case of a dynamically symmetric body and the Bobylev–

Steklov case, where the problem has two parameters, were studied in [6]–[10].

In the Kovalevskaya case, the orbital stability of pendulum periodic motions was studied

on the basis of various approaches [1]–[3]. The Goryachev–Chaplygin case was studied in [4, 5]

by using the method of normal forms. In both cases, an additional first integral was used for

the study of stability, which allows one to obtain rigorous conditions about orbital stability

or instability. The Bobylev–Steklov case was considered in [6, 10] by the method of normal

forms and the Kolmogorov–Arnold–Moser theory. Rigorous conclusions on orbital stability were

obtained for any values of parameters. The results were expressed in the form of a stability

diagram in the parameter plane. In [7], the orbital stability was studied for a dynamically

symmetric rigid body with the mass center in the equatorial plane of the ellipsoid of inertia.

In this paper, we study the orbital stability of pendulum oscillations of a heavy rigid body

with a fixed point under the following assumptions. Amplitudes of pendulum oscillations are

small, and the principal moments of inertia of the body for the fixed point satisfy the Goryachev–

Chaplygin condition, i.e., they are in the ratio 1:4:1. Unlike the Goryachev-Chaplygin integrable

case, no additional restrictions are imposed on the position of the mass center.

The paper is organized as follows. In Section 1, the mathematical formulation of the problem

is stated. In Section 2, the so-called local variables are introduced and the orbital stability

problem is reduced to the study of the Lyapunov stability of the periodic Hamiltonian system

with one degree of freedom. In Section 3, regions of parametric resonance are found. In Section

4, the nonlinear analysis of orbital stability is performed outside the regions of parametric

resonance. The main result of the paper is formulated in Theorem 4.1.

1 Statement of the Problem

We consider the motion of a rigid body of mass m around a fixed point O in a uniform

gravitational field. To describe the body motion, we introduce a fixed coordinate system OXY Z

such that the OZ-axis is directed vertically upwards and a moving coordinate system Oxyz that

is rigidly connected to the body with the axes directed along the principal axes of inertia of the

body for the point O. In addition, we assume that the principal moments of inertia A, B, C of

the body for the fixed point O satisfy the equality A = C = 4B.

No conditions are imposed on the position of the mass center. Due to the dynamic symmetry

of the body, the directions of the Ox– and Oz–axes can be chosen in such a way that the mass

center of the body is located on the Oxy-plane. The position of the mass center is determined by

the distance l to the origin and the angle α between the position vector of the mass center and

the positive direction of the Ox–axis. Without loss of generality we can assume that 0 � α � π/2

. We note that we have the Goryachev–Chaplygin case for α = 0 and the Lagrange case for

α = π/2.

The position of the body in the space is specified through the Euler angles ψ, θ, ϕ. Then

the motion equations can be written in the form of canonical equations with the Hamiltonian

H =
(pθ cosϕ− pϕ cot θ sinϕ)2

2A
+

(pθ sinϕ+ pϕ cot θ cosϕ)2

2B
+

pϕ
2

2C
+mgl sinθ sin(ϕ+ α), (1.1)

where pψ, pθ, pϕ are the canonically conjugated moments corresponding to the Euler angles. Th
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angle ψ is a cyclic coordinate, so pψ = const. In what follows, we assume that pψ = 0.

The equations of motion admit a partial solution describing the plane motion of the body, in

which the Oz–axis is horizontal and the body performs plane motions about this axis. Depending

on the initial conditions, in the plane motion, the body either performs periodic oscillations or

rotations or asymptotically approaches an unstable equilibrium position. Since the periodic

pendulum motions are unstable in the sense of Lyapunov, the orbital stability problem for such

motions is of interest.

We introduce the dimensionless time τ = μ t, where μ2 = mgl. To describe the behavior

of the body in the vicinity of its periodic pendulum motions, it is convenient to introduce the

following coordinates and dimensionless moments:

q1 = ϕ+ α− 3π

2
, q2 = θ − π

2
, p1 =

pθ
Cμ

, p2 =
pϕ
Cμ

. (1.2)

In the new variables, the Hamiltonian of the problem takes the form

H = 1/2 p1
2 + 1/2 (p2 sin(q1 − α)− p1 tan q2 cos(q1 − α))2

+ 2 (p2 cos(q1 − α) + p1 tan q2 sin(q1 − α))2 − cos q2 cos q1. (1.3)

On pendulum motions of the body, we have q2 = p2 = 0 and the evolution of the variables q1
and p1 is described by the canonical system with the Hamiltonian

H0 = 1/2 p1
2 − cos q1. (1.4)

The type of pendulum motions depends on the value of the energy integral constant H0 = h:

the body performs pendulum oscillations for |h| < 1 or pendulum rotations about the Oz-axis

for h > 1. As shown in [9], pendulum rotations are orbitally unstable for all h > 1. In what

follows, we consider only pendulum oscillations when |h| < 1. In this case, the general solution

to the canonical system with the Hamiltonian (1.4) has the form [1]

q1∗(τ + τ0) = 2 arc sin (ksn(τ + τ0, k)),

p1∗(τ + τ0) = 2 kcn(τ + τ0, k).
(1.5)

The oscillation period is calculated by the formula

T =
2π

ω
, ω =

π

2K(k)
. (1.6)

In (1.5) and (1.6), we used usual notation for elliptic functions and integrals. The modulus of

the elliptic integral is related to the energy constant by k2 = h/2 + 1/2.

The goal of this paper is to analyze the orbital stability of pendulum oscillations of the body

at 0 < α < π/2.

2 Local Variables and Isoenergetic Reduction

Following the method developed in [10], we introduce local coordinates in a neighborhood

of the unperturbed periodic motion according to the formulas

q1 = q1∗(ξ) +
sin q1∗(ξ)
V 2(ξ)

η − sin q1∗(ξ)
2V 4(ξ)

η2 +O(η3),

p1 = p1∗(ξ) +
p1∗(ξ)
V 2(ξ)

η − p1∗(ξ) cos q1∗(ξ)
2V 4(ξ)

η2 +O(η3),

(2.1)
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where V 2(ξ) = p1∗2(ξ) + sin2q1∗(ξ) and the functions q1∗(ξ), p1∗(ξ) are defined by (1.5).

In the new variables, the Hamiltonian function periodically depends on ξ and is an analytic

function of the variable η. Let us perform one more canonical change of variables according to

the formula

ξ =
w

ω
, η = ωr (2.2)

and expand the Hamiltonian function in the neighborhood of η = q2 = p2 = 0

Γ = Γ2 + Γ4 + . . . , (2.3)

where
Γ2 = ωr +Φ20(q2, p2, w),

Γ4 = ω2χ(w)r2 + ωrΨ20(q2, p2, w) + Φ40(q2, p2, w);
(2.4)

here,

Φ20(q2, p2, w) =
∑

i+j=2

ϕij q2
ip2

j ,

Φ40(q2, p2, w) =
∑

i+j=4

ϕij q2
ip2

j ,

Ψ20(q2, p2, w) =
∑

i+j=2

ψij q2
ip2

j .

The coefficients in (2.4) are 2π-periodic functions of the variable w and have the following explicit

form:

χ = −(cos q1∗ − 1)(cos2q1∗ + p1∗2 − 1)

2(cos2q1∗ − p1∗2 − 1)2
,

ψ20 =
6 cos(2 q1∗ − 2α)p1∗2 − 3 p1∗2 cos(q1∗ − 2α)

−4 p1∗2 + 2 cos 2 q1∗ − 2

+
3 p1∗2 cos(3 q1∗ − 2α)− 10 p1∗2 − cos(2 q1∗) + 1

−4 p1∗2 + 2 cos 2 q1∗ − 2
,

ψ11 =
3 p1∗ sin(2 q1∗ − 2α) + 3 p1∗ sin(3 q1∗ − 2α)

2 p1∗2 − cos 2 q1∗ + 1
− 3p1∗ sin(q1∗ − 2α)

2 p1∗2 − cos 2 q1∗ + 1
,

ψ02 =
3 cos(q1∗ − 2α)3 cos(3 q1∗ − 2α)

−4 p1∗2 + 2 cos 2 q1∗ − 2
,

ϕ40 = −1/2 cos(2 q1∗ − 2α)p1∗2 − 1/24 cos q1∗ + 5/6 p1∗2,

ϕ31 = 1/2 p1∗ sin(2 q1∗ − 2α),

ϕ20 = −3/4 cos(2 q1∗ − 2α)p1∗2 + 1/2 cos q1∗ + 5/4 p1∗2,

ϕ11 = 3/2 p1∗ sin(2 q1∗ − 2α),

ϕ02 = 3/4 cos(2 q1∗ − 2α) + 5/4.

(2.5)

Let us consider the motion at the isoenergetic level Γ = 0 corresponding to an unperturbed

periodic motion. The evolution of the variables q2, p2 at the level Γ = 0 can be described by
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using the reduced canonical system (the Whittaker equation)

dq2
dw

=
∂K

∂p2
,

dp2
dw

= −∂K

∂q2
, (2.6)

where w plays the role of a new independent variable. The evolution of the variable r is deter-

mined by the relation r = −K(q2, p2, w) obtained by solving the equation Γ = 0 with respect to

r. For small r, q2, p2 the Hamiltonian K can be represented as a power series in q2, p2. Taking

into account (2.3) and (2.4), we obtain the following expansion of the Hamiltonian function K

in a series in q2, p2
K = K2 +K4 + . . . , (2.7)

where

K2 = ω−1Φ20(q2, p2, w),

K4 = ω−1[χ(w)Φ2
20(q2, p2, w)−Ψ20(q2, p2, w)Φ20(q2, p2, w) + Φ40(q2, p2, w)].

(2.8)

The problem of orbital stability of periodic motions of a rigid body is equivalent to the problem

of stability of the equilibrium position of the system (2.6).

3 Regions of Parametric Resonance

For small oscillation amplitudes, i.e., 0 < k � 1, we can analytically describe the bound-

aries of instability regions. For this purpose we consider the linear canonical system with the

Hamiltonian K2
dq2
dw

= ϕ11q2 + 2ϕ02p2,

dp2
dw

= −2ϕ20q2 − ϕ11p2.

(3.1)

The series expansions in powers of k of the coefficients of the system (3.1) have the form

ϕ11 = −3 cosw sin 2αk + 6k2 sin 2w cos 2α+O(k3),

ϕ02 =
1

2
+

3

2
cos2α+ 3 k sinw sin 2α cosα

+
1

16
(cos 2α(48 cos 2w − 45) + 5)k2 +O(k3),

ϕ20 =
1

2
+

1

8
(−12(cos 2w + 1) cos 2α+ 24 cos 2w + 17)k2 +O(k3).

(3.2)

For k = 0 the linear system is autonomous and describes harmonic oscillations with frequency

Ω0 =
√

1 + 3 cos2α. (3.3)

If Ω0 �= N/2, N ∈ Z, then for sufficiently small k the stability takes place in the linear

approximation. If Ω0 ≈ N/2, then for k � 1 the so-called parametric resonance phenomenon

is possible, which leads to instability. In the problem, the parametric resonance phenomenon

takes place in the following two cases: Ω0 ≈ 2 and Ω0 ≈ 3/2. The corresponding regions

of parametric resonance in the parameter plane (α, h) emanate from the points α∗ = 0 and

α∗∗ = arc cos (
√

5/12) of the straight line h = −1.
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For k � 1 the boundaries of the regions of parametric resonance can be obtained in the form

of the convergent series in powers of the small parameter k

α = α0 + kα1 + . . . , (3.4)

where on must put α0 = α∗ in the case of resonance Ω0 ≈ 2 and α0 = α∗∗ in the case of resonance

Ω0 ≈ 3/2. To obtain the coefficients of the above series, we use the technique developed in [11].

In accordance with this technique, using a linear canonical change of variables (q2, p2) → (X,Y ),

we reduce the Hamiltonian K2 to the simplest so-called normal form. At the above resonances,

the normal form of the Hamiltonian reads [11]

K2 = k20X
2 + k11XY + k02Y

2, (3.5)

where k20, k11, k02 depend analytically on k and α. To construct the above linear change of

variables, as well as find the coefficients k20, k11, k02, we use the Depri–Hori method [12], which

allows us to calculate expressions for these coefficients in the form of series in powers of k up

to an arbitrarily high degree. A simple analysis of the canonical system with the Hamiltonian

(3.2) shows that the system is stable if k11
2 < 4 k20k02; otherwise, i.e., if k11

2 > 4 k20k02, the

system is unstable. Thus, the boundaries of the parametric resonance regions are determined

by the equation

k11
2 = 4 k20k02. (3.6)

Substituting (3.7) into (3.6) and equating the terms with equal powers of k on the right-hand

side of (3.5), we can obtain equations for the coefficients of the series (3.4).

A calculation shows that, in the case of resonance Ω0 ≈ 2,

k20 = −α1
2

4
k2 − 9α2α1

2
k3 +O(k4),

k11 = O(k4),

k02 = −α1
2

4
k2 − 9α2α1

2
k3 +O(k4).

(3.7)

In this case, the boundaries of the parametric resonance regions are determined by

α = 0, (3.8)

α =

√
3

2
k2 +O(k3). (3.9)

On the first boundary (3.8), i.e., at α = 0, the Goryachev–Chaplygin case takes place. This

case was completely studied in [4] and is not considered in this paper. On the second boundary

(3.9), the normalized Hamiltonian reads

K2 = −9X2

32
k4 +O(k5). (3.10)

Further calculations show that, in the resonance case Ω0 ≈ 3/2,

k20 = −α1

√
35k

12
+

(63
64

− α2

√
35

6

)
k2 − α3

√
35

2
k3 +O(k4),

k11 = −315
√
35

128
k3 +O(k4), (3.11)
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k02 = −α1

√
35k

12
+

(63
64

− α2

√
35

6

)
k2 − α3

√
35

2
k3 +O(k4).

In this case, on the right boundary we have

α = arc cos
(√15

6

)
+

27
√
35

160
k2 +

315

128
k3 +O(k4) (3.12)

and the Hamiltonian reads

K2 = −105
√
35(X + Y )2

512
k3 +O(k5). (3.13)

whereas the equation of the left boundary and the corresponding normalized Hamiltonian are

determined by

α = arc cos
(√15

6

)
+

27
√
35

160
k2 − 315

128
k3 +O(k4), (3.14)

K2 =
105

√
35(X − Y )2

512
k3 +O(k5). (3.15)

Inside the parametric resonance regions, the pendulum oscillations are orbitally unstable.

4 Nonlinear Analysis

Outside the parametric resonance regions, the linear system is stable, i.e., the pendulum

oscillations are orbitally stable in the linear approximation. However, this fact does not imply

the orbital stability of the original nonlinear system. To obtain a rigorous conclusion about the

orbital stability for the parameter values outside the regions of parametric resonance and at

their boundaries, a nonlinear analysis is required.

Let us first study the question about the orbital stability for the values of parameters outside

the regions of parametric resonance and outside the boundaries of these regions. Using a linear

canonical change of variables
q2 = a11(w)x+ a12(w)y,

p2 = a21(w)x+ a22(w)y,
(4.1)

we can reduce the Hamiltonian K2 to the normal form

K2 =
1

2
Ω (x2 + y2), (4.2)

where the coefficients a11, a21, a12, a22 are 2π-periodic functions of the variable w and are

analytic in k. The quantity Ω is an analytic function of k and α. To find a11, a21, a12, a22, Ω,

we use the Depri-Hori method. A calculation shows that

Ω = Ω0 +Ω1k
2 +O(k3),

Ω1 =
16Ω0

6 − 48Ω0
4 + (36sin22α− 69)Ω0

2 + 72sin22α+ 20

4Ω0
2(1− 4Ω0

2)
.

(4.3)

We recall that Ω0 is defined by (3.3).
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For the further research it is convenient to change the scale of variables and introduce the

canonical polar coordinates ρ, ϑ by

x = k3
√

2ρ sinϑ,

y = k3
√

2ρ cosϑ.
(4.4)

In these variables, the Hamiltonian K the complete nonlinear system takes the form

K = Ω ρ+G4ρ
2 +G6ρ

3 +O(ρ4). (4.5)

We omit expressions for G4(ϑ,w) and G6(ϑ,w) because they are too cumbersome. Rigorous

conclusions about the stability of the trivial solution to a system with the Hamiltonian (4.5)

can be obtained on the basis of the Kolmogorov–Arnold–Moser theory. For this purpose, we

normalize the Hamiltonian K to terms of order ρ2.

If there are no resonances of the third and fourth order in the system, that is, Ω �= n/3

and Ω �= n/4, n ∈ Z respectively, then the Hamiltonian function (4.5) by a canonical change of

variables ρ, ϑ −→ R,ϕ that is close-to-identity and analytic in k, can be reduced to the following

normal form (see, for example, [13])

Φ = ΩR+ c2R
2 + G̃6R

3 +O(R4), (4.6)

where

c2 =
1

4π2

2π∫

0

2π∫

0

G4(ϑ,w) dϑ dw. (4.7)

A calculation shows that

c2 = c20k
6 +O(k8), (4.8)

where

c20 = −126 cos6α+ 93cos4α− 34cos2α− 25

8(4cos2α+ 1)(1 + 3cos2α)
. (4.9)

By the Arnold-Moser theorem, the equilibrium position of the system (2.6) is stable at c2 �= 0.

In the interval 0 < α < π/2, the equation c2 = 0 has a unique analytic solution that analytically

depends on α. For sufficiently small k this solution is given by the asymptotic formula

α∗ = α∗
0 +O(k2),

where α∗
0 is a solution to the equation c20 = 0 and the calculation have shown that α∗

0 ≈
0.7665103122. Thus, outside the parametric resonance regions, at α �= α∗ and in the absence

of resonances up to the fourth order, the equilibrium position of the system (2.6) is stable for

small k.

Now, let us put α = α∗ when the so-called case of degeneracy takes place and solving the

stability problem requires an additional analysis including terms of degree R3. As above, using

a canonical change of variables R,ϕ −→ R̃, ϕ̃ that is close to identical and analytic in k, we

can normalize the Hamiltonian up to the six order terms inclusively. In the new variables the

Hamiltonian reads

Φ̃ = Ω R̃+ c3R̃
3 +O(R̃4), c3 =

1

4π2

2π∫

0

2π∫

0

G̃6(ϑ,w) dϑ dw. (4.10)
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A calculation shows that

c3 = −(1 + 3 cos2α∗
0)

3/2

12288
+O(k2) (4.11)

Since the quantity c3 is nonzero for sufficiently small k, it follows that, by the Arnold–Moser

theorem, the equilibrium point of the system (2.6) is stable.

The resonance cases require a special analysis. The resonance case of the first and second

order take place at the boundaries of the regions of parametric resonance and will be considered

below. Since the Hamilton function does not contain terms of order ρ3/2, the third order reso-

nance do not appear in the system. However, the fourth order resonance can occur in the case

Ω = n/4, n ∈ Z. In our problem, two such cases can happen: Ω = 5/4 and Ω = 7/4. In the case

of a fourth order resonance, the Hamiltonian (4.5) can be reduced to the form

Φ = ΩR+ (c2 + a4 cos(nw − 4ϕ)− b4 sin(nw − 4ϕ))R2 +O(R3),

a4 =
1

2π2

2π∫

0

2π∫

0

G4(ϑ,w) cos(4ϑ− nw) dϑ dw,

b4 =
1

2π2

2π∫

0

2π∫

0

G4(ϑ,w) sin(4ϑ− nw) dϑ dw.

(4.12)

In the case Ω = 5/4, the value of the parameter α is respectively determined by the following

resonance relation which can be easily obtained by using the expression (4.3):

α = arc cos
(√3

4

)
+

3
√
39

7
k2 +O(k3) . (4.13)

In the resonance case Ω = 5/4, the coefficients of the normal form read (4.12)

c2 =
55859

11200
k +O(k3),

a4 = O(k3), b4 = O(k3).

(4.14)

In the resonance case Ω = 7/4, the value of the parameter α and the coefficients of the normal

form (4.12) are determined by the asymptotic formulas

α = arc cos
(√11

4

)
+

3
√
55

55
k2 +O(k3),

c2 = −4987

3136
k +O(k3),

a4 = O(k3), b4 = O(k3).

(4.15)

A sufficient condition for the stability of an equilibrium position at a fourth order resonance has

the form √
a42 + b4

2 < |c2|. (4.16)

In both resonance cases, the condition (4.16) is obviously satisfied, which means the Lyapunov

stability of the system (2.6) and, consequently, the orbital stability of pendulum oscillations.
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To study the orbital stability at the boundaries of parametric resonance regions, we use the

same research technique. The resonances of the first (Ω = 2) and second (2Ω = 3) order take

place at the boundaries of the parametric resonance regions. In the following cases, making a

linear change of variables X,Y → u, v, we reduce the Hamiltonian to the form

K =
δ

2
u2 +K4(u, v) +O6, K4 =

∑

i+j=4

siju
ivj . (4.17)

The coefficients sij of the form K4 are 2π-periodic functions of the variable w. The coefficient δ

is determined in the process of constructing the specific linear change of variables and takes the

value δ = 1 or δ = −1. Further, by a nonlinear close-to-identity change of variables u, v → x, y,

we can normalize the Hamiltonian K up to the fourth degree terms. In this case, the normal

form of the Hamiltonian is written as

K =
δ

2
x2 + c4y

4 +O6,

c4 =
1

2π

2π∫

0

s04dw.

(4.18)

By the Ivanov–Sokol’skij theorem [14], the equilibrium position of the system with the Hamil-

tonian (4.18) is stable if

δc4 > 0 (4.19)

and it is unstable if the inequality (4.19) holds with the opposite sign.

A calculation shows that, on the boundaries (3.9) and (3.14), the coefficients δ, c4 have the

form

c4 = −1

4
k4 +O(k5), δ = −1, (4.20)

and

c4 =
445

6144
k4 +O(k5) , δ = 1 (4.21)

respectively. Since (4.19) is obviously satisfied, the oscillations with small amplitudes are or-

bitally stable on these boundaries. On the boundary (3.12), we have

c4 =
445

6144
k4 +O(k5), δ = −1. (4.22)

Here, the inequality (4.19) holds with the opposite sign and the oscillations with small amplitudes

are orbitally unstable.

Thus, we have established the following result.

Theorem 4.1. At sufficiently small amplitudes, the pendulum oscillations of a heavy rigid

body with a fixed point, whose principal moments of inertia are related such that 1 : 4 : 1 are

orbitally unstable in narrow regions of parametric resonance. The boundaries of these regions

are analytically described by Equations (3.9), (3.12), (3.14). The pendulum oscillations with

small amplitudes are orbitally stable outside these regions and on the boundaries (3.9), (3.14)

and are orbitally unstable on the boundary (3.12).
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