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Conformable fractional derivative in commutative algebras

Vitalii S. Shpakivskyi

(Presented by V. Gutlyansky̆ı)

Abstract. In this paper, an analog of the conformable fractional derivative is defined in an arbitrary
finite-dimensional commutative associative algebra. Functions taking values in the indicated algebras and
having derivatives in the sense of a conformable fractional derivative are called ϕ-monogenic. A relation
between the concepts of ϕ-monogenic and monogenic functions in such algebras has been established. Two
new definitions have been proposed for the fractional derivative of the functions with values in finite-
dimensional commutative associative algebras.
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1. Introduction

The idea of fractional derivative was first raised by L’Hospital in 1695. After introducing it, many
new definitions have been formulated. The most well-known of them are the Riemann–Liouville,
Caputo, Hadamard, Riesz, Grünwald–Letnikov, and Marchaud ones, as well as others (see, e.g., [1, 2]
and references therein).

Recently, Khalil et al. [3] introduced a new definition for the fractional derivative called the con-
formable fractional derivative. Unlike other definitions, this new definition satisfies the formulas for
the derivatives of the product and quotient of two functions and has a simpler chain rule than other
definitions. In addition to the conformable fractional derivative definition, the conformable integral
definition, the Rolle theorem, and the Mean value theorem for conformable fractional differentiable
functions were given in the literature. In [4], Abdeljawad improved this new theory. For instance,
the definitions were provided for the left and right conformable fractional derivatives and fractional
integrals of higher order (i.e., of order α > 1), the fractional power series expansion, and the frac-
tional Laplace transform, as well as formulas for fractional integration by parts, the chain rule, and
the Gronwall inequality.

In paper [5], the conformable partial derivative of order α ∈ (0, 1] with respect to several real
variables and the conformable gradient vector were defined.

In work [6], two new results on homogeneous functions involving their conformable partial deriva-
tives were obtained; namely, the homogeneity of the conformable partial derivatives of a homogeneous
function and the conformable version of Euler’s Theorem.

In paper [7], a new general definition of the local fractional derivative was given, which depends on
an unknown kernel. A relation was established between this new concept and ordinary differentiation.
Using the corresponding formula, most of the fundamental properties of the fractional derivative can
be derived directly.

In works [8–12], a theory of fractional analytic functions in the conformable sense was developed.
Namely, in work [8], the fractional Cauchy-like theorem and the fractional Cauchy-like formula for
fractional analytic functions were established.
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In paper [11], some interesting results in real fractional Calculus were extended to the context
of the complex-valued functions of the real variable. Finally, using all obtained results, the complex
conformable integral was defined and some of its most important properties were established. In
work [12], the concept of fractional contour integral was also developed. In particular, some new results
concerning complex fractional integration were proposed and proved, and the necessary and sufficient
conditions were determined for a continuous function to have the antiderivative in the conformable
sense. Finally, in work [12], some of the well-known Cauchy’s integral theorems will also be the subject
of the extension that we do in this paper.

Independently of the mentioned papers, in other papers, the conformable fractional derivative of
order α in the complex plane was defined. An analog of Cauchy–Riemann conditions for α-differentiable
functions was proposed. Moreover, two complex conformable differential equations and solutions with
their Riemann surfaces were discussed.

A good many results concerning the theory of fractional differential equations and its applications,
which are based on the conformable fractional derivative, were published during a short time interval;
see, for example, works [13–20].

The next natural step is to generalize the concept of the conformable fractional derivative to the
case of any multidimensional algebra; first of all, to the commutative and associative algebras.

2. Conformable fractional derivative and α-analytic functions

Definition 2.1. [3] For a given function f : [0,∞) → R, the conformable fractional derivative of
order α is defined as follows:

(Tαf)(t) := lim
ε→0

f(t+ εt1−α)− f(t)

ε
(2.1)

for all t > 0, 0 < α ≤ 1. If f is α-differentiable in some (0, b), b > 0, and lim
t→0+0

(Tαf)(t) exists, then

the corresponding definition looks like

(Tαf)(0) := lim
t→0+0

(Tαf)(t).

See papers [3, 4, 11,15] for the derivative properties.
Now consider the definition of α-differentiation in the complex plane.

Definition 2.2. [8] A complex-valued function f is called conformable fractional differentiable (or
α-analytic) at a point z ∈ C if there exists the limit

(Tαf)(z) := lim
ε→0

f(z + εz1−α)− f(z)

ε
(2.2)

for all z, and 0 < α < 1. The quantity (Tαf)(z) is called the α-derivative. If f is α-analytic in an
open set U , and lim

z→0
(Tαf)(z) exists, then the corresponding definition looks like

(Tαf)(0) := lim
z→0

(Tαf)(z).

Example 2.1. Let f(z) = z2 and α = 1
2 . Then

T1/2(z
2) = lim

ε→0

(
z + εz1−1/2

)2 − z2

ε
= 2z3/2.

It it obvious that T1/2(z
2) is holomorphic outside some cut connecting the point 0 and ∞.
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Remark 2.1. If a function f(z) is holomorphic on C, then, generally speaking, the conformable
fractional derivative Tαf(z) is not a holomorphic function on C (but it is holomorphic outside some
cut of the complex plane).

The following theorem can be found in [8].

Theorem 2.1. Let α ∈ (0, 1] and f, g be α-analytic at a point z0. Then

1. Tα (c1f(z) + c2g(z)) = c1Tαf(z) + c2Tαg(z) for all c1, c2 ∈ C;

2. Tα(z
c) = czc−α for all c ∈ C;

3. Tα(µ) = 0 for all constant functions f(z) = µ;

4. Tα (f(z)g(z)) = f(z)Tαg(z) + g(z)Tαf(z);

5. Tα

(
f(z)
g(z)

)
= g(z)Tαf(z)−f(z)Tαg(z)

g2(z)
;

6. if, in addition, f is analytic, then Tαf(z)|z=z0 = z1−α
0 f ′(z0).

The complex conformable fractional derivatives of some complex-valued functions are as follows:

Tα (e
cz) = cz1−αecz, c ∈ C;

Tα(sin cz) = cz1−α cos cz, c ∈ C;

Tα(cos cz) = −cz1−α sin cz, c ∈ C;

Tα

(
1

α
zα

)
= 1.

For more results on α-analytic functions in the sense of conformable fractional derivative, see works [8,
9, 11,12].

3. Monogenic functions in commutative associative algebras

Let A be an arbitrary n-dimensional (1 ≤ n < ∞) commutative associative algebra with a unity
quantity over the field of complex numbers C. E. Cartan [21, p. 33] proved that in A there exists a
basis {Ik}nk=1 such that the first m basis vectors I1, I2, . . . , Im are idempotents and the other vectors
Im+1, Im+2, . . . , In are nilpotents. The element 1 = I1 + I2 + · · ·+ Im is the unit of A.

In the algebra A, we consider the vectors e1, e2, . . . , ed, 2 ≤ d ≤ 2n. Let these vectors have the
following expansion in the basis of the algebra:

ej =

n∑

r=1

ajr Ir , ajr ∈ C, j = 1, 2, . . . , d. (3.1)

Throughout this paper, we assume that at least one of the vectors e1, e2, . . . , ed is invertible.
For the element ζ = x1e1 + x2e2 + · · ·+ xded , where x1, x2, . . . , xd ∈ R, the complex numbers

ξu := x1a1u + x2a2u + · · ·+ xdadu, u = 1, 2, . . . ,m,

form the spectrum of the point ζ.
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Consider in the algebra A a linear span

Ed := {ζ = x1e1 + x2e2 + · · ·+ xded : x1, x2, . . . , xd ∈ R}

generated by the vectors e1, e2, . . . , ed of A.
The following assumption is essential: for each fixed u ∈ {1, 2, . . . ,m} at least one of the numbers

a1u, a2u, . . . , adu belongs to C \ R.
We identify a domain S in the space R

d with the domain

S := {ζ = x1e1 + x2e2 + · · ·+ xded : (x1, x2, . . . , xd) ∈ S} in Ed ⊂ A.

Definition 3.1. [22] We will call a continuous function Φ : Ω → A monogenic in a domain Ω ⊂ Ed

if Φ is differentiable in the sense of Gâteaux at every point of this domain, that is, if for each ζ ∈ Ω
there exists an element Φ′

G(ζ) ∈ A such that the equality

lim
ε→0+0

Φ(ζ + εh)− Φ(ζ)

ε
= hΦ′

G(ζ) ∀h ∈ Ed (3.2)

Consider the expansion of the function Φ : Ω → A in the basis {Ik}nk=1,

Φ(ζ) =
n∑

k=1

Uk(x1, x2, . . . , xd) Ik . (3.3)

If the functions Uk : Ω → C are R-differentiable in the domain Ω, that is, for an arbitrary
(x1, x2, . . . , xd) ∈ Ω,

Uk (x1 +∆x1, x2 +∆x2, . . . , xd +∆xd)− Uk(x1, x2, . . . , xd)

=
d∑

j=1

∂Uk

∂xj
∆xj + o



√√√√

d∑

j=1

(∆xj)2


 ,

d∑

j=1

(∆xj)
2 → 0 ,

the function Φ is monogenic in the domain Ω if and only if the following analogs of the Cauchy–Riemann
conditions are fulfilled at each point of the domain Ω:

∂Φ

∂xj
e1 =

∂Φ

∂x1
ej for all j = 2, 3, . . . , d.

Note that the expansion of the resolvent has the form [23]

(te1 − ζ)−1 =
m∑

u=1

1

t− ξu
Iu +

n∑

s=m+1

s−m+1∑

r=2

Qr,s

(t− ξus)
r Is (3.4)

∀ t ∈ C : t 6= ξu , u = 1, 2, . . . ,m,

where the coefficients Qr,s are determined by the following recurrence relationships:

Q2,s = ξs , Qr,s =
s−1∑

q=r+m−2

Qr−1,q Bq, s , r = 3, 4, . . . , s−m+ 1,

Bq,s :=
s−1∑

p=m+1

ξpΥ
p
q,s , p = m+ 2,m+ 3, . . . , n.
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Here the structure constants Υs
r,p ∈ C are defined by the equality IrIs =

∑
p
Υs

r,pIp, and the natural

numbers us by the following rule:

for any natural m + 1 ≤ s ≤ n, there exist a unique natural 1 ≤ us ≤ m such that for all natural
1 ≤ r ≤ m,

IrIs =

{
0 if r 6= us ,
Is if r = us .

It follows from relationships (3.4) that the points (x1, x2, . . . , xd) ∈ R
d corresponding to the noninvert-

ible elements ζ =
d∑

j=1
xj ej form the set

Lu :

{
x1Re a1u + x2Re a2u + · · ·+ xdRe adu = 0,
x1 Im a1u + x2 Im a2u + · · ·+ xd Im adu = 0,

u = 1, 2, . . . ,m,

in the d-dimensional space R
d.

We say that a domain Ω ⊂ Ed is convex with respect to the set of directions Lu if Ω contains the
segment {ζ1 + α(ζ2 − ζ1) : α ∈ [0, 1]} for all ζ1, ζ2 ∈ Ω such that ζ2 − ζ1 ∈ Lu.

Denote

Du := {ξu = x1a1u + x2a2u + · · ·+ xdadu ∈ C : ζ ∈ Ω}, u = 1, 2, . . . ,m.

In the following theorem, we present a constructive description of monogenic functions with values
in the algebra A via holomorphic functions of the complex variable.

Theorem 3.1. [23, 24] Let a domain Ω ⊂ Ed be convex with respect to the set of directions Lu,
u = 1, 2, . . . ,m, and let for all u = 1, 2, . . . ,m, at least one of the numbers a1u , a2u , . . . , adu belong to
C \ R. Then every monogenic function Φ : Ω → A can be represented in the form

Φ(ζ) =

m∑

u=1

Iu
1

2πi

∫

Γu

Fu(t)(te1 − ζ)−1 dt+

+
n∑

s=m+1

Is
1

2πi

∫

Γus

Gs(t)(te1 − ζ)−1 dt, (3.5)

where Fu and Gs are certain holomorphic functions in the domains Du and Dus, respectively, and Γq

is a closed Jordan rectifiable curve in Dq that surrounds the point ξq and does not contain points ξℓ,
ℓ, q = 1, 2, . . . ,m, ℓ 6= q.

From representation (3.5), it follows that under the conditions of Theorem 3.1, each function Φ
monogenic in the domain Ω is differentiable in a strong sense, in particular, in the sense of Lorch [25].

Definition 3.2. [25] A function Φ: Ω → A given in a domain Ω ⊂ Ed is called differentiable in the
sense of Lorch at a point ζ ∈ Ω if there exists an element Φ′

L(ζ) ∈ A such that for each ε > 0 there
exists δ > 0 such that for all h ∈ Ed with ‖h‖ < δ the following inequality is fulfilled:

∥∥Φ(ζ + h)− Φ(ζ)− hΦ′
L(ζ)

∥∥ ≤ ‖h‖ ε . (3.6)

The element Φ′
L(ζ) is called the Lorch derivative of the function Φ at the point ζ.
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The representation of the monogenic function Φ in form (3.5) is unique. It was proved in [23] (for
the case R

3, see [24]) that for every monogenic function Φ : Ω → A in an arbitrary domain Ω, the r-th
Gâteaux derivatives Φr

G are monogenic functions in Ω for all r.

Remark 3.1. Under the conditions of Theorem 3.1, a monogenic function Φ : Ω → A is differentiable
in the sense of Lorch in Ω.

Consider examples of representation (3.5) in some low-dimensional commutative algebras.

Example 3.1. In the n-dimensional semi-simple algebra An with the multiplication table

· I1 I2 . . . In

I1 I1 0 . . . 0

I2 0 I2 . . . 0
...

...
...

. . .
...

In 0 0 . . . In

,

representation (3.5) of a monogenic function Φ(ζ) has the form [26]

Φ(ζ) = F1(ξ1)I1 + F2(ξ2)I2 + . . .+ Fn(ξn)In ,

where ζ = ξ1 I1+ξ2 I2+ · · · ξn In . In particular, in the algebra of bicomplex numbers (or commutative
Segre’s quaternions) BC = {ζ = ξ1 I1 + ξ2 I2 : ξ1, ξ2 ∈ C}, the monogenic function has the form [27]

Φ(ζ) = F1(ξ1)I1 + F2(ξ2)I2. (3.7)

Example 3.2. In the biharmonic algebra B with the basis {1, ρ}, ρ2 = 0, representation (3.5) of a
monogenic function Φ(ζ) has the form [28]

Φ(ζ) = F (ξ1) +
[
ξ2F

′(ξ1) + F0(ξ1)
]
ρ, (3.8)

where ζ = ξ1 + ξ2 ρ, ξ1, ξ2 ∈ C.

Example 3.3. In the 3-dimensional algebra A3 with the two-dimensional radical and the multiplica-
tion table

· 1 ρ ρ2

1 1 ρ ρ2

ρ ρ ρ2 0

ρ2 ρ2 0 0

,

representation (3.5) of a monogenic function Φ(ζ) has the form [29]

Φ(ζ) = F (ξ1) +
[
ξ2F

′(ξ) + F1(ξ1)
]
ρ+

+
[
ξ3F

′(ξ1) +
ξ21
2
F ′′(ξ1) + ξ2F

′
1(ξ1) + F2(ξ1)

]
ρ2, (3.9)

where ζ = ξ1 + ξ2 ρ+ ξ3 ρ
2, ξ1, ξ2, ξ3 ∈ C.
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Example 3.4. In the 3-dimensional algebra A2 with the one-dimensional radical and the multiplica-
tion table

· I1 I2 ρ

I1 I1 0 0

I2 0 I2 ρ

ρ 0 ρ 0

,

representation (3.5) of a monogenic function Φ(ζ) has the form [29]

Φ(ζ) = F1(ξ1)I1 + F2(ξ2)I2 +
[
ξ3F

′
2(ξ2) + F0(ξ2)

]
ρ,

where ζ = ξ1 I1 + ξ2 I2 + ξ3 ρ, ξ1, ξ2, ξ3 ∈ C.

In paper [30], analogs of the Cauchy integral theorem, the Cauchy integral formula, and the Morera
theorem for a curvilinear integral were obtained for the monogenic function given in a domain of a
special real subspace Ed, 2 ≤ d ≤ 2n, of an arbitrary finite-dimensional commutative associative
algebra A. This result for the subspace E3 was proved in work [31]. In paper [32], we proved an
analog of the Cauchy integral theorem for the surface integral of hyperholomorphic functions given
in a domain of three-dimensional space and taking the values in the algebra A. In paper [33], the
correspondence between a monogenic function in the algebra A and a finite set of monogenic functions
in a special commutative associative algebra was obtained. In work [34], a relationship was proposed
between monogenic functions taking values in an n-dimensional commutative associative algebra and
monogenic functions taking values in a special (n+ 1)-dimensional algebra. Finally, in work [35], the
previous results were applied to the solution of linear PDEs. Using the monogenic functions given in
certain sequences of commutative associative algebras with the increasing dimensions of these algebras,
we substantiated a recurrence procedure for constructing infinite-dimensional families of solutions for
any partial differential equation with constant coefficients in the form of components of the mentioned
monogenic functions.

4. ϕ-monogenic functions in finite-dimensional commutative associative algebras

Consider the definition of ϕ-monogenic functions in an arbitrary n-dimensional (1 ≤ n < ∞)
commutative associative algebra A with unity over the field of complex number C.

Definition 4.1. Let us fix a continuous function ϕ : Ω → A such that all its values are invertible in
Ω ⊆ A . We call a continuous function Φ : Ω → Aϕ-monogenic in the domain Ω ⊆ A if there exists
an element Φ′

ϕ(ζ) ∈ A such that for all h ∈ A the equality

lim
ε→0+0

Φ (ζ + εhϕ(ζ))− Φ(ζ)

ε
= hΦ′

ϕ(ζ) (4.1)

holds. The element Φ′
ϕ(ζ) is called the ϕ-derivative of the function Φ at a point ζ.

Remark 4.1. If ϕ(ζ)=ζ1−α, then the ϕ-derivative coincides with the α-derivative.

Example 4.1. For the function Φ(ζ) = ζ2, we have

lim
ε→0+0

(
ζ + εhϕ(ζ)

)2
− ζ2

ε
= lim

ε→0+0

(
2hζϕ(ζ) + εh2ϕ2(ζ)

)
= h · 2ζϕ(ζ).

Thus,
(
ζ2
)′
ϕ
= 2ζϕ(ζ).
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A real-valued analog of the next theorem was proved in paper [7].

Theorem 4.1. A function Φ : Ω → A is ϕ-monogenic at a point ζ ∈ Ω if and only if Φ is monogenic
at ζ. In thit case, we have the relationship

Φ′
ϕ(ζ) = ϕ(ζ)Φ′

G(ζ). (4.2)

Proof. Sufficiency. Let us fix a point ζ. Let the function Φ : Ω → A be monogenic at ζ. It means that
there exists an element Φ′

G(ζ) of the algebra A such that for each h ∈ A equality (3.2) holds. Since
ζ is fixed, then ϕ(ζ) is an element of A. Since equality (3.2) is true for each vector h ∈ A, then it is
true for the vector h · ϕ(ζ) ∈ A, i.e., from (3.2), we have

lim
ε→0+0

Φ(ζ + εhϕ(ζ))− Φ(ζ)

ε
= hϕ(ζ)Φ′

G(ζ). (4.3)

Thus, by virtue of relationship (4.1), the function Φ : Ω → A is ϕ-monogenic at the point ζ, and
equality (4.2) if obeyed

Necessity. Since the function Φ : Ω → A is ϕ-monogenic at the point ζ ∈ Ω, then equality (4.1) is
true for every direction h ∈ A. Taking into account the invertibility of ϕ, we conclude that equality
(4.1) is also true for the direction h ·

(
ϕ(ζ)

)−1 ∈ A. Therefore, from (3.2), we have

lim
ε→0+0

Φ(ζ + εh)− Φ(ζ)

ε
= h

(
ϕ(ζ)

)−1
Φ′
ϕ(ζ). (4.4)

Thus, the function Φ : Ω → A is monogenic at the point ζ, and Φ′
G(ζ) =

(
ϕ(ζ)

)−1
Φ′
ϕ(ζ).

Thus, we have, for example, (eζ)′ϕ = ϕ(ζ) eζ , (sin ζ)′ϕ = ϕ(ζ) cos ζ etc.
In view of Remark 3.1, we have the following statement.

Corollary 4.1. Under the conditions of Theorem 3.1, a function Φ : Ω → A is ϕ-monogenic at a
point ζ ∈ Ω if and only if Φ is differentiable in the sense of Lorch at ζ. In this case, we have the
relationship

Φ′
ϕ(ζ) = ϕ(ζ)Φ′

L(ζ) = ϕ(ζ)Φ′
G(ζ).

Remark 4.2. From equality (4.2) follows the relationship

ejΦ
′
ϕ(ζ) = ϕ(ζ)

∂Φ

∂xj
, j = 1, 2, . . . , d.

In additional, if es is invertible for some s ∈ {1, 2, . . . , d} , then

Φ′
ϕ(ζ) = ϕ(ζ)e−1

s

∂Φ

∂xs
.

From Remark 4.2 follows the next properties.

Proposition 4.1. If the function Φ is ϕ-monogenic and ψ-monogenic, and at least one of the vectors
es , s ∈ {1, 2, . . . , d}, is invertible, then the following equalities are true:

1. Φ′
ϕ +Φ′

ψ = Φ′
ϕ+ψ ;

2. Φ′
ϕ·ψ = ϕΦ′

ψ = ψΦ′
ϕ .
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5. Alternative approaches to defining fractional differentiations in commutative

associative algebras

Suppose that e1 is invertible, and the function Φ of the variable ζ = x1e1+x2e2+ · · ·+xded , where
x1, x2, . . . , xd ∈ R, is monogenic. For any α ∈ R, we define the power function ζα in the algebra A as
follows:

ζα := exp(α ln ζ),

where ln ζ are defined in paper [25, p. 422]. Then, for natural n, we have the equalities

Φ′
G(ζ) =

∂Φ

∂x1
e−1
1 , Φ′′

G(ζ) =
∂2Φ

∂x21
e−2
1 , . . .

Φ
(n)
G (ζ) =

∂nΦ

∂xn1
e−n
1 , where e−n

1 :=
(
e−1
1

)n
.

The following definition is natural.

Definition 5.1. Let α ∈ R. The derivative of order α of the function Φ at a point ζ is called the
product

Φ(α)(ζ) :=
∂αΦ

∂xα1
· e−α

1 , (5.1)

where the real fractional partial derivative ∂αΦ
∂xα

1
defined in some sense exists at the point x1.

Note that in relationship (5.1), the real fractional partial derivative ∂αΦ
∂xα

1
is not defined. Considering

different meanings of the real derivative ∂αΦ
∂xα

1
, we get different meanings for the derivative Φ(α).

The following definition is based on Cauchy’s idea in using the integral representation. We use
integral representation (3.5).

Remark 5.1. Let α ∈ R. The derivative of order α of the function Φ at a point ζ is called the product

Φα(ζ) =
m∑

u=1

Iu
Γ(α+ 1)

2πi

∫

Γu

Fu(t)
(
(te1 − ζ)−1

)α+1
dt+

+

n∑

s=m+1

Is
Γ(α+ 1)

2πi

∫

Γus

Gs(t)
(
(te1 − ζ)−1

)α+1
dt, (5.2)

where Γ(α+ 1) is Euler’s function. In this case, the integrand must be correctly defined.

Definitions (4.1), (5.1), and (5.2) are of different nature. Therefore, the issue of the relations
between them is not simple and requires further research.
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