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ON CONTINUOUS AND BOUNDED SOLUTIONS OF THE SYSTEMS OF
DIFFERENCE-FUNCTIONAL EQUATIONS WITH NUMEROUS
DEVIATIONS OF THE ARGUMENT

T. O. Yeromina1 and O. A. Povarova2; 3 UDC 517.9

We establish the existence conditions for continuous solutions of a class of systems of linear functional-
difference equations with numerous deviations of the argument, propose a method for the construction of
these solutions, and study the structure of the set of solutions of this kind.

Consider a system of linear equations

x.qt/ D Ax.t/C
kX

jD1

Bj .t/x.t CÅj .t//C F.t/; (1)

where t 2 R; A; Bj .t/; j D 1; : : : ; k; are some real .n ⇥ n/ matrices, q is a real constant, F.t/ is a real vector of
dimension n; and Åj .t/WR ! R; j D 1; : : : ; k: Systems of linear difference and functional-difference equations
were considered, e.g., in [1–8]. We study the problem of existence of continuous solutions bounded for t � T in
the case where the following conditions are satisfied:

1) all elements of the matrices Bj .t/; j D 1; : : : ; k; and the vector F.t/ are functions bounded for t � T I

2) the functions Åj .t/; j D 1; : : : ; k; are continuous and bounded for t � T and, in addition, Åj .t/ � 1;

q ¤ 0I

3) sup
t

jBj .t/j D bj ; j D 1; : : : ; k; supt jF.t/j D M; and

jAj D max
1in

nX

jD1

jaij j D a < 1I

4) Q
Å D

Xk

lD1
bl

1 � a

< 1:

The following theorem is true:
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Theorem 1. Suppose that conditions 1)–4) are satisfied. Then the system of equations (1) possesses a unique
solution x.t/ continuous and bounded for t � T and represented in the form of a series

x.t/ D
1X

iD0

xi .t/; (2)

where xi .t/; i D 0; 1; : : : ; are vector functions continuous and bounded for t � T:

Proof. Substituting (2) in (1), we obtain

1X

iD0

xi .qt/ D A

1X

iD0

xi .t/C
kX

jD1

Bj .t/

1X

iD0

xi .t CÅj .t//C F.t/:

This directly implies that if the vector functions xi .t/; i D 0; 1; : : : ; are solutions of the following sequence
of the systems of equations:

x0.qt/ D Ax0.t/C F.t/; (30)

xi .qt/ D Axi .t/C
kX

jD1

Bj .t/xi�1.t CÅj .t//; i D 1; 2; : : : ; (3i )

then series (2) is a formal solution of the system of equations (1).
By direct substitution in (30), we can show that the series

x0.t/ D
1X

jD0

A

j
F

�
q

�.jC1/
t

�
; (40)

is a formal solution of the system of equations (40). Moreover, by virtue of conditions 1)–4), series (40) is uniformly
convergent for all t 2 R and satisfies the condition

jx0.t/j 
1X

jD0

ˇ̌
ˇAj

ˇ̌
ˇ
ˇ̌
ˇF

�
q

�.jC1/
t

�ˇ̌
ˇ  M

1X

jD0

a

j  M

1 � a

D M

0
:

We now successively consider the systems of equations (3i), i D 1; 2; : : : : This enables us to show that the
series

xi .t/ D
1X

jD0

A

j

0

@
kX

lD1

Bl

�
q

�.jC1/
t

�
xi�1

⇣
q

�.jC1/
t CÅj

�
q

�.jC1/
t

�⌘
1

A
; i D 1; 2; : : : ; (4i )

is uniformly convergent for t 2 R to certain continuous vector functions xi .t/; i D 1; 2; : : : ; which are solutions
of the corresponding systems (3i), i D 1; 2; : : : ; and satisfy the conditions

jxi .t/j  M

0 Q
Å

i
; i D 1; 2; : : : : (5i )
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Indeed, in view of (41) and conditions 1)–4), we obtain

jx1.t/j 
1X

jD0

jAjj
0

@
kX

lD1

ˇ̌
ˇBl

�
q

�.jC1/
t

�ˇ̌
ˇ
ˇ̌
ˇx0

⇣
q

�.jC1/
t CÅj

�
q

�.jC1/
t

�⌘ˇ̌
ˇ

1

A

 M

0
1X

jD0

a

j
kX

lD1

bl  M

0
Xk

lD1
bl

1 � a

D M

0 Q
Å:

Hence, estimate (51) is true. We proceed by induction and assume that estimate (5i) holds for some i � 1 and
prove it for i C 1: Indeed, by using (4iC1), (5i), and the conditions of the theorem, we get

jxiC1.t/j 
1X

jD0

jAjj
0

@
kX

lD1

ˇ̌
ˇBl

�
q

�.jC1/
t

�ˇ̌
ˇ
ˇ̌
ˇxi�1

⇣
q

�.jC1/
t CÅj

�
q

�.jC1/
t

�⌘ˇ̌
ˇ

1

A


1X

jD0

a

j

0

@
kX

lD1

bl

1

A
M

0 Q
Å

i  M

0
Xk

lD1
bl

1 � a

Q
Å

i D M

0 Q
Å

iC1
:

Thus, estimates (5i) are true for all i � 1:

Hence, series (4i), i D 0; 1; : : : ; are uniformly convergent for all t � T > 0 to certain continuous vector
functions xi .t/; i D 0; 1; : : : ; satisfying estimates (5i), i D 0; 1; : : : : Thus, it directly follows from (5i), i D
0; 1; : : : ; that series (2) uniformly converges for all t 2 R to a certain continuous vector function x.t/; which is a
solution of the system of equations (1).

We now assume that system (1) has one more solution y.t/ such that y.t/ ¤ x.t/: Since

y.qt/ ⌘ Ay.t/C
kX

jD1

Bj .t/y.t CÅj .t//C F.t/;

by using the conditions of Theorem 1, we obtain

jx.qt/ � y.qt/j  jAj jx.t/ � y.t/j C
kX

jD1

jBj .t/j jx.t CÅj .t// � y.t CÅj .t//j



0

@
aC

kX

jD1

bj

1

A kx.t/ � y.t/k;

where

kx.t/ � y.t/k D max
t

jx.t/ � y.t/j:
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This yields the relation

kx.t/ � y.t/k 

0

@
aC

kX

jD1

bj

1

A kx.t/ � y.t/k:

However, according to the conditions of the theorem, this may be true only for y.t/ ⌘ x.t/: The obtained contra-
diction completes the proof.

In (1), we perform a one-to-one change of variables

x.t/ D y.t/C �.t/;

where �.t/ is the above-constructed continuous solution of system (1) bounded for t � T . As a result, we reduce
the investigation of the system of equations (1) to the analysis of the following system of equations:

y.qt/ D Ay.t/C
kX

jD1

Bj .t/y.t CÅj .t//:

Under the conditions of Theorem 1, this system of equations possesses a unique solution y ⌘ 0 continuous for
t 2 R: However, under certain additional conditions, it has infinitely many solutions continuous for t � T > 0:

For the sake of simplicity, we prove this fact in the case where Åj .t/ ⌘ j; j D 1; : : : ; k; and the matrix A has the
form A D ƒ D diag.�1; : : : ;�n/; where 0 < �i < 1; i D 1; : : : ; n:

Hence, we now consider the system of equations

y.qt/ D ƒy.t/C
kX

jD1

Bj .t/y.t C j / (6)

and prove the following theorem:

Theorem 2. Suppose that the conditions of Theorem 1 and the conditions

(i) 0 < �i < 1; i D 1; : : : ; n; q > 1I

(ii) N
Å D

Xk

lD1
bj

1 � �

⇤ < 1; where bj D sup
t

jBj .t/j; j D 1; : : : ; k; �

⇤ D maxf�i ; i D 1; : : : ; ng;

are satisfied. Then the system of equations (6) has a family of solutions

y.t/ D y

✓
t; !

✓
ln t
ln q

◆◆

continuous for t � T > 0 (T is a sufficiently large constant), which depends on an arbitrary continuous 1-periodic
vector function !.⌧/:
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Proof. We show that the system of equations (6) has continuous solutions in the form of a series

y.t/ D
1X

iD0

yi .t/; (7)

where yi .t/; i D 0; 1; : : : ; are certain continuous vector functions. Indeed, substituting (7) in (6), we obtain

1X

iD0

yi .qt/ D ƒ

1X

iD0

yi .t/C
kX

jD1

Bj .t/

1X

iD0

yi .t C j /:

This directly implies that if the functions yi .t/; i D 0; 1; : : : ; are solutions of the following sequence of systems
of equations:

y0.qt/ D ƒy0.t/; (80)

yi .qt/ D ƒyi .t/C
kX

jD1

Bj .t/yi�1.t C j /; i D 1; 2; : : : ; (8i )

then series (7) is a formal solution of the system of equations (6).
The system of equations (80) has a set of solutions continuous for t � T > 0 of the form

y0.t/ D t

⌫
!

✓
ln t
ln q

◆
; (90)

where !.⌧/ D
�
!1.⌧/; !2.⌧/; : : : ; !n.⌧/

�
; !i .⌧/; i D 1; : : : ; n; are arbitrary continuous 1-periodic functions and

t

⌫ D diag
✓
t

ln�1
lnq

; t

ln�2
lnq

; : : : ; t

ln�n
lnq

◆
:

Successively considering the systems of equations (8i), i D 1; 2; : : : ; we can show that they have formal
solutions in the form of series

yi .t/ D
1X

jD0

ƒ

j
kX

lD1

Bl

�
q

�.jC1/
t

�
yi�1

�
q

�.jC1/
t C l C 1

�
; i D 1; 2; : : : : (9i )

We now prove that, under the conditions of the theorem, series (9i), i D 1; 2; : : : ; uniformly converge to
certain continuous vector functions yi .t/; i D 1; 2; : : : ; satisfying the estimates

jyi .t/j  Q
M

N
Å

i
; i D 1; 2; : : : : (10)

Indeed, since

jy0.t/j  jtvj j!.⌧/j  t

ln�⇤
lnq Q

M;
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where Q
M D max

⌧
j!.⌧/j and �⇤ D minf�i ; i D 1; : : : ; ng; in view of (8i) and

ln�⇤
ln q

< 0;

we obtain

jy1.t/j 
1X

jD0

jƒjj
0

@
kX

lD1

ˇ̌
ˇBl

�
q

�.jC1/
t

�ˇ̌
ˇ
ˇ̌
ˇy0

�
q

�.jC1/
t C l C 1

�ˇ̌
ˇ

1

A

 Q
M

1X

jD0

jƒjj
0

@
kX

lD1

jbl j
✓

t

q

jC1
C l C 1

◆ln�⇤
lnq

1

A

 Q
M

1X

jD0

�
�

⇤�j
kX

lD1

jbl j  Q
M

Xk

lD1
jbl j

1 � �

⇤  Q
M

N
Å:

Thus, estimate (10) holds for i D 1: We assume that it is true for some i � 1 and prove it for i C 1: In view
of (9iC1), (10), i D 1; 2; : : : ; we find

jyiC1.t/j 
1X

jD0

jƒjj
0

@
kX

lD1

ˇ̌
ˇBl

�
q

�.jC1/
t

�ˇ̌
ˇ
ˇ̌
ˇyi

�
q

�.jC1/
t C l C 1

�ˇ̌
ˇ

1

A


1X

jD0

ˇ̌
�

⇤ˇ̌j
0

@ Q
M

kX

lD1

jbl j

1

A N
Å

i  Q
M

Xk

lD1
jbl j

1 � �

⇤
N
Å

i D Q
M

N
Å

iC1
:

Thus, estimates (10) are true for all i � 1 and series (9i), i D 1; 2; : : : ; uniformly converge to certain
continuous vector functions yi .t/; i D 1; 2; : : : : Hence, we have proved that series (7) is uniformly convergent for
all t � T > 0 to a certain continuous function y.t/; which is a solution of the system of equations (6) and satisfies
the condition

jy.t/j 
1X

iD0

jyi .t/j  Q
M

1X

iD0

N
Å

i 
Q
M

1 � N
Å

:

Theorem 2 is proved.

Theorem 3. Suppose that the conditions of Theorem 1 and the conditions

(i) �i > 1; i D 1; : : : ; n; 0 < q < 1I

(ii) N
Å D

Xk

lD1
bj

�⇤ � 1

< 1; where bj D sup
t

jBj .t/j; j D 1; : : : ; k; �⇤ D minf�i ; i D 1; : : : ; ng;
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are satisfied. Then the system of equations (6) has a family of solutions

y.t/ D y

✓
t; !

✓
ln t
ln q

◆◆

continuous for t � T > 0 (T is a certain sufficiently large constant), which depends on an arbitrary continuous
1-periodic vector function !.⌧/:

Proof. We now show that the system of equations (6) has continuous solutions in the form of a series

y.t/ D
1X

iD0

yi .t/; (11)

where yi .t/; i D 0; 1; : : : ; are continuous vector functions. Indeed, substituting (11) in (6), we obtain

1X

iD0

yi .qt/ D ƒ

1X

iD0

yi .t/C
kX

jD1

Bj .t/

1X

iD0

yi .t C j /:

This directly implies that if the functions yi .t/; i D 0; 1; : : : ; are solutions of the sequence of systems of equations

y0.qt/ D ƒy0.t/; (120)

yi .qt/ D ƒyi .t/C
kX

jD1

Bj .t/yi�1.t C j /; i D 1; 2; : : : ; (12i )

then series (11) is a formal solution of the system of equations (6).
The system of equations (120) has a set of solutions continuous for t � T > 0 of the form

y0.t/ D t

⌫
!

✓
ln t
ln q

◆
; (130)

where !.⌧/ D .!1.⌧/; !2.⌧/; : : : ; !n.⌧//; !i .⌧/; i D 1; : : : ; n; are arbitrary continuous 1-periodic functions, and

t

⌫ D diag
✓
t

ln�1
lnq

; t

ln�2
lnq

; : : : ; t

ln�n
lnq

◆
:

We successively consider the systems of equations (12i), i D 1; 2; : : : ; and show that they have formal solu-
tions in the form of the following series:

yi .t/ D �
1X

jD0

ƒ

�.jC1/
kX

lD1

Bl.q
j
t /yi�1.q

j
t C l C 1/; i D 1; 2; : : : : (13i )

We now show that, under the conditions of the theorem, series (13i), i D 1; 2; : : : ; uniformly converge to
continuous vector functions yi .t/; i D 1; 2; : : : ; satisfying the estimates
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jyi .t/j  Q
M

N
Å

i
; i D 1; 2; : : : : (14)

Indeed, since

jy0.t/j  jtvj j!.⌧/j  t

ln�⇤
lnq Q

M 
Q
M

t

ˇ̌
ˇ ln�⇤

lnq

ˇ̌
ˇ
;

where Q
M D max⌧ j!.⌧/j and �⇤ D min f�i ; i D 1; : : : ; ng ; in view of (121) and

ln�⇤
ln q

< 0;

we obtain

jy1.t/j 
1X

jD0

ˇ̌
ƒ

�1
ˇ̌jC1

0

@
kX

lD1

ˇ̌
Bl.q

j
t /

ˇ̌ ˇ̌
ˇy0.qj t C l C 1/

ˇ̌
ˇ

1

A

 Q
M

1X

jD0

✓
1

�⇤

◆jC1
0

@
kX

lD1

jbl j
1

�
q

j
t C l C 1

�ˇ̌ˇ ln�⇤
lnq

ˇ̌
ˇ

1

A


Q
M

Xk

lD1
jbl j

�⇤

1X

jD0

✓
1

�⇤

◆j


Q
M

Xk

lD1
jbl j

�⇤
1

1 � 1

�⇤

 Q
M

Xk

lD1
jbl j

�⇤ � 1

 Q
M

N
Å:

Thus, estimate (14) holds for i D 1: We assume that it is true for some i � 1 and prove it for i C 1: Indeed,
according to (13iC1) and (14), i D 1; 2; : : : ; we get

jyiC1.t/j 
1X

jD0

ˇ̌
ƒ

�1
ˇ̌jC1

0

@
kX

lD1

ˇ̌
Bl.q

j
t /

ˇ̌ ˇ̌
ˇyi .qj t C l C 1/

ˇ̌
ˇ

1

A

 Q
M

1X

jD0

✓
1

�⇤

◆jC1
0

@
kX

lD1

jbl jÅi

1

A


Q
M

�⇤

1X

jD0

✓
1

�⇤

◆j
0

@
kX

lD1

jbl jÅi

1

A
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Q
M

Xk

lD1
jbl j

�⇤
Å

i

1 � 1

�⇤

 Q
M

Xk

lD1
jbl j

�⇤ � 1

Å

i  Q
M

N
Å

iC1
:

Hence, estimates (14) are true for all i � 1 and series (13i), i D 1; 2; : : : ; uniformly converge to certain continuous
vector functions yi .t/; i D 1; 2; : : : : This proves that series (11) is uniformly convergent for all t � T > 0 to a
certain continuous function y.t/; which is a solution of the system of equations (6) and satisfies the condition

jy.t/j 
1X

iD0

jyi .t/j  Q
M

1X

iD0

N
Å

i 
Q
M

1 � N
Å

:

Theorem 3 is proved.
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