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Abstract
This article describes a numerical method based on the dual reciprocity boundary element method 
(DRBEM) for solving some well-known nonlinear parabolic partial differential equations (PDEs). The 
equations include the classic and generalized Fisher’s equations, Allen–Cahn equation, Newell–Whithead 
equation, FitzHugh–Nagumo equation, and generalized FitzHugh–Nagumo equation with time-dependent 
coefficients. The concept of the dual reciprocity is used to convert the domain integral to the boundary that 
leads to an integration-free method. We employ the time stepping scheme to approximate the time deriva-
tive, and the linear radial basis functions (RBFs) are used as approximate functions in the presented method. 
The nonlinear terms are treated iteratively within each time step. The developed formulation is verified in 
some numerical test examples. The results of numerical experiments are compared with analytical solution 
to confirm the accuracy and efficiency of the presented scheme.

Keywords  Nonlinear partial differential equations · Fisher’s equation · Generalized Fisher’s equation · 
Allen–Cahn equation · Newell–Whithead equation · Fitzhugh–Nagumo equation · Generalized Fitzhugh–
Nagumo equation · Radial basis functions (RBFs) · The dual reciprocity boundary element method 
(DRBEM) · Collocation method

Introduction

The dual reciprocity boundary element method (DRBEM) is a modern numerical scheme, which has enjoyed increas-
ing popularity and has become one of the most general and effective numerical method for solving different engineering 
problems [4–9, 14, 16, 44]. Generally, the DRBEM is known as a numerical tool for solving two or higher dimensional 
partial differential equations (PDEs). However, some authors employed this approach for the numerical solution of some 
one-dimensional PDEs. For example, hyperbolic telegraph equation [19], nonlinear Klein-Gordon equation [20], nonlinear 
sine–Gordon equation [21], Cahn-Hilliard equation [22], stochastic differential equations [24, 25], and advection–diffu-
sion equation [49] have been solved with the one-dimensional DRBEM approach. Also, some extension of this method 
is used for numerical solution of some engineering problems  [10, 11].
In this study, a numerical solution based on the DRBEM is applied for solving some well-known one-dimensional non-
linear parabolic PDEs. The idea behind this approach comes from the classic DRBEM introduced by Brebbia and Nardini 
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[15] and Partridge and Brebbia [16] for solving higher-order dimensional problems and expanding the inhomogeneous 
and nonlinear terms in terms of their values at the nodes which lie in the domain of the problem. The inhomogeneous 
term is approximated by interpolation in terms of some well-known functions �(r) , called radial basis functions (RBFs), 
where r is the distance between a source point and the field point.
Our concern in the current work is to present a numerical method based on the DRBEM for solving the following non-
linear parabolic PDEs

subject to the initial condition

and the boundary conditions

where �(t),�(t) , and �(t) are arbitrary real-valued functions of t. F(u) in Eq. (1), written as Fl(u) + Fn(u) , where Fl and 
Fn denote the linear and nonlinear parts of F, respectively. Equation (1) for different values of �,�, � , and F yields the 
following well-known problems:

Case 1: the Fitzhugh–Nagumo and real Newell–Whitehead equations

If we set �(t) = �(t) = �(t) = 1 and F(u) = u(1 − u)(� − u) where 0 ≤ � ≤ 1 , Eq. (1) deduces to classic Fitzhugh–Nagumo 
equation. In addition, if in Fitzhugh–Nagumo equation � takes the value −1 , then the classic Fitzhugh–Nagumo equation 
deduces to real Newell–Whitehead equation. The Fitzhugh–Nagumo equation has been derived by Fitzhugh [27] and 
Nagumo et al. [42]. Also, population genetics [12, 53, 54] is another area of application of the Fitzhugh–Nagumo equa-
tion. Kawahara and Tanaka [33], Nucci and Clarkson [41], Li and Guo [35], and Abbasbandy [1] have found some new 
solution of the Fitzhugh–Nagumo equation using the Hirota method, Jacobi elliptic function, first integral method, and 
homotopy analysis method, respectively. The Haar wavelet method [29], Pseudospectral methods [18], and the homotopy 
analysis method [53] are some numerical approaches that have been applied to present the approximate solution of the 
Fitzhugh–Nagumo equation. Meanwhile, the authors of [47] proposed the approximate conditional symmetry method to 
determine approximate solutions of Fitzhugh–Nagumo equation.

Case 2: the generalized Fitzhugh–Nagumo equation

Let �(t),�(t) , and �(t) be an arbitrary function of t and let F(u) = u(1 − u)(� − u) . Then, Eq. (1) deduces to generalized 
Fitzhugh–Nagumo with time-dependent coefficients and linear dispersion term equation. The authors of [52] derived a 
new variety of soliton solutions using specific solitary wave ansatz and the tanh method for this equation. Meanwhile, 
Bhrawy [13] employed Jacobi–Gauss–Lobatto collocation method for the numerical solution of this equation.

Case 3: Fisher’s equation

Fisher’s equation is achieved when �(t) = �(t) = �(t) = 1 and F(u) = u(1 − u) . As mentioned in [37, 43, 56], Fisher 
proposed such equation as a model for the propagation of a mutant gene, with u denoting the density of an advantageous. 
This equation is encountered in chemical kinetics and population dynamics which include problems such as nonlinear evo-
lution of a population in a one-dimensional habitat, neutron population in a nuclear reaction. Moreover, the same equation 
occurs in logistic population growth models, flame propagation, neurophysiology, autocatalytic chemical reactions, and 
branching Brownian motion processes. Sinc collocation method [2], B–spline Galerkin method [30, 40], wavelet Galerkin 
method [39], moving mesh method [45], finite element methods [46, 51], and finite difference [38] are some numerical 
techniques that have been applied for the numerical solution of Fisher’s equation. Meanwhile, Wazwaz [56, 57] has found 
some exact solution for this equation with tanh-coth and Adomian decomposition methods.

(1)ut + �(t)ux − �(t)uxx − �(t)F(u) = 0, (x, t) ∈ [a, b] × [0, T],

(2)u(x, 0) = f (x), x ∈ [a, b],

(3)u(a, t) = g1(t), u(b, t) = g2(t), t ∈ [0, T],
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Case 4: the Allen–Cahn and generalized Fisher’s equations

If we set �(t) = �(t) = �(t) = 1 and F(u) = u(1 − u�) in Eq. (1), the generalized Fisher equation will be obtained. 
In addition, Eq. (1) for � = 2 and 𝛼 > 2 is called the Allen–Cahn equation and generalized Fisher’s equation. Some 
useful numerical solutions of this equation are [17, 26, 28, 36]. In addition, [57] provides some exact solutions of 
these equations.

The organization of the current paper

This article is organized as follows: In "The propose method", the discretized version of equation is obtained, and 
an iterative scheme based on finite difference scheme is described for the time derivative. In "Numerical simulations", 
numerical results of some nonlinear parabolic PDEs have been presented, and the obtained results are compared with the 
exact solutions. "Conclusion" ends this report with a brief conclusion.

The proposed method

Suppose Gi = G(x, xi) is the fundamental solution of the one-dimensional Laplace operator based on the source point 
xi , i.e.,

where x is the field point and � is Dirac delta function. The fundamental solution and its derivative are given as follows 
[34]:

where the symbol sgn denotes the signum function.
Consider Eq. (1) as follows:

Multiplying the above equation by Gi , taking integration over [a, b] and applying the integration by parts, we get the fol-
lowing integral form:

where similarly to 2D formulation, ci takes the values 1 and 1/2 when the source point is located in domain and on the 
boundary (the points a and b), respectively [16, 32].
The domain integral on the right-hand side of Eq. (7) still remains in the boundary elements formulation. This integral 
can be evaluated by dividing the domain into cells [31]. The motivation behind DRBEM is to avoid this procedure by 
transforming the domain integral to an equivalent boundary integral equation. This can be achieved by approximating the 
function b(x, t) in terms of radial basis functions (RBFs) at some chosen number in [a, b] as

(4)�2G

�x2
(x, xi) = �(x, xi),

(5)
G(x, xi) =

1

2
|x − xi|,

G,x(x, xi) = G�(x, xi) =
1

2
sgn(x − xi),

(6)uxx =
1

�(t)
ut +

�(t)

�(t)
ux −

�(t)

�(t)
{F(u)} ∶= b(x, t).

(7)[Giux]
b
a
− [G�

i
u]b

a
+ ciui = ∫

b

a

b(x, t)Gidx,

(8)a = x1 < x2 < ⋯ < xN−1 < b = xN .
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So the function b can be expressed as

where �j(t), j = 1, ...,N , are the corresponding interpolating coefficients, �j represents the interpolation function, � , from 
a field node to source node, i.e.,

where |x − xj| denotes the distance between x and xj . The essential feature in DRBEM is to express �j , which is a function 
of rj , as a Laplacian of another function �j . Thus, �j is chosen as the solution to [31]

In this paper, we will use linear RBFs as

The function �j is easily determined as

With substitution expansion (9) for b(x, t), applying the integration by part once again, the domain integral in the right-
hand side of Eq. (7) reduces to a boundary integral equation

where �ij is the value of the function �j at the ith source point. So from Eqs. (7) and (13), the following boundary integral 
equation can be achieved:

Imposing all the source points to satisfy Eq. (14) yields the following matrix form:

where uin = [u(x2),⋯ , u(xN−1)]
T , ux(a) = ux(a, t), ux(b) = ux(b, t), u(xj) = u(xj, t), j = 1, ...,N  and L and H take the fol-

lowing form:

(9)b =

N∑
j=1

�j(t)�j,

�j ∶= �(|x − xj|), x, xj ∈ D,

(10)
�2�j

�x2
= �j.

(11)�j = 1 + rj.

(12)�j =
1

2
r2
j
+

1

6
r3
j
.

(13)∫
b

a

b(x, t)Gidx =

N∑
j=1

{[Gi�
�
j
]b
a
− [G�

i
�j]

b
a
+ ci�ij}�j(t),

(14)[Giux]
b
a
− [G�

i
u]b

a
+ ciui =

N∑
j=1

{[Gi�
�
j
]b
a
− [G�

i
�j]

b
a
+ ci�ij}�j(t).

(15)

L

�
ux(a)

ux(b)

�
−H

�
u(a)

u(b)

�
+

⎡⎢⎢⎣

1

2
u(a)

uin
1

2
u(b)

⎤⎥⎥⎦
,

=

N�
j=1

{L

�
� �
j
(a)

� �
j
(b)

�
−H

�
�j(a)

�j(b)

�
+

⎡⎢⎢⎢⎢⎢⎣

1

2
�j(a)

�j(x1)

⋮

�j(xN−1)
1

2
�j(b)

⎤⎥⎥⎥⎥⎥⎦

}�j(t),
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If each of the vectors

is considered to be one column of the matrices Ψx , Ψ , and Ψ̃ , respectively, Eq. (15) takes the following matrix form:

On the other hand, Eq. (9) can be written in the following matrix form:

where Φij represents the value of the function �j at source point xi by �ij for i = 1, 2, ...,N, and vector b takes the follow-
ing form:

where

Now, Eq. (16) constitutes a nonlinear system of N equations in N unknown functions of t. This system is solved approxi-
mately using the iterative scheme based on the implicit finite difference technique as follows:

where D = [LΨx −HΨ + Ψ̃] and b takes the following form for implicit time discretization:

Also, for Crank-Nicolson, time discretization takes the following form:

L =

⎡
⎢⎢⎢⎣

−G1(a) G1(b)

−G2(a) G2(b)

⋮ ⋮

−GN(a) GN(b)

⎤
⎥⎥⎥⎦
, H =

⎡
⎢⎢⎢⎣

−G�
1
(a) G�

a
(b)

−G�
2
(a) G�

1
(b)

⋮ ⋮

−G�
N
(a) G�

N
(b)

⎤
⎥⎥⎥⎦
.

�
� �
j
(a)

� �
j
(b)

�
,

�
�j(a)

�j(b)

�
and

⎡
⎢⎢⎢⎢⎢⎣

1

2
�j(a)

�j(x2)

⋮

�j(xN−1)
1

2
�j(b)

⎤
⎥⎥⎥⎥⎥⎦

,

(16)L

�
ux(a)

ux(b)

�
−H

�
u(a)

u(b)

�
+

⎡⎢⎢⎣

1

2
u(a)

uin
1

2
u(b)

⎤⎥⎥⎦
= [LΨx −HΨ + Ψ̃]�.

(17)�� = b,

(18)b =

⎡⎢⎢⎣

b(x1, t)

⋮

b(xN , t)

⎤⎥⎥⎦
,

(19)b(xj, t) =
1

�(t)
ut(xj, t) +

�(t)

�(t)
ux(xj, t) −

�(t)

�(t)
(u(xj, t){F(u(xj, t))}.

(20)L

�
un
x
(a)

un
x
(b)

�
−H

�
un(a)

un(b)

�
+

⎡⎢⎢⎣

1

2
un(a)

u
n
in

1

2
un(b)

⎤⎥⎥⎦
= D�

−1
b,

(21)b =
u
n − u

n−1

��(tn)
+

�(tn)

�(tn)
u
n
x
−

�(tn)

�(tn)
{Fl(u

n) + Fl(ũ)}.

(22)b =
u
n − u

n−1

��(tn)
+

�(tn)

2�(tn)
u
n
x
+

�(tn−1)

2�(tn−1)
u
n−1
x

−
�(tn)

2�(tn)
{Fl(u

n) + Fl(ũ
n
)} −

�(tn−1)

2�(tn−1)
{Fl(u

n−1) + Fl(ũ
n−1

)}.
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On the other hand, the solution of Eq. (1) can be approximated as follows [14]:

or in matrix form

Therefore, from Eqs. (23) and (24), we can write

So by substituting (25) in (21) and substituting the result in (20) and separating the known quantities from the unknown 
quantities, the value of un

in
 can be obtained by solving a nonlinear system of equation. To avoid solving the nonlinear 

system of equations, the following iterative algorithm has been proposed [23, 48, 50].

The predictor‑corrector scheme

For dealing with the nonlinearity, in time level n at first put

(23)u ≃

N∑
j=1

�j�j,

(24)u = ��(t).

(25)ux = �x�(t) = �x�
−1
u.

(26)ũ = u
n−1.

Table 1   The L∞-error for two 
kinds of time discretization 
of Ex. 1

h � Implicit Crank − Nicolson

1/64 1/10 4.1371E − 04 2.2663E − 04

1/64 1/20 1.2277E − 04 6.1418E − 05

1/64 1/40 3.5644E − 05 1.6158E − 05

1/64 1/80 1.0633E − 05 4.2031E − 06

1/64 1/160 3.4416E − 06 1.1118E − 06

1/64 1/320 1.2731E − 06 3.2404E − 07

1/256 1/10 4.1243E − 04 2.2590E − 04

1/256 1/20 1.2235E − 04 6.1182E − 05

1/256 1/40 3.5481E − 05 1.6057E − 05

1/256 1/80 1.0544E − 05 4.1392E − 06

1/256 1/160 3.3713E − 06 1.0573E − 06

1/256 1/320 1.2070E − 06 2.7011E − 07

Table 2   The obtained estimate 
errors for Ex. 1

h � Linear MQ TPS

1/4 1/1000 2.7938E − 05 1.3151E − 06 1.5266E − 05

1/8 1/1000 7.5096E − 06 3.9003E − 07 1.4025E − 06

1/16 1/1000 2.2037E − 06 2.9933E − 07 1.8558E − 07

1/32 1/1000 8.7637E − 07 2.8735E − 07 2.6881E − 07

1/64 1/1000 5.4445E − 07 2.8459E − 07 2.8195E − 07

1/4 1/10000 1.8882E − 05 1.1549E − 06 1.5478E − 05

1/8 1/10000 4.5871E − 06 1.6558E − 07 1.5981E − 06

1/16 1/10000 1.1470E − 06 3.8276E − 08 1.6708E − 07

1/32 1/10000 3.0282E − 07 2.5712E − 08 1.7850E − 08

1/64 1/10000 9.3316E − 08 2.3514E − 08 2.1710E − 08
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With this substitution, Eq. (20) is solved as a system of linear algebraic equations for unknown un = u
n,0 . Recompute

Now, Eq. (20) is solved using the new ũ for unknown un,l . We are at time level n yet and iterate between calculating ũ and 
computing the approximation values of the unknown un,l and putting

until the unknown quantity converges to within a prescribed number of the significant figures. In this paper, we will use 
the following condition for stopping the iterations in each time level:

where � is a fixed number. When this condition is satisfied, we put

and go on to the next time level. This process is iterated, until reaching the desirable time t.

Numerical simulations

To access both important parameters in numerical solution of problems, the accuracy, and the applicability of the procedure 
described in the previous section, some test examples are considered. In the following test problems, we will use the L∞ and 
the root-means-squares (RMS) errors, as defined below, to report the errors

where

(27)ũ = u
n,0.

(28)ũ = u
n,l,

(29)∥ u
n,l − u

n,l−1 ∥∞≤ �,

(30)ũ = u
n,l,

(31)

L∞ − error = max
1≤j≤N |ej|,

RMS − error =

√√√√ 1

N

N∑
j=1

|ej|2,

e = uexact − uapproximate,

ej = (uexact − uapproximate)j, j = 2, ...,N − 1.

Table 3   The estimate errors 
for Ex. 2 for different values 
of h 

h L∞ − error RMS − error

1/4 1.0914E − 03 9.5674E − 04

1/8 3.4491E − 04 2.9281E − 04

1/16 1.5805E − 04 1.2422E − 04

1/32 1.1082E − 04 8.2027E − 05

1/64 9.8895E − 05 7.1495E − 05

1/128 9.5897E − 05 6.8814E − 05

Table 4   The estimate errors 
for Ex. 2 for different values 
of �

� L∞ − error RMS − error

1/100 9.5923E − 04 6.8834E − 04

1/200 4.7752E − 04 3.4244E − 04

1/400 2.3862E − 04 1.7109E − 04

1/800 1.1965E − 04 8.5833E − 05

1/1600 6.0287E − 05 4.3306E − 05

1/3200 3.0634E − 05 2.2068E − 05
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Fig. 1   Graphs of approximated solutions along with estimate errors at times t = 1, 5, 10, 20, 40 and t = 100 obtained for Example 1 for con-
stants t = 1∕1000 , h = 1∕8 , and � = 3∕4 in −10 ≤ x ≤ 10
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Also, in this part, we assume � = 10−10.

Example 1

Consider the following Fitzhugh–Nagumo equation

subject to the initial condition

and the following boundary conditions:

The exact solution of Eq. (32) is given by [13, 57]

Table 1 shows the numerical convergence of presented method for different types of time discretization methods. The 
error norms defined by (31) on grids for different kinds of RBFs (linear, multi-quadrics (MQ), �(r) =

√
c2 + r2 , and thin 

plate spline (TPS), �(r) = r2lnr ) are reported in Table 2. Accordingly, these results with an increasing number of nodes 
are presented in Table 2. The results reveal that the error decreases when the number of nodes increases.
In addition, the results obtained for approximate solution along with estimate errors for time level t = 1, 5, 10, 20, 40 and 
t = 100 with h = 1∕8 and t = 1∕1000 in −10 ≤ x ≤ 10 are shown in Fig. 1. The new method can be applied for Eq. (32) 
with other choices of � . The space-time graph of approximate solution and related error estimate for � = −1 (the real 
Newell–Whitehead equation) in domain −10 ≤ x ≤ 10 for times t = 0.25, 0.50, 0.75 and t = 1.0 are reported in Fig. 2.

(32)ut = uxx − u(1 − u)(� − u), (x, t) ∈ [a, b] × [0, T],

(33)u(x, 0) =
1

2
+

1

2
tanh(

x

2
√
2

), x ∈ [a, b],

(34)

u(a, t) = (
1

2
+

1

2
tanh(

1

2
√
2

(a −
2� − 1√

2

t))),

u(b, t) = (
1

2
+

1

2
tanh(

1

2
√
2

(b −
2� − 1√

2

t))).

(35)u(x, t) = (
1

2
+

1

2
tanh(

1

2
√
2

(x −
2� − 1√

2

t))),
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Fig. 2   Graphs of approximated solutions (left plan) and their estimate errors (right) at times t = 0.25, 0.5, 0.75 and t = 1.0 obtained for Exam-
ple 1 for constants � = 1∕1000 , h = 1∕8 , and � = −1 in −10 ≤ x ≤ 10
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Fig. 3   Graphs of approximated solutions along with estimate errors at times t = 1 for various � = 0.25, 0.50, 0.75, 1, 1.25 and � = 1.50 
obtained for Example 2 for constants t = 1∕1000 and h = 1∕8 in −10 ≤ x ≤ 10
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Example 2

Consider the following generalized Fitzhugh–Nagumo equation with time-dependent coefficients

Also, suppose that the initial and boundary conditions are taken from the exact solution given by [13, 52]

Table 3 lists the errors for this problem using the presented method with constant parameter a = −b = 1 , � = 1 , � = 0.001 , 
t = 1 for different values of h.
In addition, with the mentioned parameters, the obtained estimate errors for fixed h = 1∕128 and for various � are reported 
in Table 4.
We also draw the approximate solutions along with estimate errors for six choices of � = 0.25, 0.50, 0.75, 1, 1.25 and 
� = 1.5 in −10 ≤ x ≤ 10 in Fig. 3. This figure shows that by increasing � , the absolute error increases. In addition, 
the approximate solution in conjunction with the exact solution for � = 0.001 , � = 1.5 , and h = 1∕4 at different times 
t = 0.25, 0.50, 0.75 and t = 1 are shown in Fig. 4.

Example 3

Consider the following generalized Fisher’s equation:

The exact solution of the above equation is given by [55, 56]

We assume that the initial and the Dirichlet boundary conditions are taken from the above exact solution. The approximate 
solutions and the estimate errors for this problem when � = 1, 2, 3, 4, 5 and � = 6 are shown in Fig. 5. As this figure shows, 
the estimate errors increase when the value of � increases.

(36)ut + cos(t)ux − cos(t)uxx − 2 cos(t)(u(1 − u)(� − u)) = 0, (x, t) ∈ [a, b] × [0, t].

(37)u(x, t) =
�

2
+

�

2
tanh(

�

2
(x − (3 − �) sin(t))).

(38)ut = uxx + u(1 − u�), (x, t) ∈ [−2, 2] × [0, 1].

(39)u(x, t) = {
1

2
tanh[−

�

2
√
� + 4

(x −
� + 4√
� + 4

t) +
1

2
] +

1

2
}2∕� .

Fig. 4   Graphs of approxi-
mated solutions along with 
exact solutions at times 
t = 0.25, 0.50, 0.75 and t = 1 
with � = 1.50 for Example 2 
for constants t = 1∕1000 and 
h = 1∕8 in −10 ≤ x ≤ 10
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Conclusion

In this article, a numerical method based on the dual reciprocity boundary elements method (DRBEM) is outlined for 
solving the one-dimensional nonlinear parabolic partial differential equations. The list of equations investigated includes 
Fisher’s equation, generalized Fisher’s equation, Allen–Cahn equation, Newell–Whithead equation, Fitzhugh–Nagumo 

Fig. 5   Graphs of approximated solutions along with estimate errors for various � = 1, 2, 3, 4, 5 and � = 6 at time t = 10 obtained for general-
ized Fisher’s equation for constants t = 1∕1000 and h = 1∕16 in −2 ≤ x ≤ 2
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equation, and generalized Fitzhugh–Nagumo equation with time variable coefficient. The dual reciprocity idea was applied 
to eliminate the domain integrals appearing in the boundary integral equation. Linear radial basis functions (RBFs) were 
used in the presented method as approximate functions. We used the implicit and Crank–Nicolson finite difference method 
in time and the boundary integral equation technique in space to discretize the main differential equation and convert 
it to a linear algebraic system of equations. The nonlinear terms are treated iteratively within each time step by using a 
simple predictor-corrector scheme. Numerical results are presented for some test problems to demonstrate the usefulness 
and accuracy of the new method.

Data availability  The data used in this research article is not applicable as no specific data sets were utilized. The conclusions and findings 
presented in this paper are based on theoretical analysis, literature review, and other relevant scholarly resources. All references cited are avail-
able in the reference section for further examination.
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