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DETERMINATION OF THE STATIC THERMOELASTIC STATE OF LAYERED 
THERMOSENSITIVE PLATE, CYLINDER, AND SPHERE 

B. V. Protsiuk  UDC 539.3 

We propose a method for the determination of static thermoelastic states of multilayer bodies of canoni-
cal shapes with regard for the thermal radiation, convective heat exchange, and arbitrary temperature 
dependences of the physical and mechanical characteristics of the material under the action of surface 
and volume heat sources.  For the solution of the corresponding heat-conduction and thermoelasticity 
problems with piecewise constant characteristics, we use the Kirchhoff transformation, Newton iterative 
method, generalized functions, and Green functions.  The results of numerical investigations are pre-
sented. 

Keywords:  thermosensitive plate, cylinder, sphere, thermal radiation, thermoelastic state, Kirchhoff 
transformation, Newton iterative method, Green functions, generalized functions. 

It is known that the presence of temperature-dependent physical and mechanical characteristics in mathe-
matical models used to describe the thermoelastic states of structural elements operating under the conditions of 
significant temperature variations leads to the necessity of solution of nonlinear problems of heat conduction and 
thermoelasticity with coordinate-dependent coefficients.  Among the methods used for their solution, an im-
portant place is occupied by numerical-analytic methods including, in particular, the methods aimed at the de-
termination of temperature fields based on the Kirchhoff transformation.  Most frequently, these methods are 
used in the problems with linear [1–3, 5, 6, 8–10, 15, 16], quadratic [3, 4, 9], or cubic [9, 13] thermal conductivi-
ty coefficients.  In [7, 15], for the solution of the corresponding problems, it was proposed to approximate physi-
cal and mechanical characteristics by piecewise constant functions of temperature.  

In [13], without using the Kirchhoff transformation, the problems of heat conduction with heat fluxes and 
temperature given on the surfaces of the first and last layers, respectively, were reduced to the solution of sys-
tems of integral Volterra equations of the second kind for any temperature dependences of the thermal conduc-
tivity coefficients. 

In the present paper, we develop the approaches proposed in [4–6, 13, 15] and generalize them to the prob-
lems of evaluation of static thermoelastic states of multilayer bodies of canonical shapes with heat sources under 
linear and nonlinear boundary conditions for any character of temperature dependences of the physical and me-
chanical characteristics of the layers whose thicknesses may be noticeably different.  

In order to determine temperature fields, it is necessary to solve the problems of heat conduction with 
boundary conditions of the first kind on one of the boundaries and of the second kind on the opposite boundary 
for any dependence of the thermal conductivity coefficients on temperature.  These problems are solved with the 
help of the Kirchhoff transformation, generalized functions, Green functions, and the Newton iterative method. 
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With the help of the solutions of these problems, the original problems are reduced to a single nonlinear algebra-
ic equation. 

To determine the thermoelastic state of the plate, we use the solution of the problem of thermoelasticity in 
stresses with boundary conditions satisfied on the cylindrical surface in the integral form. 

The distributions of displacements, strains, and stresses in isotropic cylinders and spheres are described by 
relations represented in the unified form.  We obtain them from the analytic solutions of the systems of integro-
algebraic equations (in displacements) of the problems of thermoelasticity for piecewise inhomogeneous aniso-
tropic cylinders [11] and spheres [12].  The indicated solutions are found by the method of successive approxi-
mations in which we restrict ourselves to the first approximation.  As the zero-order approximation, we take the 
exact solutions of the problems of heat conduction for the corresponding multilayer bodies with constant moduli 
of elasticity and Poisson's ratios and given temperature dependences of the coefficients of linear thermal expan-
sion. 

1. Statement and Solution of the Problems of Heat Conduction  

Assume that the bounding surfaces of the multilayer plate  (k = 0),  cylinder  (k = 1),  and sphere  (k = 2)  
occupy the domains   !x0 ≤ !x ≤ !xn,   i = 1, 2,…, n ,  where n   is the number of layers, and are either kept at tem-

peratures  tc
−   and  tc

+   or heated by convective heat exchange with media kept at temperatures  tc0   and  tcn   
and by heat fluxes with densities  q0   and  qn,  respectively.  The layers are in perfect contact and contain inter-

nal heat sources with density   w0
(i)wt

(i)( !x)  and heat fluxes with density  qj   specified on the interfaces  
 
!x = !x j,  

 j = 1, 2,…, n −1.  At the same time, the heat fluxes of self-radiation are removed from the bounding surfaces 
according to the Stefan–Boltzmann law.  We determine stationary temperature fields in these bodies with regard 
for the temperature dependences of the thermal conductivity coefficients  λt

(i)(Ti ) = λ0
(i)Λi (Ti )   of the materials 

of layers, the heat-transfer coefficients   α0(T1) = !α0α0
∗ (T1)   and   αn (Tn ) = !αnαn

∗ (Tn ),  and the emissivity fac-

tors of the surfaces   ε0(T1) = !ε0ε0
∗ (T1)   and   εn (Tn ) = !εnεn

∗ (Tn ) .  Here, the factors multiplying the functions 
have the dimensionalities of the corresponding quantities. 

Under the accepted assumptions, the mathematical model includes the following relations represented in the 
dimensionless form: 

 – the heat-conduction equations: 

 1
xk

d
dx

xkΛi (Ti )
λ0
(i)

λ0
(1)

dTi
dx

⎡

⎣
⎢

⎤

⎦
⎥ = −Poi wt

(i)(x) ,      k = 0,1, 2 ,     i = 1, 2,…, n , (1) 

 – the conditions of contact between the layers: 

 Λ j+1(Tj+1)
λ0
( j+1)

λ0
(1)

dTj+1

dx
− Λ j (Tj )

λ0
( j )

λ0
(1)

dTj

dx
= −Ki j ,  

   (2) 
 Tj+1 = Tj ,      x = x j ,     j = 1, 2,…, n −1 ,   



680 B. V. PROTSIUK 

 – the boundary conditions for  x = x0 :  

 T1 x=x0
= tc

−  (3) 

  or 

 Λ1(T1)
dT1
dx

− Bi0 α0(T1)(T1 − tc0 ) − Sk0 ε0(T1)T1
4⎛

⎝⎜
⎞
⎠⎟ x=x0

= −Ki0, (4) 

 – the boundary conditions for  x = xn :  

 Tn x=xn
= tc

+  (5) 

or  

 Λn (Tn )
dTn
dx

+ Bin αn (Tn )(Tn − tcn ) + Skn εn (Tn )Tn
4⎛

⎝⎜
⎞
⎠⎟ x=xn

= Kin, (6) 

and also some other versions of boundary conditions that can be obtained by combining the values  Bip = 0   and  
Sk p = 0 ,  p = 0, n.  
 Here,   

 Ti = Ti
Ts

,      
  
x =
!x
ℓ

,      
  
x j =

!x j

ℓ
,     j = 0,1,…, n , 

 
 
Poi = ℓ

2w0
(i)

λ0
(1)Ts

,      
  
Bi0 = ℓ

!α0
λ0
(1) ,      

  
Bin = ℓ

!αn
λ0
(n) ,  

 
  
Sk0 = ℓ

!ε0σ0
λ0
(1) Ts

3 ,      
  
Skn = ℓ

!εnσ0
λ0
(n) Ts

3 ,      
 
Ki0 = ℓq0

λ0
(1)Ts

,      
 
Kin = ℓqn

λ0
(n)Ts

, 

 Λi (T ),α p (T ), εp (T )⎡⎣ ⎤⎦ = Λi (T ),α p
∗ (T ), ε p

∗ (T )⎡⎣ ⎤⎦ T =TsT
,   p = 0, n ,     wt

(i)(x) = wt
(i)(xℓ) ,   i = 1, 2,…, n ,   

 
 
Ki j =

ℓqj

λ0
(1)Ts

,     j = 1, 2,…, n −1 ,      tcp =
tcp
Ts

,      tc
± = tc

±

Ts
,   

σ0  is the Stefan–Boltzmann constant,  Ts   is the typical temperature of the problem, and   ℓ   is a parameter with 
dimensionality of length. 
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The temperature fields are determined depending on the version of boundary conditions with the help of an-
alytic solutions of the following two problems: 

Problem 1.  We determine the temperature distributions 

 Ti = Ti
(k ) x, Ki0

*(k ),Tcn
(k )( ) ,      k = 0,1, 2,     i = 1, 2,…, n, (7) 

satisfying Eqs. (1), the contact conditions (2), and the boundary conditions 

 Λ1(T1
(k ) ) dT1

(k )

dx
⎡

⎣
⎢

⎤

⎦
⎥

x=x0

= −Ki0
*(k ), (8) 

 Tn
(k )

x=xn
= Tcn

(k ), (9) 

where  Ki0
*(k )   and  Tcn

(k )   are unknown values of the dimensionless heat flux and temperature, respectively, on 
the surfaces  x = x0   and  x = xn.   

By using the Kirchhoff transformation  

 θi
(k ) = Λi (ζ) dζ

T∗

Ti
(k )

∫ , (10) 

we reduce the problem of finding these temperature distributions to the solution of the problems for the Kirch-
hoff variables containing  Ki0

*(k )   and  Tcn
(k )   as parameters: 

 1
xk

d
dx

xk λ0
(i)

λ0
(1)

dθi
(k )(x)
dx

⎛
⎝⎜

⎞
⎠⎟
= −Poi wt

(i)(x),      k = 0,1, 2,     i = 1, 2,…, n, (11) 

 ⎛
⎝⎜
λ0
( j+1)

λ0
(1)

dθ j+1
(k )

dx
− λ0

( j )

λ0
(1)

dθ j
(k )

dx
⎞
⎠⎟

x=x j

= −Ki j, (12) 

 θ j+1
(k ) − θ j

(k )( ) x=x j
= Fj+1

(k ) ,      x = x j,     j = 1, 2,…, n −1, (13) 

 dθ1
(k )

dx x=x0

= −Ki0
*(k ) ,      θ(k )

x=xn
= θcn

(k ) , (14) 

where  



682 B. V. PROTSIUK 

 Fj+1
(k ) = Λ j+1(ζ)− Λ j (ζ)⎡⎣ ⎤⎦ dζ

T∗

Tj+1
(k ) x j , Ki0

*(k ),Tcn
(k )( )

∫ , (15) 

 θcn
(k) = Λn (ζ) dζ

T∗

Tcn
(k )

∫ ,      T∗ =
T∗
Ts

, 

and  T∗   is the lower bound of the temperature range of variations of thermophysical characteristics. 
Note that only contact conditions (13) are nonlinear in problems (11)–(14). 
Further, we introduce the following functions: 

 θ(k )(x) = θ1
(k )(x) + θi+1

(k ) (x)− θi
(k )(x)⎡⎣ ⎤⎦ S(x − xi )

i=1

n−1

∑ ,  

 λ0(x) = λ0
(1)(x) + λ0

(i+1)(x)− λ0
(i)(x)⎡⎣ ⎤⎦ S(x − xi )

i=1

n−1

∑ , 

   (16) 

 Po(x) = Po1(x) + Poi+1(x)− Poi (x)[ ]S(x − xi )
i=1

n−1

∑ ,  

 wt (x) = wt
(1)(x) + wt

(i+1)(x)−wt
(i)(x)⎡⎣ ⎤⎦ S(x − xi )

i=1

n−1

∑ , 

where  S(ζ)   is the Heaviside function and, for any value of  k ,  k = 0,1, 2,  consider the following equation with 
generalized derivatives equivalent to the system of equations (11) and the contact conditions (12) and (13): 

 d
dx

xk λ0(x)
λ0
(1)

dθ(k )

dx
⎡

⎣
⎢

⎤

⎦
⎥ = − x j

k Ki j δ(x − x j )
j=1

n−1

∑   

  +  Fj+1
(k ) d

dx
λ0(x)
λ0
(1) xkδ(x − x j )

⎡

⎣
⎢

⎤

⎦
⎥

j=1

n−1

∑ − xk Po(x)wt (x) . (17) 

Here,  δ(ζ)   is the Dirac delta-function.  Problems (17) and (14) are solved by using the Green functions 

 G(k )(x,ρ) = f (k )(xn )− f (k )(x)⎡⎣ ⎤⎦ S(x −ρ) + f (k )(xn )− f (k )(ρ)⎡⎣ ⎤⎦ S(ρ− x), (18) 

which are solutions of the following problems: 
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 d
dx

xk λ0(x)
λ0

(1)
dG(k )(x,ρ)

dx
⎡

⎣
⎢

⎤

⎦
⎥ = −δ(x −ρ), (19) 

 dG(k )(x,ρ)
dx x=x0

= 0,      G(k )(x,ρ) x=xn
= 0. (20) 

Here, 

 f (0)(x) = x + H j (x − x j )S(x − x j )
j=1

n−1

∑ ,  

 f (1)(x) = ln x + H j ln
x
x j

S(x − x j )
j=1

n−1

∑ ,  

 f (2)(x) = −1
x
− H j

1
x
− 1
x j

⎛

⎝⎜
⎞

⎠⎟
S(x − x j )

j=1

n−1

∑ ,  

 H j = λ0
(1)

λ0
( j+1) − λ0

(1)

λ0
( j ) .  

Multiplying both sides of Eq. (17) by the function  G(k )(x,ρ),  after necessary transformations, we get 

 d
dx

xkG(k )(x,ρ) λ0(x)
λ0

(1)
dθ(k )

dx
⎡

⎣
⎢

⎤

⎦
⎥ −

d
dx

xk dG
(k )(x,ρ)
dx

λ0(x)
λ0

(1) θ(k )⎡

⎣
⎢

⎤

⎦
⎥   

   + d
dx

xk dG
(k )(x,ρ)
dx

λ0(x)
λ0

(1)
⎡

⎣
⎢

⎤

⎦
⎥ θ

(k )   

  =  − x j
k Ki j G

(k )(x,ρ)δ(x − x j )
j=1

n−1

∑   

   + Fj+1
(k ) d

dx
λ0(x)
λ0

(1) xkG(k )(x,ρ)δ(x − x j )
⎡

⎣
⎢

⎤

⎦
⎥

j=1

n−1

∑   

   – Fj+1
(k ) dG(k )(x,ρ)

dx
λ0(x)
λ0

(1) xkδ(x − x j )
j=1

n−1

∑   

   – xkG(k )(x,ρ) Po(x)wt (x). (21) 
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We now integrate Eq. (21) from  x0  to  xn   and take into account (19), the boundary conditions (12), (14), 
and (20), and the identity 

 xk λ0(x)
λ0

(1)
dG(k )(x,ρ)

dx
= −S(x −ρ) .  

Interchanging the arguments  x   and  ρ   in the obtained relation, we get 

 θ(k )(x) = θcn
(k ) + x0

k Ki0
*(k ) f (k )(xn )− f (k )(x)⎡⎣ ⎤⎦   

  + x j
k Ki j G

(k )(x,ρ)
ρ=x jj=1

n−1

∑  – Fj+1
(k )S(x j − x)

j=1

n−1

∑ + W (k )(x), (22) 

where 

 W (k )(x) = ρkG(k )(x,ρ) Po(ρ)wt (ρ) dρ
x0

xn

∫   

  =  f (k )(xn ) ρk Po(ρ)wt (ρ) dρ
x0

xn

∫   

   – f (k )(x) ρk Po(ρ)wt (ρ) dρ
x0

x

∫ − ρk Po(ρ)wt (ρ) f
(k )(ρ) dρ

x

xn

∫ .  

In each layer  n,   n −1,…,1,  the Kirchhoff variables are determined by using the following formulas de-
rived from (22): 

 θn
(k )(x) = θcn

(k ) + x0
k Ki0

*(k ) fn
(k )(xn )− fn

(k )(x)⎡⎣ ⎤⎦   

  +  x j
k Ki j Gi

(k )(x, x j )
j=1

n−1

∑ + Wn
(k )(x) ,  

   (23) 

 θi
(k )(x) = θcn

(k ) + x0
k Ki0

*(k ) fn
(k )(xn )− fi

(k )(x)⎡⎣ ⎤⎦   

  + x j
k Ki j Gi

(k )(x, x j )
j=1

n−1

∑  – Fj+1
(k )

j=i

n−1

∑ + Wi
(k )(x),     i = n −1, n − 2,…,1, 
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where  

 fi
(0)(x) = λ0

(1)

λ0
(i) x − H jx j

j=1

i−1

∑ ,      fi
(1)(x) = λ0

(1)

λ0
(i) ln x − H j ln x j

j=1

i−1

∑ , 

 fi
(2)(x) = − λ0

(1)

λ0
(i)

1
x
+ H j

1
x jj=1

i−1

∑ ,  

  
Gi

(k )(x, x j ) = [ f j
(k )(x j )− fi

(k )(x)]S(x − x j ) + fn
(k )(xn ) − f j

(k )(x j ),  

 Wi
(k )(x) = fn

(k )(xn ) ρk Pom wt
(m)(ρ) dρ

xm−1

xm

∫
m=1

n

∑   

  – fi
(k )(x) ρk Pom wt

(m)(ρ) dρ
xm−1

xm

∫
m=1

i−1

∑
⎡

⎣
⎢
⎢

  +  ρk Poi wt
(i)(ρ) dρ

xi−1

x

∫
⎤

⎦
⎥
⎥

  

  – ρk Poi wt
(i)(ρ) dρ

x

xi

∫ + ρk Pom wt
(m)(ρ) dρ

xm

xm

∫
m=i

n

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.  

By using (23), on the interfaces  x = xn−1,   x = xn−2,… ,  x = x1,  we obtain  

 θn
(k )

x=xn−1
= θcn

(k ) + x0
k Ki0

∗ fn
(k )(xn )− fn

(k )(xn−1)⎡⎣ ⎤⎦   

  + x j
k Ki j Gn

(k )(xn−1, x j )
j=1

n−1

∑ + Wn
(k )(xn−1),  

 θn−1
(k )

x=xn−2
= θcn

(k ) + x0
k Ki0

∗ fn
(k )(xn )− fn−1

(k )(xn−2 )⎡⎣ ⎤⎦   

  + x j
k Ki j Gn−1

(k ) (xn−2, x j ) − Fn
(k )

j=1

n−1

∑ + Wn−1
(k )(xn−2 ),  (24) 

  ……………………………………………………………… ,  

 θ2 x=x1
= θc + x0

k Ki0
∗ f (k )(xn )− f2

(k )(x1)⎡⎣ ⎤⎦   

  + x j
k Ki j G2

(k )(x1, x j )
j=1

n−1

∑ − Fj+1
(k )

j=1

n−1

∑ + W2
(k )(x1) . 
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For known  Kirchhoff variables, we determine the temperature distributions as follows:  

 Ti
(k ) x, Ki0

∗
0
*(k ),Tcn

(k )( ) = ϑi
(k )(x) + T∗ ; (25) 

in layers starting from i = n ,  by using equality (15) and the roots of the algebraic equations, we find  

 Ψi ϑi
(k )(x)( ) − θi

(k )(x) = 0,     i = n, n −1,…,1 , (26) 

where   

 Ψi ϑi
(k)(x)( ) = !Λi (η) dη

0

ϑi
(k ) (x)

∫ ,         
!Λi(ϑi

(k )) = Λi(Ti
(k )) . 

We determine the solutions of Eqs. (26) for fixed values of  x   by the Newton iterative method.  According 
to this method, the formula for the (m +1) th approximation takes the form 

 
 

ϑi,m+1
(k ) (x) = ϑi,m

(k ) (x) −
Ψi ϑi,m

(k ) (x)( )− θi(k )(x)
!Λi ϑi,m

(k ) (x)( ) . (27) 

To determine the values of temperature for the other versions of boundary conditions, it is necessary to sub-
stitute the values of  Ki0

*(k )  and  Tcn
(k )  determined from these conditions in relations (7).  In particular, for the 

boundary conditions (4) and (6), we obtain 

  Ki0
*(k ) = ϕn(Tcn(k )), (28) 

where 

 
 

ϕn(Tcn
(k )) = − Ki j

x j

x0
⎛
⎝⎜

⎞
⎠⎟
k

j=1

n−1

∑ − 1
x0
k Poi

i=1

n

∑ ρkwt
(i)(ρ) dρ

xi−1

xi

∫   

  + 
 

xn
x0

⎛
⎝⎜

⎞
⎠⎟
k λ0

(n)

λ0
(1) Bin αn(Tcn

(k ))(Tcn
(k ) − tcn) + Skn εn(Tcn

(k ))(Tcn
(k ))4 −Kin⎡⎣ ⎤⎦ ,  

and  Tcn
(k )   is the root of the equation 

 Ki0
*(k )+Bi0 α0(T1) T1=T1(k ) (x0 ,Ki0

*(k ),Tcn
(k ) ) T1

(k )(x0, Ki0
*(k ),Tcn

(k ) )− tc0⎡⎣ ⎤⎦{   
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  + Sk0 ε0(T1) T1=T1(k ) x0 , Ki0
*(k ),Tcn

(k )( )   

  × 
 
T1

(k )(x0, Ki0
*(k ),Tcn

(k ))⎡⎣ ⎤⎦
4}

Ki0
∗
0
*(k )=ϕn (Tcn

(k ) )
− Ki0 = 0. (29) 

We determine the root  Tcn
(k )   by the bisection method.  Moreover, for each approximation  Tcn

(k ),  we com-

pute the values of  Ki0
*(k )  by using relation (28) and determine   T1

(k )(x0, Ki0
∗
0
*(k ),Tcn

(k ))  with regard for (15), (24), 
(25), (27), and (23) with  i = 1.  

Problem 2.  In the cases where either the temperature is given on the surface  x = x0  and condition (6) is 

given on the surface  x = xn   or condition (4) is given on the surface  x = x0  and the heat flux  Kin
∗(k )  is given 

on the surface  x = xn,  the problem of finding temperature fields is significantly simplified if, instead of (7), we 
determine the temperature distributions 

  Ti
∗ = Ti

∗(k )(x, Kin
∗(k ),Tc0

(k )) ,      k = 0,1, 2,     i = 1, 2,…, n , (30) 

satisfying Eqs. (1), the contact conditions (2), and the boundary conditions 

 T1
∗(k )

x=x0
= Tc0

∗(k ),  

   (31) 

 
 

Λn(Tn∗(k ))
dTn

∗(k )

dx
⎡

⎣
⎢

⎤

⎦
⎥

x=xn

= Kin
∗(k )  

different from (8) and (9). 
We obtain the temperature distributions  Ti

∗(k )  (30) by using the same scheme (7) of finding the distribu-
tions as in Problem 1. 

The Kirchhoff variables 

 θi
∗(k ) = Λi (ζ) dζ

T∗

Ti
∗(k )

∫  (32) 

are determined from the equation 

 d
dx

xk λ0(x)
λ0
(1)

dθ∗(k )

dx
⎡

⎣
⎢

⎤

⎦
⎥ = − x j

k Ki j δ(x − x j )
j=1

n−1

∑   

  + Fj
∗(k ) d

dx
λ0(x)
λ0
(1) xkδ(x − x j )

⎡

⎣
⎢

⎤

⎦
⎥

j=1

n−1

∑ − xk Po(x)wt (x)  (33) 



688 B. V. PROTSIUK 

and the boundary conditions 

 θ∗(k )
x=x0

= θc0
∗(k ),      dθ

∗(k )

dx x=xn

= Kin
∗(k ). (34) 

Here, 

 Fj
∗(k ) = Λ j+1(ζ)− Λ j (ζ)⎡⎣ ⎤⎦dζ

T∗

Tj
∗(k ) x, Kin

∗(k ),Tc0
(k )( )

∫ ,      θc0
∗(k ) = Λ1(ζ) dζ

T*

Tc0
∗(k )

∫ . (35) 

The corresponding Green functions, which are solutions of the problems 

 d
dx

xk λ0(x)
λ0

(1)
dG(k )(x,ρ)

dx
⎡

⎣
⎢

⎤

⎦
⎥ = − δ(x −ρ), (36) 

 G(k )(x,ρ)
x=x0

= 0,      dG
(k )(x,ρ)
dx x=xn

= 0, (37) 

have the following form: 

 G(k )(x,ρ) = f (k )(x)− f (k )(x0 )⎡⎣ ⎤⎦ S(ρ− x)   

  + f (k )(ρ)− f (k )(x0 )⎡⎣ ⎤⎦ S(x −ρ) . (38) 

After transformations similar to that used in the previous problem but with regard for Eq. (36), the identity 

 xk λ0(x)
λ0

(1)
dG(k )(x,ρ)

dx
= S(ρ− x),  

and the boundary conditions (34) and (37), we obtain  

 θ∗(k )(x) = xn
k Kin

∗(k ) f (k )(x)− f (k )(x0 )⎡⎣ ⎤⎦
λ0
(n)

λ0
(1) + θc0

(k )   

  + x j
k Ki j G

(k )(x,ρ)
ρ=x jj=1

n−1

∑ + Fj
∗(k )S(x − x j )

j=1

n−1

∑ + W (k )(x), (39) 

where 
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 W (k )(x) = ρkG(k )(x,ρ) Po(ρ)wt (ρ) dρ
x0

xn

∫   

  =  f (k )(x)− f (k )(x0 )⎡⎣ ⎤⎦ ρk Po(ρ)wt (ρ) dρ
x0

xn

∫   

   + f (k )(ρ)− f (k )(x)⎡⎣ ⎤⎦ ρ
k Po(ρ)wt (ρ) dρ

x0

x

∫ .  

To find the Kirchhoff variables in each layer   1, 2,…, n ,  we derive the following formulas from equality 
(39): 

 θ1
∗(k )(x) = xn

k Kin
∗(k ) f1

(k )(x)− f1
(k )(x0 )⎡⎣ ⎤⎦

λ0
(n)

λ0
(1)   

  +  θc0
∗(k )  + x j

k Ki j G1
(k )(x, x j )

j=1

n−1

∑ + W1
(k )(x),  

   (40) 

 θi
∗(k )(x) = xn

k Kin
∗(k ) fi

(k )(x)− f1
(k )(x0 )⎡⎣ ⎤⎦

λ0
(n)

λ0
(1) + θc0

∗(k )   

  + x j
k Ki j Gi

(k )(x, x j )
j=1

n−1

∑ + Fj
∗(k )

j=1

i−1

∑ + Wi
(k )(x) ,     i = 2,…, n, 

where 

 Gi
(k )(x, x j ) = f j

(k )(x j )− fi
(k )(x)⎡⎣ ⎤⎦ S(x − x j ) + fi

(k )(x) − f1
(k )(x0 ),  

 Wi
(k )(x) = fi

(k )(x)− f1
(k )(x0 )⎡⎣ ⎤⎦ ρk Pomwt

(m)(ρ) dρ
xm−1

xm

∫
m=1

n

∑   

  + fm
(k )(ρ)ρk Pomwt

(m)(ρ)
xm−1

xm

∫ dρ
m=1

i−1

∑
⎡

⎣
⎢
⎢

  

  + fi
(k )(ρ)ρk Poi wt

(i)(ρ)
xi−1

x

∫ dρ
⎤

⎦
⎥
⎥
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  – fi
(k )(x) ρk Pomwt

(m)(ρ)
xm−1

xm

∫ dρ
m=1

i−1

∑ + ρk Poi wt
(i)(ρ) dρ

xi−1

x

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.  

To determine the Kirchhoff variables on the interfaces  x = x1,  x = x2,…,   x = xn−1,  we derive the follow-
ing relations from (40): 

 θ1
∗(k )(x1) = xn

k Kin
∗(k ) f1

(k )(x1)− f1
(k )(x0 )⎡⎣ ⎤⎦

λ0
(n)

λ0
(1) + θc0

∗(k )   

  + x j
k Ki j G1

(k )(x1, x j )
j=1

n−1

∑ + W1
(k )(x1),  

 θ2
∗(k )(x2 ) = xn

k Kin
∗(k ) f2

(k )(x2 )− f1
(k )(x0 )⎡⎣ ⎤⎦

λ0
(n)

λ0
(1) + θc0

∗(k )   

  + x j
k Ki j G2

(k )(x2, x j ) + F1
∗(k )

j=1

n−1

∑ + W2
(k )(x2 ) ,  (41) 

 ………………………………………………………………………, 

 θn−1
∗(k )(xn−1) = xn

k Kin
∗(k ) fn−1

(k )(xn−1)− f1
(k )(x0 )⎡⎣ ⎤⎦

λ0
(n)

λ0
(1) + θc0

∗(k )   

  + x j
k Ki j Gn−1

(k ) (xn−1, x j )
j=1

n−1

∑ + Fj
∗(k )

j=1

n−2

∑ + Wn−1
(k )(xn−1). 

The temperature distributions   Ti
∗(k )(x, Kin

∗(k ),Tc0
(k )) = ϑi

∗(k )(x)+T∗  in the layers starting from  i = 1   are 
found by using (35) and the roots of the algebraic equations 

 Ψi ϑi
∗(k )(x)( )− θi

∗(k )(x) = 0,     i = 1, 2,…, n. 

As in the previous problem, we apply the Newton iterative method to find the roots of this equation for 
fixed values of  x .  As a result, for the (m +1) th approximation, we get 

 
  

ϑi,m+1
∗(k ) (x) = ϑi,m

∗(k )(x) −
Ψ(ϑi,m

∗(k )(x))− θi
∗(k )(x)

!Λi(ϑi,m
∗(k )(x))

. (42) 

To compute temperatures, e.g., for the boundary conditions (3) and (6), it is necessary to substitute in (30) 
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solely the values of  Kin
∗(k )  determined from the equation 

 Kin
∗(k ) + Bin αn (Tn )(Tn − tcn ) + Skn εn (Tn )Tn

4⎡⎣ ⎤⎦ Tn=Tn
∗(k ) xn , Kin

∗(k ), tc
−( ) = Kin . 

The root  Kin
∗(k )  of this equation is determined by the bisection method.  Moreover, the temperature  

 Tn
∗(k )(xn , Kin

∗(k ), tc
−)  for each approximation  Kin

∗(k )  is found by using relations (35), (41), (43), and (40) with  
i = n.  

2.  Determination of the Thermoelastic State 

Assume that the studied bodies are free of force loads, the elasticity moduli 
 
Ep(Tp(k )),  Poisson's ratios  

 
νp(Tp

(k )),  and the coefficients of linear thermal expansion 
 
αtp(Tp

(k ))  of their components are functions of tem-
perature, and the thermal strains are given by the formulas 

 Φrp
(k )(x) = αtp (ζ) dζ

T∗

Tp
(k ) (x)

∫ .  

The temperature stresses acting in a circular plate are given by the relations obtained in [15] 

 σ p
(0) = σrp

(0) = σϕp
(0) = Ep

(0)(z) C1 + zC2 −Φrp
(0)(z)⎡⎣ ⎤⎦ ,     p = 1, 2,…, n, (43) 

where 

 C1 = d1a22 − d2a12
d3

,      C2 = d2a11 − d1a12
d3

, 

 a11 = Ei
(0)(z) dz

xi−1

xi

∫
i=1

n

∑ ,      a12 = zEi
(0)(z) dz

xi−1

xi

∫
i=1

n

∑ , 

 a22 = z2Ei
(0)(z) dz

xi−1

xi

∫
i=1

n

∑ ,      d3 = a11a22 − a12
2 , 

 d1 = Ei
(0)(z)Φri

(0)(z) dz
xi−1

xi

∫
i=1

n

∑ ,      d2 = zEi
(0)(z)Φri

(0)(z) dz
xi−1

xi

∫
i=1

n

∑ , 
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Ep

(0)(z) =
Ep(Tp

(0))
1− νp(Tp

(0))
.  

To determine the temperature stresses formed in a cylinder (with fastened faces) and in a sphere, we use the 
following relations:  

 σrp
(k ) = cp

(k )(ρ)
dup

(k )(ρ)
dρ

+ kνp
*(k )(ρ)

up
(k )(ρ)
ρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− cp

∗(k )(ρ)Φrp
(k )(ρ),  

   (44) 

 σϕp
(k ) = cp

(k )(ρ) νp
∗(k )(ρ)

dup
(k )(ρ)
dρ

+ 1
1− νp

(k )(ρ)

⎛

⎝
⎜

⎞

⎠
⎟

k−1
up
(k )(ρ )
ρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− ci

∗(k )(ρ)Φrp
(k )(ρ),  

 
where the displacements normalized by   ℓ   and the corresponding strains are determined by the formulas estab-
lished in [11, 12]:  

 up
(k )(ρ) =

utp
(k )(ρ)

cp
(k )(ρ)

+
L1p
(k )ϕ2 p

(k )(ρ)+ L2 p
(k )ϕ1p

(k )(ρ)
4qk

2Qkcp
(k )(ρ)

  

  +  
Vp

(1k )(ρ)+Vp
(2k )(ρ)

2qkcp
(k )(ρ)

+
gup
(ik )(ρ)
cp
(k )(ρ)

ui
(k )(ri )

i=1

n−1

∑ , (45) 

 
dup

(k )(ρ)
dρ

=
εtp
(k )(ρ)
cp
(k )(ρ)

+
L1p
(k )ϕ4 p

(k )(ρ)+ L2 p
(k )ϕ3p

(k )(ρ)
4qk

2Qkcp
(k )(ρ)

  

  –  
kVp

(1k )(ρ)−Vp
(2k )(ρ)

2qkρcp
(k )(ρ)

+
gεp
(ik )(ρ)

ρcp
(k )(ρ)

ui
(k )(ri )

i=1

n−1

∑ , (46) 

where  

 cp
(k )(ρ) =

Ep
(k )(ρ) 1− νp

(k )(ρ)⎡⎣ ⎤⎦
1+ νp

(k )(ρ)⎡⎣ ⎤⎦ 1− 2νp
(k )(ρ)⎡⎣ ⎤⎦

,      cp
∗(k )(ρ) =

Ep
(k )(ρ)

1− 2νp
(k )(ρ)

, 

 
 
Ep

(k )(ρ) = Ep(Tp(k )(ρ)),      
 
νp

(k )(ρ) = νp(Tp
(k )(ρ)),      νp

∗(k )(ρ) =
νp
(k )(ρ)

1− νp
(k )(ρ)

,  

 utp
(k )(ρ) =

R1p
(k )ϕ2 p

(k )(ρ)− R2 p
(k )ϕ1p

(k )(ρ)
(k +1)Qk

+ 1
ρk

Jtp
(k )(ρ),  
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 εtp
(k )(ρ) =

R1p
(k )ϕ4 p

(k )(ρ)− R2 p
(k )ϕ3p

(k )(ρ)
(k +1)Qk

− k
ρk+1 Jtp

(k )(ρ) + cp
∗ (ρ)Φrp

(k )(ρ),  

 R1p
(k ) = M1 j

(k )+Jtj
(k )(rj )

j=1

p−1

∑ ,      R2 p
(k ) = M2 j

(k )−Jtj
(k )(rj )

j= p

n

∑
c0 p
(k )

rj
2qk c0 j

(k ) , 

 ϕ1p
(k )(ρ) = M1p

(k )+ρ + M1p
(k )− rp−1

k+1

ρk
,      ϕ3p

(k )(ρ) = M1s
(k )+ − kM1p

(k )− rp−1
ρ

⎛
⎝⎜

⎞
⎠⎟
k+1

, 

 ϕ2 p
(k )(ρ) = M2 p

(k )+ 1
ρk

− M2 p
(k )− ρ

rp
k+1 ,      ϕ4 p

(k )(ρ) = − kM2 p
(k )+ 1

ρk+1
− M2 p

(k )− 1
rp
k+1 , 

 Jtp
(k )(ρ) = rkcp

∗(k )(r)Φrp
(k )(r) dr

rp−1

ρ

∫ ,      p = 1, 2,…, n, 

 Qk = Φn
(k1)(rn ) + βn

(k )Φn
(k0)(rn ),       

M11
(k )± = 2qk qk ∓β1

(k )( ) , 

 M1p
(k )± = Φ p−1

(k0)(rp−1) qk ± Kp
(k )( ) ± Φ p−1

(k1)(rp−1)Kcp
(k ),  

 Φ1
(km)(r) = qk

m qk −β1
(k ) + (−1)m (qk +β1

(k ) ) r0
r

⎛
⎝

⎞
⎠

2qk⎡

⎣
⎢

⎤

⎦
⎥ ,  

 Φ p
(km)(r) = Φ p−1

(k0)(rp−1) fp1
(km)(r) + Φ p−1

(k1)(rp−1) fp2
(km)(r) ,  

 
 
fp1
(km)(r) = 1

2qk
1−m qk + Kp

(k ) + (−1)m(qk − Kp
(k ))

rp−1
r

⎛
⎝⎜

⎞
⎠⎟
2qk⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,  

 fp2
(km)(r) =

Kcp
(k )

2qk
1−m 1− (−1)m

rp−1
r

⎛
⎝⎜

⎞
⎠⎟
2qk⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,      Kp
(k ) = Kcp

(k )β p−1
(k ) − β p

(k ), 

 m = 0,1,      p = 2, 3,…, n,     q1 = 1,      q2 = 3/2, 

 M2 p
(k )± = κnp

(k2) + βn
(k )κnp

(k1) ± qk κnp
(k4) +βn

(k )κnp
(k3)( ) ,  

 Kcp
(k ) =

c0, p−1
(k )

c0 p
(k ) ,      β p

(1) = ν0 p
∗(k ),      β p

(2) =
5ν0 p

(2) −1
2 1− ν0 p

(2)( ) ,  
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 c0 p
(k ) =

E0 p
(k ) 1− ν0 p

(k )( )
1+ ν0 p

(k )( ) 1− 2ν0 p
(k )( ) ,      ν0 p

∗(k ) =
ν0 p
(k )

1− ν0 p
(k ) ,      p = 1, 2,…, n,  

 κii
(k1) = κii

(k4) = 1,      κii
(k2) = κii

(k3) = 0, 

 κn,i
(k1) = fn1

(k0)(rn )κn−1,i
(k1) + fn2

(k0)(rn )κn−1,i
(k2) ,  

 κn,i
(k2) = fn1

(k1)(rn )κn−1,i
(k1) + fn2

(k1)(rn )κn−1,i
(k2) ,  

 κn,i
(k3) = fn1

(k0)(rn )κn−1,i
(k3) + fn2

(k0)(rn )κn−1,i
(k4) ,  

 κn,i
(k4) = fn1

(k1)(rn )κn−1,i
(k3) + fn2

(k1)(rn )κn−1,i
(k4) ,      i = n, n −1,…,1, 

 L1p
(k ) = H1p

(k ) + 4kqk
2γ1

(k )r0
ku1

(k )(r0 ) ,      L2 p
(k ) = H2 p

(k ) − 2kqkγ n
(k )un

(k )(rn )
c0 p
(k )

rnc0n
(k ) , 

 γ1
(k ) = ν1

∗(k )(r0 )− ν01
∗(k )⎡⎣ ⎤⎦ c1

(k )(r0 ) ,      γ n
(k ) = νn

∗(k )(rn )− ν0n
∗(k )⎡⎣ ⎤⎦ cn

(k )(rn ) , 

 H1p
(k ) = rj

kM1 j
(k )+Vj

(1k )(rj )
j=1

p−1

∑ + rj−1
k M1 j

(k )−Vj
(2k )(rj−1)

j=1

p

∑ ,  

 H2 p
(k ) = M2 j

(k )+Vj
(2k )(rj−1)

c0 p
(k )

rj−1c0 j
(k )

j= p+1

n

∑ − M2 j
(k )−Vj

(1k )(rj )
c0 p
(k )

rjc0 j
(k )

j= p

n

∑ ,  

 gup
(ik )(ρ) =

2qkri
kK11

(ik )g2up
(ki)(ρ)− g1up

(ki)(ρ)
4qk

2Qk
,  

 gεp
(ik )(ρ) =

2qkri
kK11

(ik )g2εp
(ki)(ρ)− g1εp

(ki)(ρ)
4qk

2Qk
,  

 g1up
(ik )(ρ) =

b2 p
(ik )ϕ1p

(k )(ρ)
c0 p

c0i
, p ≤ i,

b1p
(ik )ϕ2 p

(k )(ρ), p > i,

⎧

⎨
⎪

⎩
⎪
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 g2up
(ik ) (ρ) =

−ri+1
−k−1M2,i+1

(k )− ϕ1p
(k )(ρ)

c0 p
c0,i+1

, p < i +1,

M1,i+1
(k )+ϕ2 p

(k )(ρ), p ≥ i +1,

⎧

⎨
⎪

⎩
⎪

  

 g1εp
(ik )(ρ) =

b2 p
(ik )ϕ3p

(k )(ρ)
c0 p

c0i
, p ≤ i,

b1p
(ik )ϕ4 p

(k )(ρ), p > i,

⎧

⎨
⎪

⎩
⎪

  

 g2εp
(ik )(ρ) =

−ri+1
−k−1M2,i+1

(k )− ϕ3p
(k )(ρ)

c0 p
c0,i+1

, p < i +1,

M1,i+1
(k )+ϕ4 p

(k )(ρ), p ≥ i +1,

⎧

⎨
⎪

⎩
⎪

  

 
 
b2 p
(ik ) = 1

ri
m0i

(k )m2i
(1k ) −(1− K0c

(k,i+1))ci
(k )(ri )m2i

(2k )⎡⎣ ⎤⎦,      K0c
(k,i+1) = c0i

(k )

c0,i+1
(k ) , 

 
 
b1p
(ik ) = ri

k m0i
(k )m1i

(1k ) +(1− K0c
(k,i+1))ci

(k )(ri )m1i
(2k )⎡⎣ ⎤⎦ ,  

 
 
m0i

(k ) = k K11
(ik ) − K12

(ik ) +(ν0,i+1
∗(k ) − ν0,i

∗(k )K0c
(k,i+1))ci

(k )(ri )⎡⎣ ⎤⎦ ,  

 K11
(ik ) = ci+1

(k )(ri ) − ci
(k )(ri ) ,      K12

(ik ) = νi+1
∗(k )(ri )ci+1

(k )(ri ) − νi
∗(k )(ri )ci

(k )(ri ) , 

 m1i
(1k ) = M1i

(k )+ + M1i
(k )− ri−1

ri
⎛
⎝⎜

⎞
⎠⎟
k+1

,      m1i
(2k ) = M1i

(k )+ − kM1i
(k )− ri−1

ri
⎛
⎝⎜

⎞
⎠⎟
k+1

, 

 m2i
(1k ) = M2i

(k )+ − M2i
(k )−,      m2i

(2k ) = kM2i
(k )+ + M2i

(k )−, 

 Vp
(1k )(ρ) = cp

(1k )(ρ)up
(k )(ρ) − cp

(1k )(rp−1)up
(k )(rp−1)

rp−1
ρ

⎛
⎝⎜

⎞
⎠⎟
k
− 1
ρk

Up
(1k )(r)rk dr

rp−1

ρ

∫ ,  

 Vp
(2k )(ρ) = −kcp

(2k )(rp )up
(k )(rp )

ρ
rp

+ kcp
(2k )(ρ)up

(k )(ρ) − ρ Up
(2k )(r) 1

r
dr

ρ

rp

∫ ,  

 Up
(1k )(r) = cp

(1k )(r)
dup

(k )(r)
dr

+ k
up

(k )(r)
r

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,  
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 Up
(2k )(r) = kcp

(2k )(r) −
dup

(k )(r)
dr

+
up

(k )(r)
r

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,  

 cp
(1k )(r) = cp

∗(k )(r) 1
1+ νp

(k )(r)

⎛

⎝
⎜

⎞

⎠
⎟

2−k

,      cp
(2k )(r) =

Ep
(k )(r)

1+ νp
(k )(r)

. 

Here,   

 up
(k )(r)       and      

dup
(k )(r)
dr

   

are the displacements and strains obtained for constant moduli of elasticity and Poisson's ratios for which it fol-
lows from (45) and (46) that  

 up
(k )(ρ) =

R1p
(k )ϕ2 p

(k )(ρ)− R2 p
(k )ϕ1p

(k )(ρ)
(k +1)Qk

+
k0 p
∗(k )

ρk
Jtp
(0k )(ρ),  

 
dup

(k )(ρ)
dρ

=
R1p
(k )ϕ4 p

(k )(ρ)− R2 p
(k )ϕ3p

(k )(ρ)
(k +1)Qk

+ k0 p
∗(k ) − k

ρk+1
Jtp
(0k )(ρ) + Φrp

(k )(ρ)
⎡

⎣
⎢

⎤

⎦
⎥ ,  

 R1p
(k ) = M1 j

(k )+k0 j
∗(k )Jtj

(0k )(rj )
j=1

p−1

∑
c0 j
(k )

c0 p
(k ) ,      R2 p

(k ) = M2 j
(k )−Jtj

(0k )(rj )
j= p

n

∑
k0 j
∗(k )

rj
k+1 , 

 Jtp
(0k )(ρ) = rkΦrp

(k )(r) dr
rp−1

ρ

∫ ,      k0 p
∗(k ) =

1+ ν0 p
(k )

1− ν0 p
(k ) . 

If the accuracy of evaluation of displacements, strains, and stresses is lower than the given accuracy, then 
we repeat the procedure of their determination by using the same formulas (44)–(46) but with a greater number 
of layers.  Additional layers are obtained by splitting the p th domain into  np   parts each of which has the elas-
ticity moduli, Poisson's ratios, and the coefficients of linear thermal expansion of this domain. 

3.  Examples of Numerical Analysis 

І.  We consider three-layer plates with different temperature dependences of the thermal conductivity coef-
ficient of the third layer.  We choose VK6 and VK15 alloys as the materials of the first and second layers, re-
spectively.  The materials of the third layer are VK10 alloy (plate 1), Ti–6Al–4V alloy (plate 2),  ZrO2   ceram-
ics (plate 3),  Si3N4   ceramics (plate 4), and SUS304 metal (plate 5).  We study the temperature fields de-

scribed by solution (7) for  k = 0 ,  n = 3,  T∗ = 273°К,  Ts = 1273°К,  Ki0
∗
0
*(k ) = 0.3283,  Tcn

(0) = 0.2301 ,   !x0 = 0,  
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!x1 =

1
3
!x3 ,  

 
!x2 =

2
3
!x3,  and   !x3 = 0.01 m,  with the following thermal conductivity coefficients: 

 – for  VK6,  VK15,  and  VK10 [14]:  

 
 
λt
(1)(T ) = 58.618 1+ a0e

−0.4(ϑ/100−5.2)2 − b0e
−0.275(ϑ/100−2.2ϑ)2⎡

⎣
⎤
⎦  [W/(m ·K)], 

  where  a0 = 0.214454 ,  b0 = 0.4285714 ,  and  ϑ = T −T∗ ,  

  λt
(2)(T ) = 71.09(1− 2.8984 ⋅10−3ϑ + 6.1466 ⋅10−6ϑ2   

  – 6.1789 ⋅10−9ϑ3 +  2.2844 ⋅10
−12ϑ4) [W/(m ·K)], 

  λt
(3)(T ) = 54.057(1− 7.4218 ⋅10−4ϑ − 7.7696 ⋅10−5ϑ2   

  +  1.718 ⋅10
−8ϑ3 − 8.5704 ⋅10−12ϑ4) [W/(m ·K)]; 

 – for  Ti-6Al-4V  and  ZrO2  [18]: 

  λt
(3)(T ) = 5.741(1+ 2.961⋅10−3ϑ) [W/(m ·K)], 

  λt
(3)(T ) = 1.776(1+1.539 ⋅10−4ϑ + 6.5316 ⋅10−8ϑ2) [W/(m ·K)]; 

 – for  Si3N4  and SUS304 [17]: 

  λt
(3)(T ) = 10.394(1− 9.9187 ⋅10−4ϑ   

  + 6.365 ⋅10−7ϑ2  –  1.04 ⋅10
−10ϑ3) [W/(m ·K)], 

  λt
(3)(T ) = 12.244(1− 3.558 ⋅10−4ϑ   

  + 1.884 ⋅10−6ϑ2  –  9.072 ⋅10
−10ϑ3) [W/(m ·K)]. 

For plates in which the temperature dependence of the thermal conductivity coefficient of the third layer is 
approximated by polynomials of at most third degree,  i.e.,  

  
!Λ(ϑ) = 1 + β1ϑ + β2ϑ

2 + β3ϑ
3,    ϑ = T −T∗ , 
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the temperature (for the sake of comparison) is also determined by using the exact solutions of equations corre-
sponding to Eq. (26).  In particular, for  β3 ≠ 0,  substituting   ϑ = y − β2/(3β3),  we reduce these equations to 
the following equation with respect to a new variable: 

 y4 + my2 + py + q = 0, (47) 

where 

 m = 2 β1
β3

− 1
3

β1
β3

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,      p = 4
3
β2
β3

2
9
⎛
⎝⎜
β2
β3

⎞
⎠⎟
2
− β1
β3

⎡

⎣
⎢

⎤

⎦
⎥ +

4
β3

, 

 q = 1
9

β2
β3

⎛
⎝⎜

⎞
⎠⎟
2 2β1

β3
− 1
3
⎛
⎝⎜
β2
β3

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥ −

4
β3

β2
3β3

+ θ3(x)
⎛
⎝⎜

⎞
⎠⎟

.  

The roots of Eq. (47) are found among the roots of the equations [13]: 

 y2 ± χ y + m + χ + s
2

= 0 ,  

 y2 ± χ y + m + χ − s
2

= 0 ,  

where   

 s = (m + χ)2 − 4q    

and  χ   is a nonnegative root of the cubic equation 

 χ3 + 2mχ2 + (m2 − 4q)χ − p2 = 0,  

given by the Cardano formula 

 
 
χ = −

!q
2
+ !Q3 + −

!q
2
− !Q3 − 2

3
m . (48) 

Here, 

 
 
!Q =

!p
3

⎛
⎝

⎞
⎠

3
+
!q
2

⎛
⎝

⎞
⎠

2
,      

 
!p = −1

3
m2 − 4q,      

 
!q = − 2

27
m3 + 8

3
qm − p2.  

If  β3 = 0   (quadratic dependence), then the required root of the corresponding cubic equation is given by 
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the following Cardano formula:  

 ϑ = −q
∗

2
+ Q∗3 + −q

∗

2
− Q∗3 − β1

2β2
, (49) 

where  

 Q∗ = p∗

3
⎛
⎝⎜

⎞
⎠⎟

3

+ q∗

2
⎛
⎝⎜

⎞
⎠⎟

2

,      p∗ = 3
β2

− 3
4

β1
β2

⎛
⎝⎜

⎞
⎠⎟
2

,      q∗ = 1
4

β1
β2

⎛
⎝⎜

⎞
⎠⎟
3

− 3
2
β1
β2

− 3
β2

θ3(x).  

If  β2
(i) = 0   and  β3

(i) = 0  (linear dependence), then 

 ϑ = 1+ 2β1θ3(x) −1
β1

. (50) 

The comparative analysis of temperatures in the third layer computed by using the Newton method with 
30 iterations and the exact solutions (48)–(50) shows that they differ by at most last two significant digits.  For 
the Cardano solutions (48), (49), for each  x = x3 j ,  it is necessary to take into account the signs of the corre-
sponding radicands.  In view of this fact, for plate 5, the expressions for the roots of Eq. (48) obtained for   

 x3 j = x2  + ( j −1) x3 − x2
4

   

with  j = 1, 2  and j = 3, 4, 5  are different.  Note that, in plate 4, where the thermal conductivity coefficient is 
also cubic function of temperature, the roots of Eq. (48) for all five values of  x3 j   are given by the same formu-
la. 

We also perform the comparison with temperatures computed according to the corresponding distribution of 
the temperature field described by the solution of the recurrence system of Volterra integral equations [13]: 

 
  
ϑ3(x) = ϑcn + Ki0

λ0
(1)

λ0
(3)

1
!Λ3(ϑ3(ζ))

dζ
x

x3

∫ ,  

 
  
ϑ2(x) = ϑ3(x2 ) + Ki0

λ0
(1)

λ0
(2)

1
!Λ2(ϑ2(ζ))

dζ
x

x2

∫ ,  (51) 

 
  
ϑ1(x) = ϑ2(x1) + Ki0

1
!Λ1(ϑ1(ζ))

dζ
x

x1

∫ , 

obtained without using the Kirchhoff transformation.  The solution of the system of equations (51) is found by 
the method of successive approximations.  The integrals are computed by using the trapezoid rule with splitting 
of each layer into 1600 parts.  The number of iterations does not exceed 15. 
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Fig. 1 

In addition, in order to demonstrate the applicability of the proposed method in the case of specifying dis-
crete (tabular) temperature dependences of the thermal conductivity coefficients, we approximate the functions  

 
!Λ1(ϑ)   by linear splines with uniformly located 11 and 21 nodes (in Fig. 1, the solid line corresponds to the giv-

en function  
!Λ1(ϑ),  while the dashed line is plotted for a spline with 11 nodes): 

 
  

!Λ1(ϑ) ≈ s1ϑ + h1 + (sp+1 − sp )ϑ + hp+1 − hp⎡⎣ ⎤⎦ S(ϑ − ϑ p)
p=1

Ns−1

∑ ,  

where 

 
  
s j =

!Λ1(ϑ j)− !Λ1(ϑ j−1)

ϑ j − ϑ j−1
,      

  
hj = !Λ1(ϑ j−1) − s jϑ j−1, 

and  ϑ j   are temperatures from the range  [T∗,1] ,  Ns = 10, 20. 

For this dependence and its approximations in Eq. (26), we, respectively, find  

 
 
Ψ1(ϑ) = ϑ + a0d1 erf ϑ a1 +

b1
2 a1

⎛
⎝⎜

⎞
⎠⎟
− erf b1

2 a1

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥   

  – b0d2 erf ϑ a2 +
b2

2 a2

⎛
⎝⎜

⎞
⎠⎟
− erf b2

2 a2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ ,  

   (52) 

 d j = 1
2

π
aj

exp cj −
bj
2

4aj

⎛

⎝
⎜

⎞

⎠
⎟ ,     j = 1, 2, 
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Ψ1(ϑ) ≈ s1
2
ϑ2 + h1ϑ +

sp+1 − sp
2

ϑ2⎡
⎣⎢p=1

Ns−1

∑   

  + 
 
(hp+1 − hp )ϑ +

sp+1 − sp
2

ϑ p
2 ⎤
⎦⎥
S(ϑ − ϑ p) . (53) 

The values of temperature on the surfaces  x = 0,   x1/4,   x1/2,   3x1/4,  and  x1   of the first layer of plate 1 
are presented in Table 1.  

Table 1  

 x   
Proposed method  

By using (51) 
by using (52) by using (53),  Ns = 10   by using (53),  Ns = 20   

0 0.68095934 0.68010031 0.68074456 0.68095938 

  x1/4   0.64201194 0.64123680 0.64181598 0.64201198 

  x1/2   0.60336321 0.60270337 0.60320513 0.60336325 

  3x1/4   0.56538833 0.56500614 0.56528355 0.56538837 

  x1    0.52856933 0.52827185 0.52850974 0.52856937 

The data presented in Table 1 illustrate high accuracy of the evaluation of temperature by using the pro-
posed method.  Approximating the temperature dependence by a linear spline with a twice thicker grid, we cor-
rect the values of temperature in the 3rd – 5th decimal digits. 

ІІ.  We study the influence of temperature dependence of the thermal conductivity coefficients and thermal 
radiation on the thermal and thermoelastic states of thermosensitive  four-layer plate, cylinder, and sphere with  
q0 = 2.0 ⋅106 W/m2,  qj = 0,  j = 1, 2,…, n,  w0

(i) = 0,   !α0 = 0,  αn
∗ (Tn ) = 1,  ε0

∗ (T1) = 1,   !εn = 0,  tcn = T ∗,  

T ∗ = 273°К,  Ts = 1373°К,  and  Bin = 3 .  

As materials of layers, we take the ZnO2  ceramics (layer 1), Ti-6Al-4V alloy (layer 2),  Si3N4   ceramics 
(layer 3), and SUS304 metal (layer 4). 

The geometric parameters are as follows: x0 = 0,  !x1 = 0.32 mm,  !x2 = 2.32 mm,  !x3 = 3.32 mm, and 

 !x4 = 4.32 mm for the plate and x0 = 10 mm,  !x1 = 10.32 mm,  !x2 = 12.32 mm,  !x3 = 13.32 mm, and  !x4 = 14.32 mm  
for the cylinder and the sphere. 

The temperature dependences of the thermal conductivity coefficients have been presented earlier, whereas 
the remaining physical and mechanical characteristics are given by the following relations: 
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   E1(T ) = (132 − 50.3⋅10−3T − 8.1⋅10−6T 2) [GPa],      ν1(T ) = 0.333 ,  

  αt1(T ) = 9.087 ⋅10−6(1−13.168 ⋅10−4ϑ +13.976 ⋅10−7ϑ2)  [К–1], 

  E2(T ) = (122.7 − 0.056T )  [GPa],      ν2(T ) = 0.2888 + 32 ⋅10−6T ,  

  αt2(T ) = 8.747 ⋅10−6(1+ 46.771⋅10−5ϑ − 3.075 ⋅10−7ϑ2)  [К–1], 

  E3(T ) = (348.43 − 106.96801⋅10−3T   

  +  752.6088 ⋅10−7T 2  –  311.7054 ⋅10
−10T 3)  [GPa],      ν3(T ) = 0.24 ,  

  αt3(T ) = 7.33⋅10−6(1+ 72.859 ⋅10−5ϑ)  [К–1], 

  E4 (T ) = 201.04(1+ 3.079 ⋅10−4T − 6.534 ⋅10−7T 2)  [GPa], 

 ν4 (T ) = 0.3263 − 65.26 ⋅10−9T + 12.39 ⋅10−8T 2,  

  αt4 (T ) = 15.05 ⋅10−6(1+ 66.238 ⋅10−5ϑ)  [К–1]. 

The values of  Ki0
∗(k )  are given by relation (28) with 

 
 
ϕn(Tcn

(k )) = xn
x0

⎛
⎝⎜

⎞
⎠⎟
k λ0

(n)

λ0
(1) Bin(Tcn

(k ) − tcn).  

The values of  Tcn
(k ) ,  to within  10−8 ,  were determined by using the bisection method from the equation 

 
 
Ki0

*(k ) + Sk0 T1
(k )(x0, Ki0

∗
0
*(k ),Tcn

(k ) )⎡⎣ ⎤⎦
4{ }

Ki0
∗
0
*(k )=ϕn(Tcn

(k ))
= Ki0 .  

Note that the values of the temperature computed for  Sk0 = 0  and constant vales of the thermal conductivi-
ty coefficients on the basis of the exact solution of the corresponding problems: 

 Ti
(k )(x) = Ki0

x0
xn

⎛
⎝⎜

⎞
⎠⎟
k λ0

(1)

λ0
(n) Bin

+ xn
k fn

(k )(xn )− fi
(k )(x)⎡⎣ ⎤⎦

⎧
⎨
⎩

⎫
⎬
⎭
+ tcn   

have the same accuracy. 
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Fig. 2 

 

Fig. 3 

The results of numerical analyses are presented in the form of the plots in Figs. 2–9.  The solid lines corre-
spond to the temperature-dependent thermal conductivity coefficients, while the dashed lines correspond to the 
case of constant thermal conductivity coefficients whose values are obtained from the temperature-dependent 
coefficients at  T = T∗ .  Curves 1 are plotted with regard for the presence of thermal radiation  (Sk0 = 1.1833),  
while curves 2 are plotted in the absence of radiation  (Sk0 = 0).  The distributions of temperature over the 
thickness of the plate (Fig. 2), cylinder (Fig. 3), and sphere (Fig. 4) demonstrate, in particular, that, in the case 
where the temperature dependences of the thermal conductivity coefficients and thermal radiation are neglected, 
the maximum temperatures become 1.2 ÷ 1.5  times higher.  Moreover, the radial stresses in the second layers of 
the cylinder (Fig. 5) and the sphere (Fig. 6) may differ by a factor of two.  Furthermore, the qualitative character 
of the behavior of radial and circular stresses in the plate (Fig. 7) and circular stresses in the cylinder (Fig. 8) and 
in the sphere (Fig. 9) in the first layers differs from the behaviors obtained with regard for the above-mentioned 
factors. 
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Fig. 4 

 

Fig. 5 

 

Fig. 6 



DETERMINATION OF THE STATIC THERMOELASTIC STATE OF LAYERED THERMOSENSITIVE PLATE, CYLINDER, AND SPHERE 705 

 

Fig. 7 

 

Fig. 8 

 

Fig. 9 
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Conclusions 

The results of numerical investigations illustrate the efficiency of the proposed method for the determi-
nation of static thermoelastic states of multilayer bodies of canonical shapes and its applicability to the           
solution of static problems of thermoelasticity with temperature-dependent thermal conductivity coeffi-
cients given by discrete values.  We also establish the existence of significant qualitative and quantitative       
difference between the behaviors of temperature stresses in separated layers computed with and without         
taking into account the temperature dependences of the thermal conductivity coefficients and thermal radia-
tion. 

The present work was partially financially supported by the Scientific Project VB-460 (2020–2021) of the 
common tender of scientific projects of the National Academy of Sciences of Ukraine and the National Academy 
of Sciences of the Republic of Belarus. 
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