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CHI-SQUARED TEST FOR HYPOTHESIS TESTING OF
HOMOGENEITY

M. S. Ermakov∗ UDC 519.2

We provide necessary and sufficient conditions for uniform consistency of nonparametric sets of
alternatives of chi-squared test for testing the hypothesis of homogeneity. The number of cells of
the chi-squared test increases with sample size growth. The nonparametric sets of alternatives can
be defined in terms of distribution functions or densities. Bibliography: 18 titles.

1. Introduction

For goodness-of-fit testing, the asymptotic behavior of chi-squared tests was rather com-
prehensively explored both in the case of a fixed number of cells and of a number of cells
increasing with growth of sample size [4–7,13,14,16–18]. In the present paper, we explore the
last setup for hypothesis testing on homogeneity.

Now, for a setup of goodness-of-fit testing, we remind the results [6,7] that are akin to those
obtained in the present paper.

Let X1, . . . ,Xn be a sample of i.i.d. random variables with values on the interval [0, 1] and

having a c.d.f. Fn. Denote by ̂Fn an empirical c.d.f. of the sample. Denote by � a set of all
distribution functions. Denote by F0 c.d.f. of the uniform distribution on the interval [0, 1]. In
goodness-of-fit testing, we explore the problem of testing the hypothesis H0 : Fn = F0 versus
the alternatives Hn : Fn ∈ Ψn ⊂ �, where Ψn is a nonparametric set of alternatives.

Denote by Tn( ̂Fn) test statistics of chi-squared tests and by Tn(F ), F ∈ �, functionals

generating test statistics Tn( ̂Fn).
For goodness-of-fit testing, we have showed in [6] that the sequences of chi-squared tests

having an increasing number of cells with growth of sample size are uniformly consistent on
the sets of alternatives �(bn) = {F : Tn(F ) > bn, F ∈ �}. Here bn > 0, n = 1, 2, 3, . . . depend
on the number of cells and on the sample size n. Thus, a sequence of sets of the alternatives
Ωn ⊂ � is uniformly consistent if and only if Ωn ⊂ �(bn). In [7], we explored type II error
probabilities of chi-squared tests having cells of equal length and a number of cells growing
with an increasing sample size if alternatives are defined in terms of densities. We described
all uniformly consistent sequences of simple alternatives for this setup.

The aim of the present paper is to provide similar results for hypothesis testing of homo-
geneity and to describe all uniformly consistent sequences of alternatives defined in terms of
the distribution functions or densities. The problem is more difficult than for goodness-of-fit
testing [6, 7]. For hypothesis testing of homogeneity, the answer depends on the distribution
functions of two samples. Note that the problem of hypothesis testing of homogeneity has
been intensively studied in recent papers [2, 8–11,19].

Let the interval [0, 1] be divided into m = mn subintervals

?Inj = [enj , en,j+1), pnj = en,j+1 − enj > 0, en0 = 0, enm = 1,
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1 ≤ j ≤ m = mn, where mn → ∞ as n → ∞. The functional Tn generating chi-squared test
statistics for goodness-of-fit testing equals

Tn(F − F0) = n

m
∑

j=1

(rnj − pnj)
2

pnj
,

where rnj = F (enj)− F (en,j−1) for all 1 ≤ j ≤ mn and F0(x) = x, x ∈ [0, 1].

Then Tn( ̂Fn − F0) is chi-squared test statistics.
For test Kn, we denote α(Kn) its type I error probability and β(Kn, Fn) its type II error

probability for alternative Fn.
Let Sn be sequence of test statistics. We say that the sequence of sets of alternatives Ψn ⊂ �

is uniformly consistent for test statistics Sn if for tests Kn, α(Kn) = α(1 + o(1)), 0 < α < 1,
generated test statistics Sn, we have

lim sup
n→∞

sup
F∈Ψn

β(Kn, F ) < 1− α.

We use similar notation and terminology for the problem of testing of the hypothesis of ho-
mogeneity as well.

Recall that for goodness-of-fit testing the chi-squared tests are uniformly consistent for sets
of alternatives �(bn) with special order of asymptotics of bn. Moreover [6], for any sequence of
simple alternatives Fn ∈ �, for the type II error probabilities β(Kn, Fn) of tests Kn, α(Kn) =

α(1 + o(1)), 0 < α < 1, generated by test statistics Tn( ̂Fn − F0), we have

β(Kn, Fn) = Φ(xα − 2−1/2m−1/2
n Tn(Fn − F0)) + o(1) (1.1)

as n → ∞. Here xα is defined by the equation α = 1−Φ(xα), where

Φ(x) =
1√
2π

x
∫

−∞
exp{−2 t2/2} d t

is a standard normal distribution function, x ∈ R
1.

Such asymptotics of the type II error probabilities and the asymptotic minimaxity of chi-
squared tests [6] substantiates the consideration of these tests as one of the implementations
of the distance method.

In the present paper, we establish similar results for testing of hypothesis of homogeneity
with sets of alternatives generated by the differences of distribution functions Fn and Gln of
two independent samples. We assume additionally that L2-norms of densities of distribution
functions Fn or Gn are uniformly bounded by a constant. It turns out that uniform consistency
of sets of alternatives is given by the value of functionals Tn defined by differences of distribution
functions Fn − Gln . This allows to extend the results of [7] on this setup and to establish
necessary and sufficient conditions of uniform consistency of sets of alternatives defined in
terms of densities. We implement the technique of [2,7,14] for the interpretation of the results
in terms of smoothness of densities.

We use letters c and C as a generic notation for positive constants. Denote [a] the whole
part of a real number a. For any two sequences of the positive real numbers an and bn, an 	 bn
implies c < an/bn < C for all n and an = o(bn) implies an/bn → 0 as n → ∞. For any complex
number z, denote by z̄ a complex conjugate number.

2. Main results

2.1. Setup. In comparison with goodness-of-fit-testing, the problem is more difficult. We
have two samples X1, . . . ,Xn and Y1, . . . , Yln of i.i.d. random variables taking values on the
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interval [0, 1] and having distribution functions Fn and Gln , respectively. Thus, the criterion
of uniform consistency we search in terms of differences Gn − Fn and nuisance parameter Fn

or Gn.
Denote by �× � a set of all pairs of distribution functions (F,G).
On the set �× �, we define a functional

T1n(F −G) = nm

m
∑

j=1

(rnj − snj)
2, (F,G) ∈ � × �,

where snj = G(enj)−G(en,j−1) for all 1 ≤ j ≤ mn.

Denote by ̂Gln(x) an empirical distribution function of sample Y1, . . . , Yln .
Denote an = n

ln
and assume that 0 < c < an < C < ∞.

Chi-squared test statistics has the following form:

T1n( ̂Fn − ̂Gln) = nm

m
∑

j=1

(r̂nj − ŝnj)
2,

where ŝnj = ̂Gln(enj)− ̂Gln(en,j−1) for all 1 ≤ j ≤ mn.
We explore a more general setup as well. For test statistics

T2n( ̂Fn − ̂Gln) = n

m
∑

j=1

gnj
(r̂nj − ŝnj)

2

pnj
,

generated by the functional

T2n(F −G) = n

m
∑

j=1

gnj
(rnj − snj)

2

pnj
, 0 < c < gjn < C < ∞,

similar results are established.
Proof is provided for test statistics

Tn( ̂Fn − ̂Gln) = n

m
∑

j=1

(r̂nj − ŝnj)
2

pnj
,

generated by the functional

Tn(F −G) = n
m
∑

j=1

(rnj − snj)
2

pnj
.

For test statistics T2n( ̂Fn− ̂Gln), the reasoning is almost the same and, therefore, the differences
are not indicated.

We assume that the nuisance parameter Fn has a density fn(x) =
dFn(x)

dx , x ∈ [0, 1], and a
priori information is provided that there is a positive constant C such that we have

Fn ∈ Ξ(C) =

{

F : ‖f‖2 < C, f(x) =
dF (x)

dx
, F ∈ �

}

,

where ‖f‖2 =
1
∫

0

f2(x) dx.

The assumption on the distribution function Fn could be naturally replaced with the same
assumption on the distribution function Gn.
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The main term of the asymptotics for variance of the chi-squared test statistics is signifi-
cantly simplified if we assume additionally

Fn ∈ Ξ1n =

{

F : sup
x∈[0,1]

|f(x)| < cnm
1/2
n , f(x) =

dF (x)

dx
, F ∈ �

}

,

where cn → 0 as n → ∞.
For a sequence bn > 0, for i = 1, 2, define sets of alternatives

Ψi(bn) =
{

(F,G) : Tin(F −G) ≥ bn, (F,G) ∈ � × �}.
We establish uniform consistency of the test statistics Tin( ̂Fn− ̂Gln), i = 1, 2, in the problems

of hypothesis testing

H0 : Fn(x) = Gln(x), x ∈ [0, 1]

versus the alternatives

Hn : (Fn, Gln) ∈ Ψi(bn) ∩ Ξ(C)

for the sequences bn, satisfying

0 < lim inf
n→∞ m−1/2

n bn ≤ lim sup
n→∞

m−1/2
n bn < ∞. (2.1)

Assume that for all j, 1 ≤ j ≤ mn, we have

0 < c < mn pnj < C1 < ∞ (2.2)

for some positive constants c and C1.
Assume also that mn = o(n) as n → ∞.
Proof of the theorems is based on the methods proposed in [6] for the study of chi-squared

tests for goodness-of-fit testing.
On the set �× �, we define the functional

Tn(F −G) = n

m
∑

j=1

⎛

⎝

1
∫

0

φnj(x)d(F (x) −G(x))

⎞

⎠

2

p−1
nj ,

where φnj(x) = 1{x∈Inj} − pnj, x ∈ [0, 1], 1 ≤ j ≤ mn and 1{A} denotes the indicator of
event A. After that we explore test statistics as the test statistics generated by this functional.

This approach allows one to prove easily the results following the numerous results in [7,8,
15,19], established for nonparametric hypothesis testing on a density based on the expansions
of series of orthogonal functions. However, in this case, functions φnj are not orthogonal.

In this notation, the test statistics T2n( ̂Fn − ̂Gln) have the following form:

T2n( ̂Fn − ̂Gln) = n

n
∑

j=1

gnj

⎛

⎝

1
∫

0

φnj(x)d( ̂Fn(x)− ̂Gln(x))

⎞

⎠

2

p−1
nj .

Note that if the hypothesis holds, E[T2n( ̂Fn − ̂Gln)] depends on the unknown distribution

function Fn = Gln and, in the case of an alternative, E[T2n( ̂Fn − ̂Gln)] depends on both
unknown distribution functions Fn and Gln . This is caused by the term

Wn = n

n
∑

j=1

gnj

⎛

⎝

1
∫

0

φ2
nj(x)d ̂Fn(x) +

1
∫

0

φ2
nj(x)d ̂Gln (x)

⎞

⎠ p−1
nj

included in test statistics.
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To delete this dependence, we subtract this term from the test statistics in one of the setups.
Note that we do not have such an influence of Wn on the test statistics in the case of the test
statistics T1n( ̂Fn − ̂Gln).

Without loss of generality, we can assume that the distribution functions Fn and Gln have
densities

fn(x) = 1 +
m
∑

j=1

θnj φnj(x), x ∈ [0, 1]

and

gln(x) = 1 +
m
∑

j=1

τnj φnj(x), x ∈ [0, 1],

respectively, and
m
∑

j=1

θnjpnj = 0,
m
∑

j=1

τnjpnj = 0.

Denote ηnj = θnj − τnj.

2.2. Test statistics T1n. Denote M1n(η) = nm
m
∑

j=1
p2njη

2
nj and denote

σ2
1n = 2m2

m
∑

j=1

p2nj(1 + θnj + an + anτnj)
2.

Lemma 2.1. We have

E[T1n( ̂Fn − ̂Gln)]− (m− 1)(1 + an) = nm
m
∑

j=1

p2njη
2
nj(1 + o(1)), (2.3)

and

Var[T1n( ̂Fn − ̂Gln)] = σ2
1n(1 + o(1))

+ nm2
m
∑

j=1

p3nj(1 + θnj + an + anτnj)η
2
nj(1 + o(1))

.
= σ2

11n(1 + o(1))
(2.4)

as n → ∞.

Note that the second term in the right-hand side of (2.4) equals zero if the hypothesis
holds. Thus, we have an interesting situation. The sets of alternatives are so rich that the
asymptotic variance for the alternatives approaching the hypothesis is significantly different
from the asymptotic variance for the hypothesis.

By (3.25), σ2
11n − σ2

1n > 0. If Fn ∈ Ξ2n, then σ2
11n − σ2

1n = o(σ2
1n) as n → ∞.

Note that we can substitute the estimators

̂θnj =
r̂nj
pnj

− 1, and τ̂nj =
ŝnj
pnj

− 1

of parameters θnj and τnj into (2.4). After that, as we show, we get a consistent estimator

σ̂2
1n = 2m2

m
∑

j=1

(r̂nj + anŝnj)
2

of variance σ2
1n.

Other methods of the estimation of variance are considered in [1, 8, 9].
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Define tests

K1n = 1{σ̂−1
1n (T1n( ̂Fn− ̂Gln )−m(1+an))>xα},

where xα is defined by the equation 1− α = Φ(xα), 0 < α < 1.

Theorem 2.1. Assume (2.1), (2.2) and let mn = o(n) as n → ∞. Then the sequence of sets
of alternatives Ψ1n(bn) ∩ Ξ(C) is uniformly consistent for a sequence of tests K1n, generated

by tests statistics T1n( ̂Fn − ̂Gln).
We have α(K1n) = α(1 + o(1)) and

β(K1n,Ψ1n(bn)) = Φ(σ−1
11n(σ1nxα −M1n(η))) + o(1) (2.5)

as n → ∞.

2.3. Test statistics T2n and T3n. Denote M2n(η) = n
m
∑

j=1
gnjpnjη

2
nj and denote

σ2
2n = 2

m
∑

j=1

g2nj(1 + θnj + an + anτnj)
2.

We show that

σ̂2
2n = 2

m
∑

j=1

g2njp
−2
nj (r̂nj + anŝnj)

2

is the consistent estimator of σ2
2n.

Tests for the test statistics T2n( ̂Fn − ̂Gln) are based on the following asymptotics.

Lemma 2.2. We have

E[T2n( ̂Fn − ̂Gln)] = M2n(η)(1 + o(1)) +E[Wn], (2.6)

E[Wn] =

m
∑

j=1

gnj((1− pnj + θnj(1− pnj)− pnjθ
2
nj)

+ an(1− pnj + τnj(1− pnj)− pnjτ
2
nj))

.
= en,

(2.7)

Var[T2n( ̂Fn − ̂Gn)] = σ2
2n(1 + o(1))

+ n
m
∑

j=1

g2njpnj(1 + θnj + an + anτnj)η
2
nj(1 + o(1))

.
= σ2

21n(1 + o(1))
(2.8)

as n → ∞.

As we show, if mn = o(n2/3), then we have

en =

m
∑

j=1

gnj(1 + an + θnj + τnj) +O(1). (2.9)

Note that we can substitute the estimators ̂θnj and τ̂nj of parameters θnj and τnj into (2.7)
and obtain a consistent estimator ên for en.

Define tests

K2n = 1{σ̂−1
2n (T2n( ̂Fn− ̂Gln )−ên)>xα},

where xα is defined by the equation 1− α = Φ(xα), 0 < α < 1.
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Theorem 2.2. Assume (2.1), (2.2) and let mn = o(n2/3), as n → ∞. Then the sequence of
sets of alternatives Ψ2n(bn) ∩ Ξ(C) is uniformly consistent for a sequence of tests K2n.

Let mn = o(n) as n → ∞ and let there be a constant C such that ‖gn‖ < C, gn(x) =
dGn(x)

dx ,
x ∈ [0, 1]. Then the sequence of sets of alternatives Ψ2n(bn) ∩ Ξ(C) is uniformly consistent.

We have α(K2n) = α(1 + o(1)) and

β(K2n, Fn, Gn) = Φ(σ−1
21n(σ2nxα −M1n(η))) + o(1) (2.10)

as n → ∞.

In [1,6,8,9,19], the authors delete the version of term Wn from the version of test statistics
T2n for similar setups of nonparametric hypothesis testing and obtain the results for such
modified test statistics.

Define test statistics

T3n( ̂Fn − ̂Gln) = T2n( ̂Fn − ̂Gln)−Wn.

Define the corresponding test of hypothesis testing

K3n = 1{σ̂−1
2n T3n( ̂Fn− ̂Gln )>xα},

where xα is defined by the equation 1− α = Φ(xα), 0 < α < 1.

Theorem 2.3. Assume (2.1), (2.2) and let mn = o(n) as n → ∞. Then the sequence of sets
of alternatives Ψ2n(bn) ∩ Ξ(C) is uniformly consistent for the sequence of tests K3n.

We have α(K3n) = α(1 + o(1)) and

β(K3n, Fn, Gn) = Φ(σ−1
21n(σ2nxα −M2n(η))) + o(1) (2.11)

as n → ∞.

2.4. Hypothesis testing on homogeneity in terms of densities. The asymptotics of the
type II error probabilities in (2.5), (2.10), and (2.11) are exactly the same as the asymptotics
[6, 7] of chi-squared tests for goodness-of-fit testing (1.1). By this reason, for the sets of
alternatives defined in terms of densities, we can transfer necessary and sufficient conditions [7]
of uniform consistency for the problem of goodness-of-fit testing to the case of hypothesis
homogeneity.

Assume that the distribution functions Fn and Gln have densities fn, gln , respectively, and
Fn ∈ Ξ(C), Gln ∈ Ξ(C). Denote hn = fn − gln .

We explore the problem of testing the hypothesis

H0 : hn(x) = 0, x ∈ [0, 1],

versus the alternatives

Hn : hn ∈ Ωn ⊂ Γ,

where Γ = {h : h = d(F−G)(x)
d x , ‖h‖ < ∞, F ∈ Ξ(C) }.

For this setup, all assertions of Theorem 6.1 in [7] hold if we replace the densities 1 + fn
with functions hn. All requirements in condition B that the functions 1+fn and the functions
specially defined by the function 1 + fn should be densities are replaced with the requirement
that the functions hn and the functions similarly specially defined by hn should be differences
of two densities. In particular, this holds if the densities of distribution functions Fn and Gn

satisfy B in [7].
This version of Theorem 6.1 in [7] holds only for the sequence of simple alternatives hn,

‖hn‖ 	 n−r, 1
4 < r < 1

2 , mn 	 n2−4r. In this setup, following [7], we assume that cells of
chi-squared tests have the same length.
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3. Proof of Theorems

3.1. Estimate of E [Tn]. The reasoning is provided for the test statistics Tn.
Alternatives satisfy the inequality

Tn(Fn −Gn) = n

m
∑

j=1

pnjη
2
nj ≥ bn.

By fn ∈ Ξ(C), we have
m
∑

j=1

pnjθ
2
nj ≤ ‖fn − 1‖2 < C. (3.1)

Lemma 3.1. For 1 ≤ j ≤ m, we have

Eθ[φnj(X1)] = θnjpnj, (3.2)

Eθ[φ
2
nj(X1)] = pnj(1− pnj + θnj(1− 2pnj)), (3.3)

E[φ̄4
nj1(X1)] = pnj(1 + θnj)(1− 4pnj(1 + θnj)

+ 6p2nj(1 + θnj)
2 − 3p3nj(1 + θnj)

3)
(3.4)

and, for 1 ≤ j1 < j2 ≤ m, we have

Eθ[φnj1(X1)φnj2(X1)] = −pnj1pnj2(1 + θnj(1− 2pnj) + θnj2(1− 2pnj2)), (3.5)

Eθ[φ̄
2
nj1(X1) φ̄

2
nj2(X1)] = pnj1pnj2(1 + θnj1)(1 + θnj2)

× (pnj1(1 + θnj1) + pnj2(1 + θnj2)− 3pnj1pnj2(1 + θnj1)(1 + θnj2)).
(3.6)

Equalities (3.2)–(3.6) are obtained by straightforward calculations and proof is omitted.

Proof of Lemma 2.2. We begin with proof of (2.6). For x, y ∈ [0, 1], denote

φ̄nj(x) = φnj(x)−Eθφnj(X1) = φnj(x)− θnjpnj

and
φ̃nj(y) = φnj(y)−Eτφnj(Y1) = φnj(y)− τnjpnj.

Then we have
Tn( ̂Fn − ̂Gn) = I1n + I2n + I3n +Wn, (3.7)

with
I1n = 2 I11n + 2 I12n + 2 I13n,

where
I11n =

∑

1≤i1<i2≤n

U1n(Xi1 ,Xi2), I12n =
∑

1≤i1<i2≤ln

U2n(Yi1 , Yi2),

and

I13n =

n
∑

i1=1

ln
∑

i2=1

U3n(Xi1 , Yi2),

where

U1n(Xi1 ,Xi2) =
m
∑

j=1

φ̄nj(Xi1)φ̄nj(Xi2)

npnj
,

U2n(Yi1 , Yi2) =

m
∑

j=1

φ̃nj(Yi1)φ̃nj(Yi2)

npnj
,
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and

U3n(Xi1 , Yi2) =

m
∑

j=1

φ̄nj(Xi1)φ̃nj(Yi2)

npnj
.

We have

I2n =

m
∑

j=1

(

1

n

n
∑

i=1

φ̄nj(Xi)− 1

ln

ln
∑

i=1

φ̃nj(Yi)

)

ηnj, (3.8)

I3n = Mn(η) = n
n
∑

j=1

pnjη
2
nj = Tn(Fn −Gln). (3.9)

Wn = n−1
m
∑

j=1

n
∑

i=1

φ̄2
nj(Xi)p

−1
nj + nl−2

n

m
∑

j=1

ln
∑

i=1

φ̃2
nj(Yi)p

−1
nj . (3.10)

We have

EI1n = 0, EI2n = 0, (3.11)

E[Wn] =

m
∑

j=1

(1− pnj + θnj(1− 2pnj)− pnjθ
2
nj)

+ nl−1
n

m
∑

j=1

(1− pnj + τnj(1− 2pnj)− pnjτ
2
nj)

= (1 + an)

m
∑

j=1

(1− pnj + θnj(1− 2pnj)− pnjθ
2
nj)

+O(n−1/2mM
1/2
1n (η))(1 + n−1Mn(η))),

(3.12)

because
m
∑

j=1

|θnj − τnj| ≤ max
1≤j≤m

p−1
nj

m
∑

j=1

pnj|ηnj|

≤ Cm

⎛

⎝

m
∑

j=1

pnjη
2
nj

⎞

⎠

1/2 ⎛

⎝

m
∑

j=1

pnj

⎞

⎠

1/2

≤ Cn−1/2mM
1/2
1n (η)

(3.13)

and

m
∑

j=1

|θ2nj − τ2nj| ≤ max
1≤j≤m

p−1
nj

k
∑

j=1

pnj|ηnj | (|θnj |+ |τnj|)

≤ Cm−1

⎛

⎝

m
∑

j=1

pnjη
2
nj

⎞

⎠

1/2 ⎛

⎝

m
∑

j=1

pnj(θ
2
nj + τ2nj)

⎞

⎠

1/2

≤ Cn−1/2mM
1/2
1n (η)(Nn(θ) +Nn(τ))

1/2 ≤ Cn−1/2mM
1/2
1n (η),

(3.14)

because

|N1/2
n (τ)−N1/2

n (θ)| ≤ n−1/2M1/2
n (η).

Note that the reminder in the right-hand side of (3.12) is o(mn) as n → ∞, ifmn = o(n2/3). �
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3.2. Analysis of Var[Tn]. We have

Var[I11n] = V11n + V12n, (3.15)

where

V11n = 2
m
∑

j=1

p−2
nj (Var[φj(X1)])

2 = 2
m
∑

j=1

(1− pnj + θnj(1− 2pnj)− p2nj)
2

= 2

m
∑

j=1

(1 + θnj)
2(1 + o(1))

(3.16)

and

V12n = 2
∑

1≤j1<j2≤m

p−1
nj1

p−1
nj2

(Cov[φj1(X1), φj2(X1)])
2

= 4
∑

1≤j1<j2≤m

pnj1pnj2(1 + θnj1)
2(1 + θnj2)

2(1 + o(1)) ≤ (C +N2
n(θn))(1 + o(1)).

(3.17)

Therefore, we have

Var[I11n] = 2

m
∑

j=1

(1 + θnj)
2(1 + o(1)). (3.18)

We have

Var[I12n] = 4an

m
∑

j=1

p−2
nj Var[φj(X1)]Var[φj(Y1)]

= 4an

m
∑

j=1

(1 + θnj)(1 + τnj)(1 + o(1)).

(3.19)

Arguing similarly to (3.18), we get

Var[I13n] = 2a2n

m
∑

j=1

(1 + τnj)
2(1 + o(1)). (3.20)

We have

Cov[I11n, I12n] = 0, Cov[I11n, I13n] = 0, Cov[I12n, I13n] = 0. (3.21)

Thus, by (3.18)– (3.21), we get

Var[I1n] = 2
∑

j=1

m(1 + an + θnj + anτnj)
2(1 + o(1)). (3.22)

We have

Var[I2n] = J21n + J22n + J23n + J24n, (3.23)

with

J21n = 2n−1(n− 1)2
∑

1≤j1<j2≤m

Cov[φj1(X1), φj2(X1)]ηnj1ηnj2

= 2n−1(n− 1)2
∑

1≤j1<j2≤m

pnj1pnj2(1 + θnj1)(1 + θnj2)ηnj1ηnj2(1 + o(1))

≤ C

⎛

⎝

m
∑

j=1

pnj(1 + θnj1)
2

⎞

⎠

⎛

⎝n

m
∑

j=1

pnjη
2
nj

⎞

⎠ ≤ CM1n(η)(1 +Nn(θ)),

(3.24)
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and

J22n = n−1(n− 1)2
m
∑

j=1

Var[φnj(X1)] η
2
nj

= n−1(n− 1)2
m
∑

j=1

pnj(1− pnj + θnj(1− 2pnj)− pnjθ
2
nj) η

2
nj

= n

m
∑

j=1

pnj(1 + θnj) η
2
nj(1 + o(1)) = O(m1/2M1n(η)),

(3.25)

because

max
1≤j≤m

|θnj|2 < CmNn(θ) < Cm. (3.26)

The terms J23n and J24n are estimated similarly to J21n and J22n, respectively. We omit this
reasoning.

We have

Var[Wn] = A1n +A2n +A3n +A4n, (3.27)

where

A1n = n−1
∑

1≤j1<j2≤m

E[φ̄2
nj1(X1) φ̄

2
nj2(X1)]p

−1
nj1

p−1
nj2

(3.28)

and

A2n = n−1
m
∑

j=1

E[φ̄4
nj1(X1)]p

−2
nj . (3.29)

The terms A3n and A4n are estimated similarly to A1n and A2n, respectively. We omit this
reasoning.

Using (3.4) and (3.26), we get

A1n ≤ n−1
∑

1≤j1<j2≤m

[pnj1(1 + θnj1)
2(1 + θnj2) + pnj2(1 + θnj1)(1 + θnj2)

2]

≤ Cn−1
m
∑

j=1

pnj(1 + |θnj |)2
⎛

⎝m+

m
∑

j=1

pnj|θnj|
⎞

⎠

≤ Cn−1(C +Nn(θ))(m+m1/2N1/2(θ))

≤ Cn−1m+ Cn−1mNn(θ) + Cn−1m1/2N3/2(θ).

(3.30)

Using (3.6) and (3.26), we get

A2n = n−1
m
∑

j=1

p−1
nj (1 + θnj)[1− 4pnj(1 + θnj)

+ 6p2nj(1 + θnj)
2 − 3p3nj(1 + θnj)

3].

(3.31)

We estimate only two terms in A2n. The other two terms are estimated similarly and have a
smaller order.
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We have

n−1
m
∑

j=1

p−1
nj (1 + θnj) ≤ Cn−1m2

⎛

⎝1 +

m
∑

j=1

pnj|θnj|
⎞

⎠

≤ Cn−1m2

⎛

⎜

⎝
1 +

⎛

⎝

m
∑

j=1

pnjθ
2
nj

⎞

⎠

1/2
⎞

⎟

⎠
≤ Cn−1m2(1 +Nn(θ)) = o(m)

(3.32)

and

n−1
m
∑

j=1

p2nj(1 + θnj)
4 ≤ Cn−1m−1 + n−1

m
∑

j=1

p2njθ
4
nj ≤ Cn−1(m−1 +N2

n(θ)). (3.33)

Therefore, we have

A2n ≤ Cn−1m2(1 +N1/2
n (θ)) + n−1N2

n(θ). (3.34)

3.3. Consistency of estimators of bias and variance of test statistics Tn. Let us show

the consistency of estimators of
m
∑

j=1
gnjθnj in (2.7) and (2.8).

We have

Var

⎡

⎣

m
∑

j=1

gnj
1

n

n
∑

i=1

φnj(Xi)

pnj

⎤

⎦ =
1

n

m
∑

j=1

g2nj
Var[φnj(X1)]

p2nj

+
1

n

∑

1≤j1<j2≤m

gnj1gnj2
Cov[φnj1(X1), φnj2(X1)]

pnj1pnj2

=
1

n

m
∑

j=1

g2nj
1 + θnj
pnj

(1 + o(1))

+
1

n

∑

1≤j1<j2≤m

gnj1gnj2(1 + θnj1 + θnj2)(1 + o(1)) = o(m),

(3.35)

because

n−1
m
∑

j=1

θnj
pnj

≤ Cn−1m2
m
∑

j=1

pnjθnj ≤ Cn−1m2N1/2
n (θ) = o(m) (3.36)

and

n−1m

m
∑

j=1

gnjθnj ≤ Cn−1m max
1≤j≤m

p−1
nj

m
∑

j=1

pnjθnj ≤ Cn−1m2N1/2
n (θ) = o(m). (3.37)

We estimate only one term arising in the estimation of variance. Other terms are estimated
similarly.

We have

n−4Var

⎡

⎣

m
∑

j=1

g2njp
−2
nj

∑

1≤i1<i2<n

φnj(Xi1)φnj(Xi2)

⎤

⎦ ≤ B1n +B2n, (3.38)
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where

B1n = Cn−2
m
∑

j=1

p−4
nj (Var[φnj(X1)])

2 ≤ Cn−2
m
∑

j=1

p−2
nj (1 + θnj)

2(1 + o(1))

≤ Cn−2 max
1≤j≤m

p−3
nj

m
∑

j=1

pnj(1 + θnj)
2 = O(n−2m3(1 +Nn(θ)) = o(m)

(3.39)

and

B2n = Cn−2
∑

1≤j1<j2≤m

(Cov[φnj1(X1), φnj2(X1)])
2

p2nj1p
2
nj2

≤ Cn−2
∑

1≤j1<j2≤m

(1 + θnj1 + θnj2)
2 ≤ cn−2m2

+ Cn−2m max
1≤j≤m

p−1
nj

⎛

⎝

∣

∣

∣

∣

∣

∣

m
∑

j=1

pnjθnj

∣

∣

∣

∣

∣

∣

+

m
∑

j=1

pnjθ
2
nj

⎞

⎠

≤ Cn−2m2(1 +Nn(θ)) = o(1).

(3.40)

We have provided the estimates of variance in the case of sample X1, . . . ,Xn. In the case of
sample Y1, . . . , Yn, we have the same situation. In this case, in the final estimates, Nn(θn) is
replaced with Nn(τn).

We have
N1/2

n (τn) ≤ N1/2
n (θn) + n−1/2M1/2

n (ηn). (3.41)

Since N
1/2
n (θn) < C < ∞, it suffices to show that if, in the final estimates, we replace N

1/2
n (θn)

with n−1Mn(ηn), then these estimates have a smaller order than M2
n(ηn).

Note that in (3.12)–(3.40), the largest orders in the final estimates for a distribution function

Gln are M1n(ηn)Nn(τn) (the version of (3.24)), n−1m2N
1/2
n (τn) (the version of (3.30)) and

n−1N2
n(τn) (the version of (3.34)).

It suffices to estimate only n−1m2N
1/2
n (τn). We have

n−3/2m2M1/2
n (ηn)M

−2
n (ηn) = O(n−3/2m2

nm
−3/4
n ) = o(1), (3.42)

if m
−1/2
n Mn(ηn) → ∞ as n → ∞.

Thus,
Mn(ηn)σ̂n →P ∞, (3.43)

if m
−1/2
n Mn(ηn) → ∞ as n → ∞.

Therefore, the type II error probabilities of tests Kn tend to zero if Nn(τn) → ∞ as n → ∞.

3.4. Asymptotic normality of test statistics Tn. It suffices to prove the asymptotic
normality of statistics I1n. For alternatives, we can assume (Fn, Gln) ∈ Ξn(C) × Ξn(C) for
some C > 0. Otherwise, the type II error probabilities tend to zero. The statistics I1n are
not U–statistics. However, we can implement the same martingale technique to the proof of
asymptotic normality [3, 6, 12, 15] and to get a similar result as in the case of goodness-of-fit
tests [6, 15]. Since in [1] similar reasoning for testing of hypothesis of homogeneity is omitted
for test statistics based on L2-norm of kernel estimator of density, we outline this reasoning in
the present paper for chi-squared tests.

The reasoning is provided for ln ≤ n. The case ln ≥ n is similar.
Define the martingale Wni, 1 ≤ i ≤ n+ ln, by induction. We put

Wn1 = U1n(X1,X1), and Wn2 = U2n(Y1, Y1) + U3n(X1, Y1).
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If i is odd, we put j = [i/2] and

Wni =

j
∑

s=1

U1n(Xj ,Xs) +

j−1
∑

s=1

U3n(Xj , Ys).

If i is even, i ≤ 2ln, we put j = i/2 and

Wni =

j
∑

s=1

U2n(Yj, Ys) +

j−1
∑

s=1

U3n(Xs, Yj).

If i ≥ 2ln, we put j = i− ln and

Wni =

j
∑

s=1

U1n(Xj ,Xs) +

ln
∑

s=1

U3n(Xj , Ys).

We can implement the reasoning of [12] to this martingale and obtain a similar result.
Denote

V1n(x, y) = E[U1n(x,X1)U1n(y,X1)], V2n(x, y) = E[U1n(x, Y1)U1n(y, Y1)],

V3n(x, y) = E[U3n(X1, x)U3n(X1, y)], V4n(x, y) = E[U3n(x, Y1)U3n(y, Y1)].

Theorem 3.1. The statistics I1n is asymptotically normal with zero mean and variance σ2
1 if

we have

lim
n→∞m−1

n [E[V 2
1n(X1,X2) + V 2

2n(Y1, Y2) + V 2
3n(X1,X2) + V 2

4n(Y1, Y2)]

+ n−1E[U4
1n(X1,X2) + U4

2n(Y1, Y2) + U4
3n(X1, Y1)]] = 0.

(3.44)

Proof of the theorem almost repeats the reasoning for the proof of the asymptotic normality
in [12] and is omitted.

The verification of (3.44) practically does not differ from the verification of similar conditions
in the case of goodness-of-fit testing [6]. Moreover, most of the estimates for proof of (3.44)
and the estimates in [6] coincide. Thus, we omit this reasoning.

This research was supported by the RFFI (project 20-01-00273).

Translated by M. S. Ermakov.
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