
Journal of Mathematical Sciences, Vol. 273, No. 5, July, 2023

SOME VARIATIONS ON THE EXTREMAL INDEX

G. Buriticá,∗ N. Meyer,† T. Mikosch,‡ and O. Wintenberger∗∗ UDC 519.2

We reconsider Leadbetter’s extremal index for stationary sequences. It has interpretation as re-
ciprocal of the expected size of an extremal cluster above high thresholds. We focus on heavy-tailed
time series, in particular, on regularly varying stationary sequences, and discuss recent research in
extreme value theory for these models. A regularly varying time series has multivariate regularly
varying finite-dimensional distributions. Thanks to results by Basrak and Segers (2009), we have
explicit representations of the limiting cluster structure of extremes, leading to explicit expres-
sions of the limiting point process of exceedances and the extremal index as a summary measure
of extremal clustering. The extremal index appears in various situations, which do not seem to
be directly related, such as the convergence of maxima and point processes. We consider different
representations of the extremal index which arise from the considered context. We discuss the
theory and apply it to a regularly varying AR(1) process and the solution to an affine stochastic
recurrence equation. Bibliography: 38 titles.
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1. Leadbetter’s approach to modeling the extremes of a stationary sequence

The paper by Leadbetter [22] and the book of Leadbetter, Lindgren, and Rootzén [23]
provided the first systematic approach to the extreme value theory of dependent stationary
sequences. In particular, Leadbetter introduced mixing and anti-clustering conditions, the
conditions D and D′, which are tailored for the analysis of dependent extremal events. More-
over, [23] propagated the use of the extremal index as a measure for extremal clustering.

The idea of an extremal index originates from [24,25,27] who discovered that the maxima

Mn = max
t=1,...,n

Xt, n ≥ 1,

of numerous examples of dependent stationary sequences (Xt) with common distribution F
share the property that

P(Mn ≤ un) ≈
[
P(X ≤ un)

]n θX =
(
(F (un))

n
)θX , n → ∞,
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for some number θX ∈ [0, 1], provided (un) is a sequence of high thresholds converging suf-
ficiently fast to the right endpoint xF of F . Leadbetter [22] made this notion precise as the
expected size of an extremal cluster of exceedances above high-level thresholds. Since (F (un))

n

is the distribution function of the maximum of n iid random variables with common distribu-
tion F at the threshold un, the quantity θX describes the shrinking effect that the appearance
of dependent extremes can have on the distribution of Mn compared to (F (un))

n.
Leadbetter defined the extremal index θX as follows: assume that for every τ ∈ (0,∞) there

exists a sequence (un(τ)) such that

nF (un(τ)) = n (1− F (un(τ))) → τ,

and there exists a number θX such that

P(Mn ≤ un(τ)) → e−τ θX , n → ∞.

If such a number θX exists, it belongs to the interval [0, 1] and is independent of the choice of
the sequences (un).

An immediate application is to the convergence in distribution of the sequence (Mn). As-
sume that (Xt) belongs to the maximum domain of attraction of an extreme value distribution

H, i.e., for iid copies (X̃t) of X1, M̃n = max(X̃1, . . . , X̃n), there exist constants cn > 0, dn ∈ R

such that c−1
n (M̃n−dn)

d→ ξ as n → ∞ and ξ has distribution H. Then if (Xt) has an extremal
index θX , we have

nF (cn x+ dn︸ ︷︷ ︸
=:un(τ)

) → − logH(x)
︸ ︷︷ ︸

=:τ

, n → ∞, x ∈ suppH,

and

P
(
c−1
n (Mn − dn) ≤ x

)→ HθX (x) , n → ∞ , x ∈ suppH.

In the case of an iid sequence, it is easily seen that nF (un(τ)) → τ holds if and only
if P(Mn ≤ un(τ)) → e−τ . Hence, θX = 1. The extremal index 1 is not exclusive to iid
sequences. Indeed, in [23], various examples of strictly stationary sequences are considered,
for which θX = 1. For example, if (Xt) is a Gaussian stationary sequence whose autocovariance
function satisfies cov(X0,Xh) = o(1/ log h) as h → ∞, then θX = 1.

2. Sufficient conditions for the existence of the extremal index

The extremal index is often interpreted as the reciprocal of the expected size of an extremal
cluster for a stationary sequence (Xt). We give a justification for this interpretation.

2.1. The method of block maxima. The key is the definition of an extremal cluster in the
sample X1, . . . ,Xn: split the sample into kn = [n/rn] blocks of equal length rn:

X1, . . . ,Xrn︸ ︷︷ ︸
Block 1

,Xrn+1, . . . ,X2 rn︸ ︷︷ ︸
Block 2

, . . . ,X(kn−1) rn+1, . . . ,Xkn rn︸ ︷︷ ︸
Block kn

,

we ignore the last block of length less than rn, and we simply call the block an extremal cluster
relative to a high threshold u = un (this means that un ↑ xF as n → ∞) if there is at least
one exceedance of this threshold in this block. For an asymptotic theory, it is important that
r = rn → ∞ such that rn is small compared to n, i.e., kn → ∞.
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In view of the stationarity of (Xt), the expected cluster size of a block is given by

E

[ rn∑

t=1

11(Xt > un)
∣
∣∣Mrn > un

]
=

rn∑

t=1

P(Xt > un ,Mrn > un)

P(Mrn > un)

=

rn∑

t=1

P(Xt > un)

P(Mrn > un)

=
rn P(X > un)

P(Mrn > un)
=:

1

θn
.

Obviously, θn is a number in [0, 1]. Under mild regularity conditions, the limit θ = lim
n→∞ θn

exists, assumes values in [0, 1] and coincides with Leadbetter’s extremal index θX (see Theo-
rem 2.1 below). For this reason, the extremal index θX is often referred to as the reciprocal of
the expected extremal cluster size above high thresholds.
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Fig. 2.1. Visualization of the max-moving average

Xt = max(Zt, Zt+1, Zt+2), t = 1, . . . , 100,

(blue) for iid student noise Zt, t = 1, . . . , 102, with α = 4 degrees of freedom
(red dots). The values of Xt typically appear in clusters of size 3. The process
(|Xt|) has extremal index θ|X| = 1/3.

Fig. 2.2. The daily log-return series of the Bit Coin USD stock prices from
September 17, 2014 until January 8, 2021. We only show the returns below
−0.04 or above 0.04 which we interpret as extreme values. These limits roughly
correspond to the 10% and 90% quantiles of the data. The extremes typically
appear in clusters.
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2.2. Approximation of θX by θn. The following result can be found in slightly different
forms in [9], proof of Lemma 2.8 and [2, 34].

Theorem 2.1. Consider the following conditions:
(1) (Xt) is a real-valued stationary sequence whose marginal distribution F does not have

an atom at the right endpoint xF .
(2) For a sequence un ↑ xF and an integer sequence r = rn → ∞ such that kn = [n/rn] → ∞,

the following anti-clustering condition is satisfied:

lim
k→∞

lim sup
n→∞

P
(
Mk,rn > un | X0 > un

)
= 0. (2.1)

Here Ma,b = max
i=a,...,b

Xi for a ≤ b such that Mb = Ma,b with a = 1.

(3) A mixing condition holds:

P(Mn ≤ un)−
(
P(Mrn ≤ un)

)kn → 0, n → ∞, (2.2)

where (un), (kn) and (rn) are as in (2).

(4) For all positive τ there exists a sequence (un) = (un(τ)) such that nF (un) → τ and
(2), (3) are satisfied for these sequences (un).

Then the following assertions hold:

1. If (1) and (2) are satisfied, then

lim
k→∞

lim sup
n→∞

∣
∣θn − P

(
Mk ≤ un | X0 > un

)∣∣ = 0, (2.3)

and lim inf
n→∞ θn > 0.

2. If (1) and (4) are satisfied and θ = lim
n→∞ θn exists, then θX ∈ (0, 1] exists and coincides

with θ.

Condition (2.2) is satisfied for strongly mixing (Xt) with mixing rate (αh) if one can find
integer sequences (�n) and (rn) such that �n/rn → 0, rn/n → 0 and knα�n → 0 as n → ∞.
Anti-clustering conditions are common in extreme value theory, since Leadbetter introduced
the D′ condition which is much stronger than (2.1) but is also easily verified on examples. The
goal of such a condition is to avoid that the stationary sequence stays above a high threshold
for too long.

Relation (2.3) is in agreement with O ’Brien’s [28] characterization of the extremal index of
(Xt) as the limit

θX = lim
n→∞P(M�n ≤ un | X0 > un) (2.4)

for a sequence (�n) with �n/n → 0, thresholds un ↑ xF such that nF (un)→1 as n → ∞,
provided a mixing condition holds. O’Brien’s condition (2.4) has the advantage of avoiding
the definition of an extremal cluster.

Remark 2.2. Relation (2.3) provides a constructive way of calculating θX : if we know that
the limits f(k) := lim

n→∞P
(
Mk ≤ un | X0 > un

)
exist for every k ≥ 1, then we can try to derive

θX = lim
k→∞

f(k). In Sec. 3, we follow this approach in the case of a regularly varying sequence.
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3. Regularly varying sequences

3.1. Definition and examples. As a matter of fact, clusters of extremes are more prominent
in stationary sequences with heavy-tailed marginal distribution. To illustrate this fact, consider
a stationary causal AR(1) process, which solves the difference equation Xt = ϕXt−1+Zt, t ∈ Z,
for an iid noise sequence (Zt). Necessarily, ϕ ∈ (−1, 1) and, if (Zt) is iid standard normal, then
(|Xt|) has extremal index θ|X| = 1 (see [23]), while for iid student noise (Zt) with α degrees of
freedom, we have θ|X| = 1 − |ϕ|α (see Example 3.4 below). Thus, the smaller α (the heavier
the tail) for given ϕ the closer θ|X| to zero.

An AR(1) process with student noise is an example of a regularly varying time series. This
class of heavy-tailed processes has been studied rather extensively in the last 15 years; see [31]
for some basics about multivariate regular variation, and [21] for a recent textbook treatment.
This class was considered in full generality first by [9]: they required that the finite-dimensional
distributions of the process satisfy a multivariate regular variation condition (see [30, 31] for
the definition of this notion). It is an extension of power-law tail behavior from the univariate
to the multivariate case defined via the vague convergence of tail measures with infinite limit
measures which have the homogeneity property.

Here we follow an alternative approach by [2] tailored for stationary sequences, avoiding
the vague convergence concept. They proved that a real-valued stationary sequence (Xt) is
regularly varying with index α > 0 in the sense of [9] if and only if there exists a sequence
(Θt) and a Pareto(α) distributed Y , i.e., P(Y > y) = y−α, y > 1, such that (Θt) and Y are
independent and, for all h ≥ 0,

P
(
x−1(Xt)|t|≤h ∈ · ∣∣ |X0| > x

) w→ P
(
Y (Θt)|t|≤h ∈ ·), x → ∞.

In the latter relation, x can be replaced by any sequence (an) such that nP(|X| > an) → 1 as
n → ∞. Moreover, by definition, |Θ0| = 1 a.s. The sequence (Θt) is the spectral tail process of
the regularly varying process (Xt); it describes the propagation of a value |X0| > x for large
x through the stationary sequence (Xt) into its past and future.

Example 3.1. We consider a stationary AR(1) process given as the causal solution to the
difference equation Xt = ϕXt−1 + Zt, t ∈ Z, where (Zt) is iid regularly varying with index α
(e.g., Pareto(α) or student(α)). This means that a generic element Z satisfies lim

x→∞P(±Z >

x)/P(|Z| > x) = p± for nonnegative values p± such that p+ + p− = 1, and P(|Z| > x) =
L(x)x−α, x > 0, for some slowly varying function L. Then a generic element X inherits the
regularly varying tail behavior from Z (see [10]):

P(±X > x)

P(|Z| > x)
∼

∞∑

j=0

[
p± (ϕj)α± + p∓ (ϕj)α∓

]
= P(Θ0 = ±1)(1 − |ϕ|α).

But even more is true: (Xt) is a regularly varying time series with spectral tail process

Θt = ΘZ sgn(ϕJ+t) |ϕ|t11(J + t ≥ 0) = Θ0 ϕ
t 11(J + t ≥ 0), t ∈ Z, (3.1)

where P(ΘZ = ±1) = p±, ΘZ is independent of J which has distribution

P(J = j) = (1− |ϕ|α) |ϕ|j α, j ≥ 0.

In particular, the forward spectral tail process is given by Θt = Θ0 ϕ
t, t ≥ 0.

Example 3.2. We consider the unique causal solution to the affine stochastic recurrence
equation Xt = AtXt−1 + Bt, t ∈ Z, for an iid sequence ((At, Bt))t∈Z with generic element
(A,B) ∈ R

2
+. We assume that the distribution of (A,B) satisfies the conditions of the Kesten–

Goldie theory (see [13, 20], cf. [6] for a textbook treatment). The most important condition
in this context is the existence of a unique solution α > 0 to the equation E[Aα] = 1 which
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yields the tail index α. Under these conditions, for a generic element X, there exists a positive
constant c+ such that

P(X > x) ∼ c+ x−α, x → ∞.

Then the forward spectral process is given by

(Θt)t≥0 = (Πt)t≥0, where Πt = A1 · · ·At,

while the backward spectral tail process (Θt)t≤−1 has a rather complicated structure.

Writing St = logΠt =
t∑

i=1
logAi, t ≥ 1, we observe that (St) constitutes a random walk with

a negative drift. Indeed, by Jensen’s inequality, we have E[log(Aα)] < log(E[Aα]) = 0.

3.2. The extremal index. Following Remark 2.2, we derive the extremal index θX of a
stationary nonnegative regularly varying sequence (Xt) in terms of its spectral tail process.
First, we observe that by virtue of the continuous mapping theorem, as n → ∞, for k ≥ 1,

P
(
a−1
n Mk ≤ 1

∣
∣X0 > an

)→ P
(
Y max

1≤t≤k
Θt ≤ 1

)
= P
(
max
1≤t≤k

Θα
t ≤ Y −α

)

= E
[(
1− max

1≤t≤k
Θα

t

)
+

]
= E
[
max
0≤t≤k

Θα
t − max

1≤t≤k
Θα

t

]
.

Here we used the fact that Y −α is U(0, 1) uniformly distributed and Θ0 = 1 a.s. Using
dominated convergence as k → ∞, we proved under the anti-clustering condition (2.1) that

lim
n→∞ θn = lim

k→∞
lim
n→∞P

(
a−1
n Mk ≤ 1

∣
∣X0 > an

)
= lim

k→∞
E
[
max
0≤t≤k

Θα
t − max

1≤t≤k
Θα

t

]

= E
[(
1−max

t≥1
Θα

t

)
+

]
.

From Theorem 2.1 we obtain the following result in [2].

Corollary 3.3. Consider a nonnegative stationary regularly varying process (Xt) with index
α > 0. Then the following statements hold:

1. If the anti-clustering condition (2.1) holds for (un) = (x an) and some x > 0, then the
limit θ = lim

n→∞ θn exists, is positive and has the representations

θ = P
(
Y sup

t≥1
Θt ≤ 1

)
= E
[(
1− sup

t≥1
Θα

t

)
+

]
= E
[
sup
t≥0

Θα
t − sup

t≥1
Θα

t

]
. (3.2)

2. If (2.1) and the mixing condition (2.2) hold for (un) = (x an) and all x > 0, then the
extremal index θX exists and coincides with θ.

The representations of θ given in (3.2) only depend on the forward spectral process (Θt)t≥0.
In Proposition 3.10 below, we provide representations of the extremal index θ|X| depending on
the whole spectral tail process (Θt)t∈Z.

Example 3.4. We consider the regularly varying AR(1) process from Example 3.1. It can be
shown to satisfy the anti-clustering and mixing conditions of Theorem 2.1. We conclude from
Corollary 3.3 and the form of the spectral tail process given in (3.1) that

θ|X| = E
[(
1−max

t≥1
Θα

t

)
+

]
= 1−max

t≥1
|ϕ|α t = 1− |ϕ|α.

This formula was already achieved in [10] in a wider context of linear processes.

Example 3.5. We consider the regularly varying solution of an affine stochastic recurrence
equation under the conditions and with the notation of Example 3.2. It can be shown to
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satisfy the anti-clustering and mixing conditions of Theorem 2.1 (see [6]). We conclude from
this result that (Xt) has extremal index

θX = E
[(
1−max

t≥1
Πt

)
+

]
= E
[(
1− exp

(
max
t≥1

St

))
+

]
,

where St =
t∑

i=1
logAi, t ≥ 1, is a random walk with a negative drift. This value of θX was

derived in [16]. In that paper, a Monte Carlo simulation procedure for the evaluation of θX
was proposed. Direct calculation of θX is difficult (see Example 3.12 for an exception).

3.3. The extremal index and point process convergence toward a cluster Poisson
process

3.3.1. A useful auxiliary result.

Lemma 3.6. Consider a nonnegative stationary regularly varying sequence (Xt) with index
α > 0 and assume that (2.1) holds for (un) = (x an) and all x > 0. Then

‖Θ‖αα :=
∑

j∈Z
Θα

j < ∞ a.s.

In particular, Θt → 0 a.s. as |t| → ∞, and the time T ∗ of the largest record of (Θt) is finite,
i.e., |T ∗| is the smallest integer such that

ΘT ∗ = max
t∈Z

Θt .

Proof. Write (Yt) = Y (Θt), where the Pareto(α) variable Y and the spectral tail process (Θt)
are independent. We start by showing

Yt
a.s.→ 0, t → ∞. (3.3)

Since (Xt) is regularly varying, we have for all x > 0 and integers k ≥ 1,

lim
h→∞

lim
n→∞P

(
Mk,k+h > xan | X0 > an

)
= lim

h→∞
P
(

max
k≤t≤k+h

Yt > x
)
= P
(
max
t≥k

Yt > x
)
.

On the other hand, using the anti-clustering condition (2.1) for all x ∈ (0, 1], we have for fixed
k, h ≥ 1,

lim
n→∞P

(
Mk,k+h > xan | X0 > an

) ≤ lim sup
n→∞

P
(
Mk,rn > xan | X0 > xan

)P(X > xan)

P(X > an)

= x−α lim sup
n→∞

P
(
Mk,rn > xan | X0 > xan

)
= x−αεk,

and the right-hand side term εk vanishes for large k. Hence, letting h → ∞, we obtain for all
x > 0,

P
(
max
t≥k

Yt > x
) ≤ x−αεk,

and, therefore,

lim
k→∞

P
(
max
t≥k

Yt > x
) ≤ lim

k→∞
x−αεk = 0,

implying max
t≥k

Yt
P→ 0 as k → ∞. Since (Yt) = Y (Θt) a.s. and Y > 0 is independent of (Θt),

this is only possible if max
t≥k

Θt
P→ 0 as k → ∞ but the latter relation is equivalent to Θt

a.s.→ 0

as t → ∞, implying (3.3).
Next we show that

Y−t
a.s.→ 0, t → ∞.
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Since Yt
a.s.→ 0 as t → ∞ and Y0 > 1 a.s., the following relation holds

P
(⋃

i≥0

{
Yi ≥ 1 > max

t>i
Yt

})
=
∑

i≥0

P
(
Yi ≥ 1 > max

t>i
Yt

)
= 1.

Assume that P(
∑

j≤0
11(Yj > ε) = ∞) > 0 for some ε > 0. Then there exists some i ≥ 0 such

that

P

(∑

j≤0

11(Yj > ε) = ∞, Yi ≥ 1 > max
t>i

Yt

)
> 0.

We recall the time-change formula from [2]:

P((Θ−h, . . . ,Θh) ∈ · | Θ−t �= 0) = E
[ Θα

t

E
[
Θα

t

]11
((Θt−h, . . . ,Θt+h)

Θt
∈ ·)]. (3.4)

In particular, P(Θt �= 0) = E[Θα
t ] = 1 if and only if for all h ≥ 0,

P((Θ−h, . . . ,Θh) ∈ ·) = E
[ Θα

t

E
[
Θα

t

] 11
( (Θt−h, . . . ,Θt+h)

Θt
∈ ·)].

Therefore,

∞ = E
[∑

j≤0

11(Yj > ε) 11
(
Yi ≥ 1 > max

t>i
Yt

)]
=
∑

j≤0

P
(
Yj > ε, Yi ≥ 1 > max

t>i
Yt

)

=
∑

j≤0

∫ ∞

1
E
[
11
(
yΘj > ε , yΘi ≥ 1 > y max

t>i
Θt

)]
d
(− y−α

)

=
∑

j≤0

∞∫

1

E
[
Θα

−j 11
(
y > εΘ−j , y

Θi−j

Θ−j
≥ 1 > y max

t>i−j

Θt

Θ−j

)]
d
(− y−α

)

≤ ε−α
∑

j≤0

E
[

∞∫

1

11
(
z > 1 , zΘi−j ≥ ε−1 > z max

t>i−j
Θt

)
d
(− z−α

)]

= ε−α
∑

j≤0

P
(
Yi−j ≥ ε−1 > max

t>i−j
Yt

)
= ε−α

∑

k≥i

P
(
Yk ≥ ε−1 > max

t>k
Yt

) ≤ ε−α.

In the last step, we used the fact that the events {Yk ≥ ε−1 > max
t>k

Yt}, k ≥ i, are disjoint.

Thus, we got a contradiction. This proves that for all ε > 0 there exist only finitely many

j ≤ 0 such that Yj > ε, hence Yt
a.s.→ 0 and also Θt

a.s.→ 0 as t → −∞, as desired.
In particular, the time T ∗ of the largest record of the sequence (Θt) is finite a.s.
Now assume that P(

∑

j∈Z
Θα

j = ∞) > 0. Then there exists an i ∈ Z such that

P
(∑

j∈Z
Θα

j = ∞, T ∗ = i
)
> 0,

and an application of the time-change formula (3.4) yields

∞ = E

[∑

j∈Z
Θα

j 11(T
∗ = i)

]
=
∑

j∈Z
E
[
Θα

j 11(T
∗ = i)

]
=
∑

j∈Z
P(T ∗ = i− j) = 1,

leading to a contradiction. Thus
∑

j∈Z
Θα

j < ∞ a.s. This proves the lemma. �
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3.3.2. Point process convergence toward cluster Poisson processes. The following point process
result was proved in [9] and reproved in [2] by using the terminology of the spectral tail process.

We adapt the mixing condition in [9] tailored for point process convergence. It is expressed
in terms of the Laplace functionals of point processes. Recall that a point process N with
state space E = R0 = R\{0} has Laplace functional

ΨN (g) = E

⎡

⎣exp

⎛

⎝−
∫

E

g dN

⎞

⎠

⎤

⎦ for g ∈ C
+
K ,

where the set C
+
K consists of the continuous functions on E with compact support. Since 0

is excluded from E, this means that g ∈ C
+
K vanishes in some neighborhood of the origin.

Moreover, we have the weak convergence of point processes Nn
d→ N on E if and only if

ΨNn → ΨN pointwise (see [30,31]).

Mixing condition A(an) Consider integer sequences rn → ∞ and kn = [n/rn] → ∞ and the
point processes with state space E = R0,

Nn =

n∑

i=1

εa−1
n Xi

and Ñrn =

rn∑

i=1

εa−1
n Xi

, n ≥ 1,

where εx denotes Dirac measure at x. The stationary regularly varying sequence (Xt) satisfies
A(an) if there exist (rn) and (kn) such that

ΨNn(g)−
(
Ψ

˜Nrn
(g)
)kn → 0, n → ∞, g ∈ C

+
K . (3.5)

Remark 3.7. This condition is satisfied for a strongly mixing sequence (Xt) with mixing
rate (αh) if one can find integer sequences (�n) and (rn) such that �n/rn → 0, rn/n → 0 and

knα�n → 0. This is a very mild condition indeed. Relation (3.5) ensures that if Nn
d→ N on

the state space E, then also
kn∑

i=1
Ñ

(i)
rn

d→ N , where (Ñ
(i)
rn )i=1,...,kn are iid copies of Ñrn . This

fact ensures that the limit processes considered are infinitely divisible (cf. [19]).

Theorem 3.8. Consider a stationary regularly varying sequence (Xt) with index α > 0. We
assume the following conditions:

(1) The mixing condition A(an) for integer sequences rn → ∞ such that kn = [n/rn] → ∞
as n → ∞.

(2) The anti-clustering condition (2.2) for the same sequence (rn) .
Then we have the point process convergence on the state space R0

Nn =

n∑

i=1

εa−1
n Xi

d→ N =

∞∑

i=1

∞∑

j=−∞
ε
Γ
−1/α
i Qij

, (3.6)

where

•
∞∑

j=−∞
εQij , i = 1, 2, . . ., is an iid sequence of point processes with state space R. A generic

element Q = (Qj) of the sequence Q(i) = (Qij)j∈Z, i = 1, 2, . . ., has the distribution of the
spectral cluster process

Q =
( Θt

‖Θ‖α
)

t∈Z
.

• (Γi) are the points of a unit rate homogeneous Poisson process on (0,∞).

• (Γi) and (Q(i))i=1,2,... are independent.

695



Remark 3.9. In view of Lemma 3.6, we know that ‖Θ‖α < ∞ a.s. Hence, the spectral cluster
process Q is well defined.

Since the Poisson points (Γ
−1/α
i ) and the sequence of iid point processes

( ∑

j∈Z
εQij

)
are

independent, it is not difficult to calculate the Laplace functional of the limit process N :

ΨN (g) = exp
(
−

∞∫

0

E
[
1− e

− ∑

j∈Z

g(y Qj)]
d(−y−α)

)
, g ∈ C

+
K .

Now we apply the change of variables z = y |QT ∗ | in ΨN (g), where

|QT ∗ | = |ΘT ∗ |
‖Θ‖α =

max
t∈Z

|Θt|
( ∑

j∈Z
|Θj|α

)1/α .

Then we obtain for g ∈ C
+
K ,

ΨN (g) = exp
(
− E[|QT ∗ |α]

∞∫

0

E

[ |QT ∗ |α
E[|QT ∗ |α]

(
1− e

− ∑

j∈Z

g(z Qj/|QT∗ |))]
d(−z−α)

)
.

According to Proposition 3.10 below, θ|X| = E[|QT ∗ |α]. Now, changing the measure with the

density |QT ∗ |α/E[|QT ∗ |α] and writing Q̃ = (Q̃j)j∈Z for the sequence Q/|QT ∗ | under the new
measure, we arrive at

ΨN (g) = exp
(
−

∞∫

0

E
[(
1− e

− ∑

j∈Z

g(z ˜Qj |))]
d
(− (z/θ

1/α
|X|
)−α))

.

However, this alternative expression of the Laplace functional ΨN corresponds to another
representation of the point process N :

N =
∞∑

i=1

∞∑

j=−∞
ε
(Γi/θ|X|)−1/α ˜Qij

, (3.7)

where the Poisson points (Γ
−1/α
i ) are independent of the sequence

( ∑

j∈Z
ε
˜Qij

)
of iid copies of

∑

j∈Z
ε
˜Qj
.

We observe that |Q̃j| ≤ 1 a.s. and |Q̃T ∗ | = 1 a.s. The extremal index θ|X| plays an important

role in representation (3.7). Each Poisson point (Γi/θ|X|)−1/α stands for the radius of a circle

around the origin, and the points (Q̃ij)j∈Z are inside or on this circle. In this sense, each

Poisson point (Γi/θ|X|)−1/α creates an extremal cluster. Therefore, we refer to the process N
as a cluster Poisson process.

3.3.3. Equivalent expressions for the extremal index. Based on the results in the previous
subsection, we can derive equivalent expressions of θ|X| in terms of QT ∗ and T ∗.

Proposition 3.10. Assume the conditions of Theorem 3.8. Then the extremal index θ|X| of
(|Xt|) coincides with the following quantities:

E[|QT ∗ |α] = P(Y |QT ∗ | > 1) = P(T ∗ = 0). (3.8)

Here Y is a Pareto(α) independent of QT ∗ and T ∗ is the time of the largest record of (|Θt|).
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Remark 3.11. We observe that

E[|QT ∗ |α] = E

[max
t∈Z

|Θt|α
∑

j∈Z
|Θj |α

]
= θ|X| .

Since θ|X| = P(T ∗ = 0), the extremal index θ|X| has an intuitive interpretation as the proba-
bility that (|Θt|) assumes its largest value at time zero.

Example 3.12. We consider the regularly varying solution of an affine stochastic recurrence
equation under the conditions and with the notation of Example 3.2. An exception where
the extremal index has an explicit solution is the case logAt = Nt − 0.5 for an iid standard
normal sequence (Nt). Then E[At] = 1 and the theory mentioned in Example 3.2 yields regular
variation of (Xt) with index 1. Using the expression P(T ∗ = 0) and applying some random
walk theory (such as the results in [8]), one obtains an exact expression for θX in terms of the
Riemann zeta function ζ (see Example 3.13). A first order approximation to this formula is
given by

θX ≈ 1

2
exp
(ζ(0.5)√

2π

)
≈ 1

2
exp(−0.5826) ≈ 0.2792. (3.9)

Example 3.13. Let B(i) = (Bt)t∈R be iid standard Brownian motions independent of Γ1 <
Γ2 < · · · , which are the points of a unit-rate Poisson process on (0,∞). We consider the
stationary max-stable Brown-Resnick [4] process

Xt = sup
i≥1

Γ−1
i e

√
2B

(i)
t −|t|, t ∈ R.

It has unit Fréchet marginals P(Xt ≤ x) = Φ1(x) = e−x−1
, x > 0. Any discretization X(δ) =

(Xδ t)t∈Z for δ > 0 is regularly varying with index 1 and spectral tail process Θ
(δ)
t = e

√
2Bδ t−δ|t|,

t ∈ Z. Direct calculation of −x logP(n−1 max
1≤t≤n

Xδ t ≤ x), x > 0, yields the extremal index of

X(δ) as the limit

θ
(δ)
X = lim

n→∞n−1
E

[
sup

0≤t≤n
e
√
2Bδ t−δt

]
. (3.10)

We use the expression θ
(δ)
X = P(T ∗(δ) = 0), where T ∗(δ) is the first record time of (Θ

(δ)
t )t∈Z

(see (3.8)). We consider the first ladder height epoch τ+(δ) = inf{t ≥ 1 :
√
2Bδt + δt < 0}.

Using the symmetry of the Gaussian distribution, (Θ
(δ)
t )t≥1

d
= (1/Θ

(δ)
−t )t≥1, we obtain θ

(δ)
X

= P(T ∗(δ) = 0) = P(τ+(δ) = ∞)2. Combining this with the classical identity P(τ+(δ) = ∞) =
1/E[τ−(δ)] for τ−(δ) = inf{t ≥ 1 :

√
2Bδ t− δt ≤ 0}, we get from random walk theory (see [1])

θ
(δ)
X =

( 1

E[τ−(δ)]

)2
=
(

E[Bδ−δ]

E[
√
2Bτ−(δ)−τ−(δ)]

)2
=δ2(E[

√
2Bτ+(δ)+τ+(δ)])

−2,

where we used Wald’s lemma and the symmetry of the Gaussian distribution. To be able to
apply Theorem 1.1 in [8], we standardize the increments of the random walk

√
2Bδ t dividing

them by
√
2δ, turning the drift into

√
δ/2, and we get

E[
√
2Bτ+(δ) + τ+(δ)] =

√
δ exp

(
−

√
δ

2
√
π

∞∑

n=0

ζ(1/2 − n)

n!(2n + 1)

(
− δ

4

)n)
.

This implies that

θ
(δ)
X = δ exp

(√ δ

π

∞∑

n=0

ζ(1/2− n)

n!(2n+ 1)

(
− δ

4

)n)
.
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We recover the Pickands constant of the Brown–Resnick process (see [29]) as lim
δ↓0

δ−1 θ
(δ)
X :

H(0)
X = lim

T→∞
1

T
E

[
sup

0≤t≤T
e
√
2Bt−t

]
= 1.

Proof of Proposition 3.10. Consider the supremum of all points of the limit process N in The-
orem 3.8:

M = sup
i≥1

Γ
−1/α
i sup

j∈Z
|Qij|.

The sequences (Γi) and (Q(i)) are independent and M = sup
i≥1

Γ
−1/α
i Vi for the iid sequence

Vi := supj∈Z |Qij |, i = 1, 2, . . . , whose generic element V has the property E[V α] < ∞. Indeed,

V ≤ 1 a.s. by construction. The points (Γ
−1/α
i , Vi) constitute a marked Poisson process NΓ,V

with state space E = (0,∞)×[0,∞) and mean measure given by μ((x,∞)×[0, y]) = x−α FV (y),
x > 0, y ≥ 0, where FV is the distribution function of V . For x > 0 we consider Bx = {(y, v) ∈
E : y v > x}. We observe that

μ(Bx) =

∞∫

v=0

∞∫

y=x/v

αy−α−1 FV (dv) =

∞∫

0

(x/v)−α FV (dv) = x−α
E[V α].

Therefore, we have for x > 0,

P(M ≤ x) = P
(
Γ
−1/α
i Vi ≤ x, i ≥ 1

)
= P (NΓ,V (Bx) = 0) = e−μ(Bx) = e−x−α

E[V α].

Thus, M is a scaled version of the standard Fréchet distribution, Φα(x) = e−x−α
, x > 0:

P(M ≤ x) = ΦE[V α]
α (x) , x > 0 .

On the other hand, Theorem 3.8 and an application of the continuous mapping theorem yield
as n → ∞,

P
(
a−1
n Mn ≤ x

)
= P
(
Nn(x,∞) = 0

)→ P
(
N(x,∞) = 0

)
= P(M ≤ x), x > 0.

In view of the definition of the extremal index of the sequence (|Xt|), we can identify

E[V α] = E

[
sup
j∈Z

|Qj|α
]
= E[|QT ∗ |α]

as the value θ|X|. This proves the first part of (3.8). The identity

E[|QT ∗ |α] = P(Y |QT ∗ | > 1) = P(|QT ∗ |α > Y −α)

is immediate, since Q and Y are independent, and Y −α is U(0, 1) distributed.
Applying the time-change formula (3.4), shifting k to zero, we obtain

θ|X| = E[|QT ∗ |α] =
∑

k∈Z
E

[ |Θk|α∑

j∈Z
|Θj |α 11(T ∗ = k)

]
=
∑

k∈Z
E

[ |Θ−k|α∑

j∈Z
|Θj−k|α 11(T ∗ = 0)

]
= P(T ∗ = 0).

This proves the last identity in (3.8). �
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4. Estimation of the extremal index - a short review and a new estimator

based on the spectral cluster process

First approaches to the estimation of the extremal index are due to [17, 38]. Estimators
based on exceedences of a threshold were proposed in [12, 33, 35, 36]. A modern approach to
the maxima method was started in [26]; improvements and asymptotic limit theory can be
found in [3, 5].

We consider some standard estimators of θX . For the sake of argument we assume that
(Xt) is a nonnegative stationary process with marginal distribution F , kn = n/rn is an integer
sequence such that rn → ∞, kn → ∞, and (un) is a threshold sequence satisfying un ↑ xF .

4.1. Blocks estimator. Recall that θX has interpretation as the reciprocal of the expected
size of extremal clusters. This idea is the basis for inference procedures from the early 1990s
(see [11,37]). Clusters are identified as blocks of length r = rn with at least one exceedance of

a high threshold u = un. A blocks estimator θ̂bl is given by the ratio of the number Kn(u) of
such clusters and the total number of exceedences Nn(u):

θ̂blu (r) =
Kn(u)

Nn(u)
:=

kn∑

t=1
11(M(t−1)r+1,t r > u)

n∑

t=1
11(Xt > u)

. (4.11)

This method requires the choice of block length r and threshold level u satisfying rnF (un) → 0;

if rn → ∞ does not hold at the prescribed rate, θ̂bl is biased. Estimators using clusters of
extreme exceedences were also considered in [17].

A slight modification of the blocks estimator is the disjoint blocks estimator of [38]:

θ̂dbl =
log(1−Kn(u)/kn)

r log(1−Nn(u)/n)
.

Assuming some weak dependence condition on (Xt), the heuristic idea behind the estimator
is the approximations

(
P(Mr ≤ un)

)kn ≈ P(Mn ≤ un) ≈ F θX n(un)

for a suitable sequence (un). Then, taking logarithms and replacing F (un) and P(Mn > un)
by their empirical estimators Nn(u)/n and Kn(u)/kn, respectively, we obtain

θX ≈ logP(Mn ≤ un)

n log F (un)
=

log(1− P(Mn > un))

n log(1− F (un))
≈ log(1−Kn(u)/kn)

rn log(1−Nn(u)/n)
= θ̂dbl.

Assuming that bothKn(u)/kn andNn(u)/n converge to zero, a Taylor expansion of log(1+x) =

x(1 + o(1)) as x → 0 shows that θ̂bl ≈ θ̂dbl. [38] showed that θ̂dbl has a smaller asymptotic

variance than θ̂bl. [33] proposed a sliding blocks version of θ̂dbl with an even smaller asymptotic
variance

θ̂slbl(u, r) =

− log
(

1
n−r+1

n−r+1∑

t=1
11(Mt,t+r ≤ u)

)

Nn(u)/kn
. (4.12)

4.2. Runs and intervals estimator. [38] proposed an alternative runs estimator. It is
based on the limit relation (2.4): the probability P(M�n ≤ un | X0 > un) is replaced by a
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sample version for some sequence l= ln→∞:

θ̂runsu (l) =
1

Nn(u)

n−l∑

i=1

11(Xi > un ,Mi+1,i+l ≤ un). (4.13)

Clusters are considered distinct if they are separated by at least l observations not exceeding
u. In [12], a complete study of the runs estimator and the inter-exceedence times is given.
The thresholds (un) need to satisfy rnF (un) → 1, and ln ≤ rn.

Consider the exceedance times

S0(u) = 0, Si(u) = min{t > Si−1(u) : Xt > un}, i ≥ 1,

with inter-exceedance times Ti(u) = Si(u)−Si−1(u), i ≥ 1. The sequence (Ti(u))i≥2 constitutes
a stationary sequence. If rn F (un) → 1, [12] noticed that (nT2(u)) converges in distribution
to a limiting mixture given by (1− θX)110(x) + θX (1− e−θX x), x ≥ 0. Calculation yields the
coefficient of variation ν of T2(u) whose square is given by

ν2 = var(T2(u))/(E[T2(u)])
2 = E[T 2

2 (u)]/(E[T2(u)])
2 − 1 = 2/θX − 1,

leading to overdispersion ν > 0 if and only if θX < 1. Replacing the moments on the left-
hand side by sample versions and adjusting the empirical moments for bias, [12] arrived at the
intervals estimator

θ̂int(u) = 1 ∧
2
(Nn(u)

∑

i=2
(Ti(u)−1)

)2

(Nn(u)−1)
Nn(u)
∑

i=2
(Ti(u)−1)(Ti(u)−2)

. (4.14)

See also [35,36].

4.3. Northrop’s estimator. Assume for the moment that (Xi) is iid and F is continuous.
Then F (X) is uniform on (0, 1). Hence, for r = rn and x > 0,

P
(− rn log F (Mr) > x

)
= P(F (Mr) ≤ e−x/r) = P( max

i=1,...,rn
F (Xi) ≤ e−x/r)

=
(
P(F (X) ≤ e−x/r)

)r
= e−x .

For a weakly dependent sequence (Xi) with marginal distribution F , assume the existence of
an extremal index for (F (Xt)) which, by monotonicity of F , coincides with θX :

P
(− rn logF (Mr) > x

)
= P( max

i=1,...,rn
F (Xi) < e−x/r) → e−θX x, x > 0.

Thus, the (−rn log F (Mr)) are asymptotically Exp(θX) distributed. For iid Exp(θX), the
maximum likelihood estimator of θX is given by the reciprocal of the sample mean. These
ideas lead to Northrop’s estimators [26]. Mimicking the maximum likelihood estimator of iid
Exp(θX) data for a stationary sequence (Xt), one considers the quantities −rn log F (Mt,t+r),
t = 1, . . . , n− rn, and constructs sliding or disjoint blocks estimators of θX :

θ̂Nsl(r) =
( 1

n− r + 1

n−r+1∑

t=1

(−r logFn(Mt,t+r))
)−1

, (4.15)

θ̂Ndbl(r) =
( 1

[n/r]

[n/r]∑

i=1

(−r log Fn(Mr (i−1)+1,r i))
)−1

. (4.16)

Here Fn is an empirical distribution function of the data. This particular choice of estimator
of F depends on the whole sample, hence introduces additional dependence. This fact requires
an optimal choice of block length rn for implementation.
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4.4. An estimator based on the spectral cluster process. In this subsection, we con-
sider a stationary nonnegative regularly varying process (Xt) with index α > 0, spectral tail
process (Θt) and normalizing sequence (an) satisfying nP(X > an) → 1. Proposition 3.10
yields the alternative representation θX = E[Qα

T ∗ ], where (Qt) is a spectral cluster process of
(Xt). We construct an estimator based on this identity.

We consider sums and maxima over disjoint blocks of size r = rn = o(n):

S
(α)
i,r :=

i r∑

t=(i−1) r+1

Xα
t , Mi,r = max

t=(i−1)r+1,...,i r
Xt, i = 1, . . . , kn .

The following limit relation is proved in [7]:

lim
n→∞E

[
Mα

1,r/S
(α)
1,r |S(α)

r > aαn
]
= E[Qα

T ∗ ], (4.17)

which is based on large deviation results for regularly varying stationary sequences (see, for
example, [7]). Now we build an estimator of θX from an empirical version of the left-hand
expectation. Define the corresponding estimator by

θ̂scpv (r) :=

kn∑

i=1

Mα
i,r

S
(α)
i,r

11
(
S
(α)
i,r > v

)

kn∑

i=1
11
(
S
(α)
i,r > v

)
. (4.18)

Here we choose v = S
(α)
(s),r, the sth largest among (S

(α)
i,r )i=1,...,kn for an integer sequence s = sn

such that sn = o(kn).

5. A Monte-Carlo study of the estimators

We run a short study based on 1 000 simulated processes (Xt)t=1,...,5000 for comparing the
performances of some of the aforementioned estimators. First, (Xt) is an AR(1) process
with parameter ϕ = 0.2 and iid student(1) noise, resulting in a regularly varying process with
index 1 and θ|X| = 0.8. Second, we consider the regularly varying solution of an affine stochastic
recurrence equation with iid logAt ∼ N(−0.5, 1), Bt ≡ 1, and θX ≈ 0.2792 (see (3.9)).

Figures 5.1 and 5.2 show boxplots of the simulation study.

• θ̂bl and θ̂runs are functions of the block and run lengths, respectively. u is the largest
[n0.6]th upper order statistic of the sample.

• θ̂slbl is a function of r. u is the rth upper order statistic of the sample.

• θ̂int is a function of x. u is the [n/x]th upper order statistic.

• θ̂Nsl, θ̂scp are functions of r.

• For θ̂scp we choose s = [n0.6/r]. The tail index α is estimated by the Hill estimator
from [14] based on [n0.8] upper order statistics of the sample.

According to the folklore in the literature, Northrop’s estimator θ̂Nsl outperforms the clas-
sical estimators (runs, blocks); it has smallest variance but it can be difficult to control its

bias. Our experience with θ̂scp shows that it performs better than the other estimators as

regards the bias, especially when θX is small. The intervals estimator θ̂int is preferred by
practitioners because the choice of the hyperparameter x is robust with respect to different

values of θX . This cannot be said about the other estimators with the exception of θ̂scp. In

our experiments with sample size n = 5000, the choices x = 32 and r = 64 work well for θ̂int

and θ̂scp, respectively. We did not fine-tune the hyperparameter s in θ̂scp in our experiments.
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Fig. 5.1. Boxplots based on 1 000 simulations for the estimation of θ|X| = 0.8
in the AR(1) model with ϕ = 0.2 and iid student(1) noise.
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Fig. 5.2. Boxplots based on 1 000 simulations for the estimation of θX ≈ 0.2792
for the solution to a stochastic recurrence equation.
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