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NONCLASSICAL LINEAR THEORIES OF CONTINUUM MECHANICS 

О. R. Hrytsyna  UDC 539.3 

We present a brief survey of nonclassical linear theories of continuum mechanics.  Thus, we give a con-
cise characterization of the Eringen–Edelen nonlocal theory of elasticity, theories of polar and micropo-
lar media, Toupin couple-stress theory of elasticity, Eringen–Suhubi–Mindlin micromorphic theory, 
Mindlin gradient theory of elasticity, and also the local gradient theory of deformation of elastic media 
that takes into account local mass displacements.   

Keywords: linear elasticity, nonclassical models, nonlocal elasticity, gradient-type theories, theories 
with nonclassical kinematics. 

Introduction 

For more than one hundred years, attention of numerous researchers is directed toward the development of 
generalized (nonclassical) theories of mechanics that take into account the influence of the local structure of ma-
terials on its macroproperties and describe the observed effects and phenomena that cannot be substantiated 
within the framework of the classical theory.  This corresponds, in particular, to the size effects of the mechani-
cal characteristics of materials [28, 77, 78], the subsurface inhomogeneity of physicomechanical fields [41, 69, 
111], the high-frequency dispersion of elastic waves [13, 36], etc.  The influence of the microstructure is signifi-
cant in the case of propagation of ultrasonic waves (elastic vibrations characterized by high frequencies and 
small wavelengths).  The analysis of this influence reveals waves of new type that cannot be described within 
the framework of the classical theory.  The development of nonclassical mathematical models was stimulated by 
the introduction of new composite and porous materials in the contemporary engineering, the necessity of con-
trolling the structure of materials, miniaturization of the engineering devices, development of nanotechnologies, 
etc.  The construction of new theories of mechanics is explained by the necessity of avoiding the singularities of 
solutions in problems with cracks, notches, dislocations, etc.  

The aim of the present paper is to give a concise survey of the existing nonclassical (nonlocal and gradient) 
theories of continuum mechanics. 

1. Brief Survey of the State-of-the-Art of the Problem 

The nonclassical theory of elasticity was originated in the works by Piola [35, 42].  In 1909, E. Cosserat and 
F. Cosserat proposed the theory of polar continuum [40].  Twenty years later, Jaramillo formulated relations of 
the gradient theory of elastic media [68].  The next step in the development of nonclassical theories of elasticity 
was made in the 1960s, when the foundations of the Aéro–Kuvshinskii polar theory [2], couple stress theory [90, 
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114], and the theory of elastic media with microstructure [46, 52, 86, 109] (known as the theory of micromor-
phic materials) were laid.  The micropolar theory was developed in [52, 109].  In 1964, Green and Rivlin pro-
posed a mathematical model of multipolar continuum [61].  In 1987, Burak [4] developed the continuum ther-
modynamic approach to the construction of gradient-type mathematical models of mechanics.  The theory con-
structed on the basis of this approach was called the theory of local gradient elasticity [6, 11, 20].  

The development of generalized theories of the media with microstructure was, to a large extent, realized in 
the works by Eringen and his coauthors who developed the linear [45] and nonlinear [71, 72] theories of mi-
cropolar elasticity, micromorphic theory [46, 52, 109], and the theory of microstretched elastic bodies (mi-
crostretch continuum) [49]. 

Surveys of different directions in the development of nonclassical theories of elasticity were published al-
most simultaneously with the construction of new nonclassical mathematical models of elastic continua.  Chap-
ters in the monographs and survey papers on this subject were published as early as in 1960–70s [23, 25, 47].  In 
[18, 84, 101], the trends of development and the prospects of application of nonclassical theories were clarified.  
In [47, 49], Eringen formulated the mathematical foundations and traced the development of the theories of mi-
cropolar elastic and thermoelastic continua, microstretch media.  In cooperation with Kafadar [51], he presented 
a general survey of microcontinuum theories.  Nowacki [95] gave a series of solutions of the problems of mi-
cropolar elasticity.  Chen, etc. [38] analyzed the relations of the nonlocal, micromorphic, micropolar, polar, and 
couple stress theories from the viewpoint of the theory of crystal lattice and molecular dynamics.  Sarkisyan [26, 
27] and J. Altenbach with coauthors [33] presented surveys of the existing models of micropolar elastic thin 
shells, plates, beams, and rods.  

Aifantis [29–31] presented a brief survey of the nonlocal and gradient models of elasticity, diffusion, and 
plasticity developed by him together with his coauthors.  He treated his generalized theories of elastic continua 
as a specific compromise between the classical theory of elasticity, which does not give correct description of 
the mechanical response of nanostructures to the external action and the molecular dynamics whose application 
requires significant computational resources [30].  

Forest [55] established the relationships between several well-known gradient-type models of thermoelastic 
and viscoplastic bodies and analyzed, in cooperation with Papenfuss [97], the existing higher-order theories with 
internal variables and additional degrees of freedom.  Jirásek [70] focused his attention on the application of 
strongly and weakly nonlocal theories of mechanics and models of media with internal degrees of freedom to the 
description of size effects and dispersion of short elastic waves in heterogeneous media.  Belov and Lurie [3, 19] 
presented a comparative analysis of the Cosserat [40], Jaramillo [68], Aéro-Kuvshinskii [2], Mindlin [86], Tupin 
[114], and Belov–Lurie [3] theories.  Erofeev [13] used the theory of media with microstructure (Leroux contin-
ua, Mindlin–Eringen micromorphic media, Cosserat continuum, and Cosserat pseudocontinuum) to study the 
regularities of propagation of elastic waves.  In [101], Polizzotto focused on the investigation of relations of the 
gradient models of mechanics containing, in addition, two, three, or four constants of higher order and also pre-
sented a graphical scheme of relationships between the analyzed models for isotropic materials.  The works [42, 
112] give a retrospective view of the development of nonclassical models of mechanics that take into account 
the specific features of complex mechanical behaviors of materials with microstructure.   

Numerous authors [28, 56, 59, 100] carried out the comparative analysis of various versions of the theories 
of media with microstructure and revealed their efficiency in the investigation of the mechanical behaviors of 
micro- and nanoobjects.  The applicability of the methods of continuum mechanics to the analysis of the me-
chanical response of nanostructures was investigated in [18].  Moreover, in [91], it was indicated that the appli-
cation of the determining relations of nonlocal elasticity to the description of the mechanical behavior of the 
analyzed objects should be performed with certain precautions. 

The intense development of microelectronics stimulated the creation of integral- and gradient-type mathe-
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matical models of elastic micro- and nanosized tubes, shells, plates, beams, and rods.  The results obtained in 
this direction were analyzed in [34, 43, 113, 116, 118, 119]. 

As a separate extremely important direction of investigations, we can mention the evaluation of higher-
order material constants required to take into account nonlocal effects.  In [75, 78, 85, 957, 111, etc.], the availa-
ble experimental data were used for the determination of the mechanical characteristics of media (including the 
characteristic distance of the material, i.e., the scale parameter of material length).  In these investigations, the 
researchers used the so-called method of size effects.  In this method, for the evaluation of higher-order material 
constants, it is customary to use analytic solutions of test boundary-value problems of nonclassical elasticity that 
describe size effects in small-sized structures and the corresponding experimental results accumulated for these 
structures.  Numerous works deal with the atomistic approach to the evaluation of the strain-gradient elasticity 
material constants [83, 95] and also the kernels of nonlocal continuum elasticity [110].  In [88, 89], Mindlin ap-
plied the lattice theory to find the additional moduli of elasticity connected with the microstructure of the mate-
rial.  Surveys of works dealing with the determination of higher-order constants in the nonclassical theories of 
elasticity with strain gradients can be found in [35, 76, 95]. 

In what follows, we briefly characterize the nonclassical theories of continuum mechanics with emphasis 
made on the conceptual works devoted to the foundations of mathematical description of these theories.  We 
analyze two directions in the development of nonclassical mathematical models of the theory of elasticity, name-
ly, gradient- and integral-type models. 

2. Nonlocal Theories of Media with Space-Type Functional Constitutive Equations 

According to the nonlocal theory, the stresses acting at a fixed point of the body depend not only on the lev-
el of strains at this point but also on the levels of strains at the other points.  Within the framework of this theory, 
for the description of the long-range effects, it is customary to use the following representation for the density of 
strain energy:  

 
    

W = 1
2
Cijkℓeij KK( r − ′r )ekℓ ( ′r ) dV ( ′r )

(V )
∫  (1) 

and the functional relationship between the conjugated parameters of state [99]:  

 
    

σij (r) = Cijkℓ KK( r − ′r )ekl ( ′r ) dV ( ′r )
(V )
∫ . (2) 

Here,  r   is the radius vector,  
   
⌢e = {eij}   and  

  
⌢σσ = {σij}   are the strain and stress tensors, respectively,  

   
⌢
C(4) = {Cijkℓ}  is a tensor of rank four whose components are material characteristics (elasticity moduli), and 

   KK( r − ′r )  is the relaxation kernel (damping function of influence).  Here and in what follows, bold symbols 
denote the vector quantities, whereas bold symbols with hat correspond to tensors of the second and higher 
ranks.  The superscript in parentheses located to the right of the symbol marks the rank of the tensor quantity 
(we use these superscript to denote tensors of the third and higher ranks).  

For a certain class of relaxation kernels, the determining integral relations (2) can be represented in the dif-
ferential form as follows [48]:  
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σij = Cijkℓekℓ . (3) 

Here,  c = (e0a)
2   is a nonlocal parameter,  e0   is a material constant (determined either by the laboratory meth-

ods or with the use of approaches of molecular dynamics),  a   is the internal characteristic length (namely, the 
lattice parameter, the grain size, or the molecule size).  These mathematical models are sometimes called gener-
alized models of media with gradients (Laplacian) of the stress tensor [35].  

Askes and Aifantis [35] studied a more general relationship between the stress and strain tensors 

 
 
1− c1

∂2

∂xm
2

⎛
⎝⎜

⎞
⎠⎟
σij = Cijkℓ 1− c2

∂2

∂xm
2

⎛
⎝⎜

⎞
⎠⎟
ekℓ , (4) 

where  c1   and  c2   are gradient coefficients.  The determining relation (4) makes it possible to avoid singulari-
ties on lines of defects and at the crack tips. 

The differential form (3) of the equations of state of nonlocal elasticity was obtained for an infinite medium, 
which imposes certain restrictions on the field of their applicability.  In particular, these equations of state can-
not correctly describe nonlocal effects at all points of the nanosized body.  In more detail, this was described in 
[53, 91].  Aifantis [29, 30, 35] repeatedly considered the problem of equivalence of the integral form of deter-
mining relations of the Eringen nonlocal theory and the differential equations (3), (4).  The model of elastic me-
dium based on the equation of state (3) and its relationship with the Eringen nonlocal theory was also analyzed 
by Polizzotto [100], Romano and Barretta [105], and other researchers. 

The theories characterized by the functional relationships between the stress and strain tensors were called 
“nonlocal theories of the integral type,” “nonlocal theories,” or “strongly nonlocal theories.”  Since these math-
ematical models describe the space dispersion of short waves, they are sometimes called “nonlocal models of 
media with space dispersion.” 

The differential form of determining equations is much more convenient for solving the problems of math-
ematical physics.  Therefore, the differential equations (3) and (4) are widely used for the investigation of the 
mechanical response of elastic bodies to static and dynamic loading.  Nonlocal equations of state were used for 
the investigation of the mechanical behavior of beams [43, 103, 105, 116], wires [73], nanoplates [81, 113], 
nanotubes [117], spherical shells [115], and many other objects.  The surveys of investigations of the static and 
dynamic behaviors of nanobeams carried out within the framework of the Euler–Bernoulli, Timoshenko, Reddy, 
Levinson, and other nonlocal theories of beams were presented in [103, 119].  The papers [34, 37, 79] contain 
surveys of the results of modern investigations performed from the viewpoint of application of nonlocal elastici-
ty to the analysis of graphene sheets and carbon nanotubes.  These structures are extensively used in practice as 
elements of transistors, sensors, gauges, nanocapacitors, and other devices, as well as for the design of new su-
perstrong composite nanomaterials.  Engelbrecht and Braun [44] and Eltaher with colleagues [43] presented sur-
veys of the nonlocal theories of mechanics from the viewpoint of their application to the analysis of wave mo-
tion. 

Lim, et al. [80] proposed a modified nonlocal theory of beams based on the following representation of the 
strain energy more general than (1): 

 
    

W = 1
2
Cijkℓeij KK 0( r − ′r )ekℓ ( ′r ) dV ( ′r )

(V )
∫  
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Scheme 1.  Relationships between the gradient-type generalized theories.  

  + 
    

ℓ2

2
Cijkℓeij,m KK1( r − ′r )ekℓ,m ( ′r ) dV ( ′r )

(V )
∫ ,  

where   ℓ   and     KK1( r − ′r )  are the characteristic distance and additional kernel introduced to take into account 
the influence of the gradient of strain tensor.  Here and in what follows, the subscript after comma stands for the 
operation of differentiation with respect to the corresponding space coordinate.  The determining equations of 
this model and the kinematic hypotheses of the Euler–Bernoulli and Timoshenko beam theories were applied to 
the investigation of the dynamic behavior of elastic nanobeams.  

In Ukraine, the nonlocal theory of elastic continuum was developed by Pidstryhach [22], Povstenko [102], 
and other researchers. 

3. Gradient-Type Theories 

3.1. General Characteristic.  Theories in which the phase space of the parameters of state is extended by 
the gradients of some physical quantities are called either gradient-type theories or weakly nonlocal theories.  
Gradient theories can be conventionally split into two subgroups (see Scheme 1).  One of these subgroups is 
characterized by the use of classical kinematic characteristics.  In these theories, as in the classical elasticity, the 
vector of displacements  u(x, t)   plays the role of a single kinematic characteristic.  Sometimes, these theories 
are called either higher-grade continuum theories of elasticity [112], or gradient theories of materials with sim-
ple structure, or the Leroux media [13, 17], or are classified as theories with long-range effects [38].  The family 
of gradient theories with classical kinematics includes the Toupin couple stress theory [114], the Mindlin theory 
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of elasticity with strain gradients [87], the Jaramillo [68] and Aéro–Kuvshinskii [2] theories, etc.  The Mindlin–
Green–Rivlin [87, 60] theory with strain gradients of higher orders proves to be the most general among the 
mentioned theories.  As limit cases, it contains the Toupin, Aéro–Kuvshinskii, and Jaramillo mathematical mod-
els of the media.  

The local gradient theory of elasticity also belongs to the group of gradient-type theories [4, 6, 11, 20].  This 
theory is based on the model description that takes into account the relationship between the processes of defor-
mation and local mass displacements.  In this case, local mass displacements are associated with the mass flow  
Jms   of nondiffusion and nonconvective nature caused by the changes in the structure of the material of a physi-
cally small element of the body.  The polarization current is an analog of a flow of this kind in electroelasticity.  

Mathematical models of media with additional degrees of freedom form another group of theories.  Some-
times they are called higher-order continuum theories of elasticity [112], gradient theories of materials with 
complex structure [17], media with microstructure [86], or media with additional degrees of freedom [17].  In 
these theories, the medium is modeled by the collection of a large number of representative elements (macro-
elements) each of which is characterized by a finite size, certain structure, and orientation.  Macroelements are 
formed by systems of interacting particles (microelements), which, in turn, may deform, rotate about the center 
of mass of the macroelement and, as a final result, affect the macroscopic behavior of the body.  Thus, in the 
micromorphic theories, parallel with the convective (translational) motion of a microelement, we also consider 
the rotational motion and deformation of its microparticles.  Depending on the forms of motion of microele-
ments that are taken into account (translational or rotational), it is necessary to construct different versions of the 
theories of media with microstructure.  At the same time, a macroelement is regarded either as a rigid oriented 
body (in the polar and micropolar theories) or as a solid deformable body (in the micromorphic theory and theo-
ry of elastic media with dislocations).  This group of theories is formed by the polar and micropolar theories 
[49], micromorphic theory [52, 86, 109], theories of microstretch media [49], elastic media with constant num-
bers of dislocations [3], and various modifications of the indicated theories.  Among the mentioned theories, the 
micromorphic theory proves to be most general.  As special cases, it contains polar and micropolar theories, 
mathematical models of microstretch media, etc.  

The development of the static theories of gradient elasticity was stimulated by the necessity of investigation 
of size and subsurface effects and the requirement of prevention of singularities of the solutions in problems 
with cracks, dislocations, etc.  The description of the dynamic behaviors of elastic continua (in particular, their 
dispersive properties) under the action of rapidly varying loads requires the construction of nonclassical theories 
of continuum mechanics that take into account either the inertia of strain gradients [86] (within the framework of 
the gradient theory of elasticity), or the kinetic energy of local displacements of masses, or the irreversible com-
ponent of the gradient of modified chemical potential [11, 14] (within the framework of local gradient elastici-
ty).  The resolving systems of equations of these models contain the terms proportional to higher-order mixed 
(space-time) derivatives of the key functions [11, 14, 35, 120].  The indicated mathematical models make it pos-
sible to describe the propagation of new types of elastic waves in solid bodies.  A survey of these mathematical 
models can be found in [35].  In what follows, we briefly characterize the gradient models of continuum me-
chanics.  

3.2.  Cosserat Media.  Micropolar Theory.  The Cosserat continuum theory (1909) was the first step in the 
development of the nonclassical theory of elasticity [40].  In this theory, a representative element is regarded as 
an oriented solid body.  This is why it is often called the polar theory.  In [17], Kunin classified polar and mi-
cropolar continua as models of continuum media with weak nonlocality of elastic properties.  

The kinematic properties of the Cosserat media are described by two independent vector quantities: the vec-
tor of displacements  u(x, t)  and the vector of rotations  ωω (x, t).  These vectors specify the nonsymmetric strain 
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tensor  
  
⌢γγ == {γ ij}   and the bending-torsion tensor  

  
⌢κκ == {κij}   [21]: 

 γ ji = ui, j + Eijkωk ,      κ ji = ωi, j . 

Here,  Eijk   are the components of the Levi-Civita pseudotensor and  
  
⌢
E(3) = {Eijk} .  

In polar media, we observe the formation not only of the force stresses  
  
⌢σσ = {σij}   but also of the couple 

stresses  
  
⌢m = {mij}   given by the following equations of state:  

 σij = ∂W
∂γ ij

,      mij = ∂W
∂κij

. 

Unlike the classical (symmetric) theory of elasticity, the stressed state of the Cosserat medium is described 
by the nonsymmetric stress tensor   

⌢σσ .  Thus, the Cosserat theory is also often called the nonsymmetric elasticity 
theory [21].  The dynamic behavior of the Cosserat elastic medium is characterized by the following equations: 

 
 
σij, j + Fi = ρ!!ui , (5) 

 
 
mji, j + Eijkσ jk + Mi = J !!ωi , (6) 

where   F = {Fi}  and   M = {Mi}   are the vectors of volume forces and moments and  J   is the measure of inertia 
in the course of rotation (dynamic characteristic of the medium).  

If, for the density of strain energy  W   of the isotropic continuum, we use the bilinear expansion 

 W (γ ij ,κij ) = 1
2
λγ iiγ jj +

1
2
(µ +α)γ ijγ ij +

1
2
(µ −α)γ ijγ ji  

  + 1
2
βκiiκ jj +

1
2
(γ + ε)κijκij +

1
2
(γ − ε)κijκ ji , 

then we get the following explicit form of the equation of state [21]: 

 σij = 2µγ ij
S + 2αγ ij

A + λγ kkδij ,      mij = 2γκij
S + 2εκij

A + βκkkδij . (7) 

Here, the superscripts  “S ”  and  “A”  denote the symmetric and skew-symmetric parts of the strain tensor   
⌢γγ   

and the bending-torsion tensor   
⌢κκ : 

 
 
γ ij
S = 1

2
(ui, j + u j, i) = eij ,      

 
κij

S = 1
2

(ωi, j +ω j, i), 

 
 
γ ij
A = 1

2
(ui, j − u j, i) − Eijkωk ,      

 
κij

A = 1
2

(ωi, j −ω j, i). 
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The mechanical behavior of the isotropic elastic material within the framework of the polar theory is de-
scribed by six moduli of elasticity, namely, by two Lamé constants  λ   and  µ   and by four higher-order material 
constants  α ,  β ,  γ ,  and  ε .   

Substituting the equation of state (7) in the balance equations (5) and (6), for the evaluation of displace-
ments and rotations, we get the following two vector (six scalar) key differential equations of the second order:  

  (λ + 2µ)∇∇(∇∇ ⋅u) − (µ +α)∇∇ × (∇∇ × u) + 2α∇∇ ×ωω + F = ρ!!u , 

  (β + 2γ )∇∇(∇∇ ⋅ωω) − (γ + ε)∇∇ × (∇∇ ×ωω) + 2α∇∇ × u − 4αωω + ΜΜ = J !!ωω . 

Here,  ∇∇   is the nabla operator,  “×”  and  “⋅”  denote, respectively, the operations of vector and scalar product, 
and overdots stand for the time derivatives.  

The Cosserat continuum was used as the base for the mathematical description of micropolar media in 
which, parallel with translational motion, a particle has additional degrees of freedom, namely, the possibility of 
rigid rotations [45].  If the microinertia of rotations is regarded as a constant quantity, then the micropolar theory 
is reduced to the theory of Cosserat media [38].  

The elastic characteristics of polar and micropolar continua were determined by Lakes [75, 76], Hassanpour 
and Heppler [65], McFarland and Colton [85], and other researchers. 

The relationships of the Cosserat continuum and micropolar elasticity were extended to the theory of elastic 
shells, plates, and rods [1, 106], beams [85], and other small-sized structures. 

Y. Chen, et al. [38] demonstrated, from the viewpoint of molecular dynamics and lattice theory, that it is 
reasonable to apply the polar theory to the investigation of the mechanical behaviors of materials admitting sig-
nificant changes in the orientation of microstructures (liquid crystals and ferroelectrics) and the micropolar theo-
ry to the investigation of molecular crystals, granulated materials, and some types of composites.  

3.3. Cosserat Pseudocontinuum (1960).  The theory of Cosserat pseudocontinuum is a simplified version of 
the theory of Cosserat continuum.  In this theory, the vectors of rotations and displacements are connected by the 
formula   ωω = rot u/2 .  This theory is sometimes called the Cosserat theory with “restrained rotations” or the 
couple stress theory.  The analyzed version of the couple stress theory of elasticity contains only one independ-
ent kinematic characteristic, namely, the vector of displacements  u ,  which determines the following strain 
measures: 

 
 
eij = 1

2
(ui, j + u j, i) ,      

 
κij = 1

2
Ekℓjuℓ, ki . 

The number of constants obtained for the isotropic elastic body within the framework of this theory de-
creases from six to four.  In this case, the vector of displacements satisfies a fourth-order vector differential 
equation.  In the absence of mass forces, this equation takes the following form [21]: 

 
 
µΔu + (λ + µ)∇∇(∇∇ ⋅u) + 1

4
(γ + ε)∇∇ × (∇∇ × Δu) − I

4
∇∇ × (∇∇ × !!u) = ρ!!u . 

Here,  λ ,  µ ,  γ ,  and  ε   are material constants characterizing the elastic properties of the Cosserat pseudocon-
tinuum,  I   is a material constant that characterizes the inertial properties of the macrovolume, and  Δ   is the 
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Laplace operator.  
The Cosserat theory with restrained rotations belongs to the group of higher-rank theories of elasticity.  As 

compared with the classical theory of elasticity, it additionally takes into account coupled stresses and operates 
with the asymmetric stress tensor.  In view of its relative simplicity, this theory is well developed and frequently 
used in applied investigations.  

Thorough analyses of the systems of equations of the Cosserat continuum and Cosserat pseudocontinuum 
can be found in the monographs by Nowacki [21] and Savin [23] and in the works by Aéro and Kuvshinskii [2, 
16], Mindlin and Tiersten [90], Toupin [114], Savin, et al. [24], Hadjesfandiari and Dargush [63], etc.  

3.4. Mindlin–Eringen–Suhubi Micromorphic Theory (1964).  The micropolar theory treats the structural 
elements of a macrovolume as solid bodies and takes into account only rigid rotations of these elements about 
the center of mass of the macrovolume.  The micromorphic theory whose kinematics is described not only by a 
vector quantity but also by tensor quantities proves to be more general.  This theory takes into account all com-
ponents of the tensor of free distortion but not only its skew-symmetric part (free rotations), as in the Cosserat 
theory. 

The foundations of the micromorphic theory were proposed by Eringen, Suhubi, and Mindlin in [52, 86, 
109].  The micromorphic theory treats the body as a continuous set of a large number of deformable particles 
each of which is characterized by finite sizes and internal structure.  Deformable particles (macroelements) con-
sist of structural elements (microelements).  The motion of macroelement can be described as a result of its con-
vective transfer, rotation about the center of mass, and deformation.  As a result of deformation of micromorphic 
continuum, we observe the formation of macrostrains and microscopic internal strains.  

In what follows, we present the principal relations of the first-order micromorphic theory.  The kinematic 
behaviors of points of this medium are described by the vector field of displacements  u   and the second-rank 
tensor  

  
⌢χχ = {χij}   whose components characterize microstrains.  Within the framework of this theory, every 

point of the three-dimensional medium has twelve degrees of freedom.  
The first-order micromorphic medium is characterized by the following force factors, including the “classi-

cal” stress tensor  
  
⌢σσ = {σij} ,  the tensor of double stresses  

  
⌢ττ(3) = {τijk} ,  and the tensor of relative stress  

   
⌢s = {sij}.  In the stationary case, in the absence of mass forces, these stresses satisfy the following balance rela-
tions [39]: 

 σij, j + sij, j = 0 ,      sij + τijk, k = 0 . (8) 

The density of strain energy is described by the function   W = W (eij ,  γ ij , κijk ) ,  where the tensors  
   
⌢e = {eij} ,  

  
⌢γγ = {γ ij},  and  

  
⌢κκ (3) = {κijk}   are given by the formulas  

 
 
eij = 1

2
(χij + χ ji),      γ ij = u j, i − χ ji ,      κijk = χij,k , 

  
⌢e   is the tensor of macrostrains, which characterizes relative displacements of the centers of masses of macro-
volumes (it coincides with the Green strain tensor in the classical theory of elasticity), the tensor   

⌢κκ (3) = ∇∇⊗ ⌢χχ   
was introduced to describe the gradients of microstrains,  “ ⊗”  denotes the dyadic product,   

⌢γγ   is the relative 

strain (measure of difference between the macrostrain    
⌢e   and the microstrain   

⌢χχ ).  The tensors   
⌢κκ (3)   and   

⌢γγ   
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are new strain measures absent in the classical theory. 
The corresponding equations of state take the form  

 σij = ∂W
∂eij

,      sij = ∂W
∂γ ij

,      
 
τijk = ∂W

∂æijk
. (9) 

The tensors of ordinary   
⌢σσ   [N/m2], relative    

⌢s   [N/m2], and double   
⌢ττ(3)   [N/m] stresses have the same 

properties of symmetry as the corresponding strain tensors    
⌢e ,   
⌢γγ   and   

⌢κκ (3) .   
Within the framework of the linear theory, the density of strain energy is described by the following bilinear 

form: 

 
  
W (eij ,  γ ij , κijk ) = 1

2
Cijkℓeijekℓ + 1

2
Bijkℓγ ijγ kℓ + 1

2
Aijkℓmnκijkκℓmn  

  + 
 
Gijkℓeijγ kℓ + Fijkℓmeijκkℓm + Dijkℓmγ ijκkℓm , (10) 

where  
 
Cijkℓ ,   Bijkℓ ,   Aijkℓmn ,  

 
Gijkℓ ,  

 
Fijkℓm ,  and  

 
Dijkℓm   are material characteristics.  The mechanical behavior 

of an anisotropic medium is characterized by 903 moduli.  For isotropic materials, the linear theory has 18 mate-
rials constants.  For this continuum, the bilinear form (10) can be represented as follows:  

 W = 1
2
λeiiejj + µeijeij +

1
2
b1γ iiγ jj +

1
2
b2γ ijγ ij + g1γ iiejj  

  + g2(γ ij + γ ji )eij + a1κiikκkjj + a2κiikκ jkj  

  + 1
2

a3κiikκ jjk + 1
2

a4κijjκikk + a5κijjκkik  

  + 1
2

a8κijiκkjk + 1
2

a10κijkκijk + a11κijkκ jki  

  + 1
2

a13κijkκikj +
1
2

a14κijkκ jik + 1
2

a15κijkκkji , (11) 

where  λ   and  µ   are Lamé constants and  bi ,  ai ,  and  gi   are 16 higher-order material constants.  
If representations (10) [or (11) in the case of an isotropic medium] are substituted in the determining rela-

tions (9), then we get the explicit form of the equations of state.  To guarantee the uniqueness of solutions of the 
corresponding boundary-value problems of mathematical physics, the balance equations (8) and the determining 
relations (9) are complemented by boundary conditions specified on the surface of the body either by the vector  

 ττ
a = {τi

a} or by the second-rank tensor  
  
⌢ττa = {τij

a}   [39]: 

 (σij + sij )nj = τi
a ,      τijknk = τij

a . 
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The basic concepts of the micromorphic and micropolar theories and the theory of microstretch media were 
thoroughly described in the monograph [50] in which the relationships between these theories were also estab-
lished.  

In analyzing some types of internal motion, we can get different versions of gradient-type nonclassical 
models of mechanics from the micromorphic theory [50, 58].  If we do not take into account the changes in the 
microstructure of physically small elements of the body, then the micropolar theory is obtained from the micro-
morphic theory.  The micropolar continuum takes into account solely the rigid rotations of structural elements.  
If we describe the motion of representative elements by microrotations and microstretching (i.e., take into ac-
count the action of compressive and tensile strains), then we get the theory of microstretch media (microstretch 
continuum).  This theory considers the following strain measures:  

 eij = u j, i + E jikωk ,     κij = ωi, j ,     γ k = ϕ,k ,     e = ϕ ,   

where  ϕ   is microstretching and  ωi   are microrotations.  If we assume that particles deform in the same way as 
the entire continuum, then the micromorphic theory turns into the gradient Mindlin theory of elasticity.  If parti-
cles participate in the rotational motion that coincides with the rotational motion of the entire continuum, then 
we get the couple-stress theory of elasticity.  If particles are reduced to points equipped with masses, then all 
theories of media with microstructures are reduced to the classical theory of elasticity. 

It is reasonable to use the micromorphic theory for the investigation of covalent, molecular, and ionic crys-
tals [38].  As a disadvantage of this theory, we can mention a large number of elastic constants and the absence 
of an experimental program required for their evaluation.  This clearly restricts the practical applicability of the 
analyzed theory. 

3.5. Stress-Gradient Theories of Elasticity.  In the stress-gradient theories of elasticity, the variations of 
microstructures of the materials are associated with strain gradients.  

The presence of a large number of versions of the gradient-type theories of elasticity is explained by the 
principal possibility of introducing three types of components in the representation for the density of strain ener-
gy.  These are terms proportional to the following factors:  

 (1) second-order gradients of the vector of displacements,  
  
⌢
ηη(3) = {ηijk}   (microdistortion gradient), and  

ηijk = uk,ij ;  

 (2) first-order gradients of the macrostrain tensor,  

 
   
⌢e = {eij} ,    γ ijk  = ekj, i  = 

 
(uk, ji + u j, ki )/2  = (ηijk  + 

 
ηkij )/2 ,    eij = (ui, j + u j,i )/2 ; 

 (3) gradients of rotations  
  
κij = Eiℓkuk,ℓj/2   and the symmetric tensor of the second gradient of the vector 

of displacements  
 
ηijk
S = (uk, ij + ui, jk + u j, ki )/3 .  

Note that the strain tensor  
   
⌢e = {eij}   has six independent components, whereas the tensor  

  
⌢
ηη(3) = {ηijk}   is 

symmetric with respect to the first two indices and has 18 independent components.  The presence of bilinear 
combinations of these components in the expansion for the energy density makes it possible to construct various 
types of the theories of elastic media with microstructures.  
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3.5.1. Theory of Elastic Continuum with the First Strain Gradient.  In 1962, Toupin [114] and Mindlin 
and Tiersten [90] formulated a system of equations of gradient elasticity that takes into account the dependence 
of the density of strain energy on the strain gradient.  This theory is known as the couple stress theory of elastici-
ty.  In 1964, Mindlin [86] proposed a mathematically more complicated linear theory of elastic continuum with 
microstructure.  Unlike the couple stress theory, the mathematical model of a medium with microstructure in-
cludes the symmetric part of the strain gradient.  Therefore, this theory contains more material constants than the 
couple stress theory.  In particular, the elastic behaviors of centrally symmetric and isotropic materials are char-
acterized by two Lamé constants and five additional materials constants (seven constants in total) [86].  Note 
that, for the density of strain energy, Mindlin used the following representation: 

 W (eij , γ ijk ) = 1
2
λeiiejj + µeijeij + g1γ iikγ kjj + g2γ ijjγ ikk  

  + g3γ iikγ jjk + g4γ ijkγ ijk + g5γ ijkγ kji , (12) 

where  gi ,   i = 1, 2,…, 5 ,  are additional material constants connected with taking into account the strain gradi-
ents.  Within the framework of this theory, we get the following equations of state:  

 σij = ∂W
∂eij

,      τijk = τ jik = ∂W
∂γ ijk

. 

Here,  
 
τ̂τ(3) = {τijk}   is the tensor of double stresses.  Parallel with relation (12), Mindlin considered another form 

of representation of the strain energy, namely, 

 W (eij , ηijk ) = 1
2
λeiiejj + µeijeij + a1ηiikηkjj + a2ηijjηikk  

  + a3ηiikη jjk + a4ηijkηijk + a5ηijkηkji . 

In this mathematical model, the “classical” and double stresses are given by the formulas  

 σij = ∂W
∂eij

,      τijk = τ jik = ∂W
∂ηijk

 

and satisfy the balance equation 

 σ ji, j − τkji, kj + Fi = 0 . 

The gradient theory of elasticity was used as basic by numerous researchers who proposed to use either 
simplified or, on the contrary, generalized versions of this theory.  In what follows, we discuss some of these 
versions.  

Lam, et al. [77] reduced the number of additional elastic constants to three.  They considered the following 
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expansion for the potential  W : 

 W eij , emm, i , ηijk
SD ,κij

S( ) = 1
2
λeiiejj + µeijeij  

  + 
 
µℓ 0

2emm, ienn, i + µℓ1
2ηijk

SDηijk
SD + µℓ 2

2κij
Sκij

S , (13) 

where   ℓ 0 ,   ℓ1,  and   ℓ 2   are the characteristic distances connected with the dilatation gradient, deviatoric com-
ponent of the gradient of tensile strains, and symmetric component of the gradient of rotations, respectively: 

 
 
ηijk
SD = ηijk

S − δijηℓℓk
S + δ jkηℓℓi

S + δikηℓℓj
S( ) ,  

 
  
κij

S = (κij + κij )/2 = (Eipℓeℓj, p + E jpℓeℓi,ℓ)/2 .  

 This theory is often called the modified theory of gradient elasticity.  It considers the following force fac-
tors: 

 
 
σij = ∂W

∂eij
= 2µeij + λeℓℓδij ,      

 
γ i = ∂W

∂enn,i
= 2µℓ 0

2enn, i , 

 
 

τijk
SD = ∂W

∂ηijk
SD = 2µℓ1

2ηijk
SD ,      

 

mij
S = ∂W

∂χij
S = 2µℓ 2

2χij
S . 

Here,  σij   are the components of the tensor of Cauchy stresses,  γ i   is the pressure gradient,  τijk
SD   are the com-

ponents of the tensor of double stresses, and  mij
S   is the symmetric component of couple stresses. 

Gusev and Lurie [62] constructed a simpler version of the gradient theory of elasticity containing, for iso-
tropic materials, two classical moduli of elasticity and two higher-order material constants (four constants in to-
tal).  In the Gusev–Lurie theory, the components of the tensor of double stresses are given by the formula 

 τijk = a1γ ijk
SH + a2γ ijk

S , 

where  γ ijk
S   and  γ ijk

SH   are the symmetric part and the spherical component of the tensor   
⌢γγ (3) :  

 
 
γ ijk
S = (γ ijk + γ jki + γ kij )/3 = ηijk

S      and    
  
γ ijk
SH = γ iℓℓ

S δ jk + γ jℓℓ
S δki + γ kℓℓ

S δij( )/5 . 

In the expansion for the density of strain energy, Tekoğlu and Onck [112] took into account the terms pro-
portional to the divergence of the strain gradient  

 !ηi =
1
2

(uj,ij + ui, jj ) = eij, j . 
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For anisotropic materials, they used the bilinear form  

 
  
W (eij , !ηi ) = 1

2
Cijkℓeijekℓ + Bijkeij !ηk + Dij !ηi !η j .  

For centrally symmetric materials, the components of the pseudotensor  Bijk   are equal to zero and the equa-
tions of state take the following form:  

 
 
σij = ∂W

∂eij
= Cijkℓekℓ ,      

 
τi = ∂W

∂ !ηi
= Dij !η j , 

where  τi   is the stress vector, which is a parameter conjugate to the divergence of the strain gradient.  For iso-
tropic materials,  

 
Cijkℓ = λδijδkℓ + 2µδikδ jℓ   and  Dij = aδij ,  where  a   is an additional material constant con-

nected with the divergence of strain gradient.  The authors called this theory the generalized strain divergence 
theory of elasticity.  Within the framework of this theory, the tensor and vector of stresses introduced above sat-
isfy the following balance equation:  

 σij,i −
1
2
(τi, ji + τ j,ii ) + Fi = 0. 

Altan and Aifantis [32] offered another representation for the strain energy 

 
 
W (eij , eij,k ) = 1

2
λeiiejj + µeijeij + ℓ

2 1
2
λeii,kejj,k + µeij,keij,k

⎛
⎝

⎞
⎠ ,  

where   ℓ   is the characteristic distance in the microstructure of the material.  Then the components of the tensor 
of double stresses  τ̂τ(3)   are given by the formulas: 

 
 

τijk = τ jik = ∂W
∂eij, k

= ℓ2(2µeij, k + λeℓℓ, kδij ) = ℓ2σij, k, 

and the balance equation for the  isotropic and anisotropic materials takes the form 

 
 
λu j, ij + 2µui, jj − ℓ

2(λu j, ijmm + 2µui, jjmm ) + Fi = 0, 

 
 
Cijkℓ uk, jℓ − ℓ

2uk, jℓmm( ) + Fi = 0.  

The variational formulation of this simplified version of gradient elasticity (with three material constants 
two of which are the Lamé constants and the remaining constant is the characteristic length of the material) was 
proposed by Gao and Park [57]. 

The skew-symmetric part of the tensor of double stresses is the tensor of couple stresses.  Within the 
framework of the couple stress theory of elasticity formulated in 1962 [90, 114], the determining relations for 
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isotropic materials contain two additional constants characterizing the microstructure of the material (together 
with the Lamé constants, the total number of constants is equal to four).  Somewhat later, the researchers pro-
posed new modified versions of the couple stress theory of elasticity containing larger or smaller numbers of 
material constants.  Thus, in particular, in 1993, Fleck and Hutchinson [54] formulated the relations of a modi-
fied couple stress theory characterizing an isotropic continuum by three more additional material constants con-
nected with taking into account the gradients of rotation and tension (five constants in total).  

In 2002, Yang, et al. [122] proposed a simplified version of the couple stress elasticity, which contained on-
ly three material constants in total (two elastic moduli and one characteristic distance).  In this theory, parallel 
with the equations of balance of the mechanical momentum and angular momentum, the researchers used an 
additional balance equation for the higher-order stresses.  The equations of this model can be obtained if, in rela-
tion (13), we take   ℓ 0 = 0   and   ℓ1 = 0.  In view of a quite small number of material constants, this theory was 
fairly extensively used for practical purposes [82, 98].  

Abazari, et al. [28] proposed a generalized couple stress theory based on the postulate of variation of the 
mechanical properties of the material in the near-surface layers of the body.  The authors applied this theory to 
substantiate the size effect of Young’s modulus.  

The relationship between the theories based on different representations of the density of strain energy was 
analyzed in [35, 59, 93, 101, 112], etc.  The couple stress theories were thoroughly investigated in [63, 64].  

The couple stress theory and the theory of gradient elasticity and their modified versions are used to investi-
gate the stress-strain state around cracks [108], cavities [112], etc.  They were extended to the mathematical 
models of elastic plates [96, 104], beams [77, 93], and other small-sized structures.  Thorough analyses of the 
gradient models of beams and plates can be found in [35, 113].  

By analyzing the process of bending of nanobeams, Shokrieh and Zibaei [107] indicated the advantages of 
gradient elasticity over the theory of beams with functional determining relations. 

Within the framework of the gradient theories, the deflections of elastic beams and plates are described by a 
six-order equation.  At the same time, the classical theories are based on a fourth-order equation.  For micro- and 
nanobeams whose thickness is comparable with the characteristic length of the material, the gradient models 
state that the frequency of natural vibrations increases and the deflection of the beam decreases (as compared 
with the classical theory) under the action of concentrated forces or distributed loads [74].  The indicated 
strengthening of the material is in good agreement with the results of experimental measurements.  At the same 
time, it is not confirmed by the classical theory.  

The theory of elasticity with the first strain gradient describes the experimentally observed high-
frequency dispersion of elastic mechanical longitudinal waves but gives the incorrect sign of curvature of the 
dispersion curve [87, 89].  To remove this disadvantage, it was proposed to use mathematical models of elastic 
media taking into account the dependence of the internal energy on the strain gradients of the second and higher 
orders.  

3.5.2. Theory of the Green–Rivlin Multipolar Continua (1964).  Mindlin Gradient Theory of Elasticity 
(1965).  In 1964, Green and Rivlin [60, 61] developed the foundations of a very general mathematical model of 
elastic continuum that includes strain gradients of any order.  The number of physical constants in this model is 
determined by the order of the theory.  The indicated theory was called the theory of multipolar continua.  It is 
based on the use of the following strain measures:  

 
 
eij = (ui, j + u j,i )/2 ,      γ ijk = ekj, i ,      

 
γ ijkℓ = ekj, iℓ ,       γ ijkℓm = ekj, iℓm . 

A year later, Mindlin [87] proposed a simpler linear dependence taking into account the dependence of the 
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energy density on the strain tensor and also on the second and third gradients of the vector of displacements:  

 
W = W (eij , ηijk , ηijkℓ ) .  Here,  

 
ηijkℓ = uℓ,ijk   and  

  
⌢
ηη(4) = {ηijkℓ} .  In order to get linear determining relations, 

Mindlin represented the strain energy in the form of a polynomial of the second order with all possible combina-
tions of quadratic terms from the components of the strain tensor and the second and third gradients of the vector 
of displacements.  For this description, he obtained the following equation of state: 

 σij = ∂W
∂eij

,      τijk = ∂W
∂ηijk

,      
 
τijkℓ = ∂W

∂ηijkℓ
,  

where  
 
⌢σσ = {σij}   is the classical tensor of macrostresses with dimension  N/m2;  

 
⌢ττ(3) = {τ pqr}   is the tensor of 

double stresses with dimension  N/m,  and  
 
⌢ττ(4) = {τ pqrs}   is the fourth-rank tensor with dimension  N,  which 

was called the tensor of ternary stresses.   
The tensors of classical, double, and ternary stresses satisfy the following single higher-order differential 

equilibrium equation: 

 
 
σij, j − τijk, jk + τijkℓ, jkℓ + Fi = 0 . 

This equation should be supplemented with the boundary conditions specifying the surface values of projec-
tions of the vector of displacements and its first and second derivatives onto the normal to the surface of the 
body [in this case, vector quantities are specified on the surface unlike the micromorphic theory in which, in ad-
dition to the vector of displacements, tensor quantities (additional degrees of freedom) are given on the surface] 
[39].   

Mindlin analyzed the relationship between the system of equations of gradient elasticity and the results of 
the lattice theory [87, 89] and, on the basis of linear relations, deduced the formulas for the surface tension in 
liquids, as well as the formulas for the surface strain energy required to decompose an elastic solid body into two 
parts along a certain surface [87].  He showed that the theory with the second strain gradient correctly describes 
the subsurface inhomogeneity of mechanical fields and the dispersion of elastic longitudinal waves in the high-
frequency range. 

The efficiency of application of the theories taking into account the gradients of the strain tensor of the se-
cond, fourth, sixth, and eighth orders was analyzed in [121] by analyzing an example of elastic nanorod.  

3.6. Gradient Theory of Elastic Media With Regard for Local Mass Displacements.  The investigations in 
this direction were originated by Burak [4] and developed in [5–7, 14, 20, 92, etc.].  The mathematical model of 
thermoelastic continuum proposed in 1987 was based on taking into account the mass flow   Jms = −∂ΠΠm/∂t   of 
nondiffusion and nonconvective nature in the mass balance equation.  Burak associated this mass flow with 
changes in the structure of the material of a physically small element of the body [4].  The vector   ΠΠm = {Πi

m}   
(with dimension of the density of mass dipole moment,  kg·m/m3)  was called the vector of local mass displace-
ments.  The analysis of the influence of mass flow  Jms   performed under the assumption that it is responsible 
for the energy flow   µ∂ΠΠm/∂t ,  where  µ   is the chemical potential of the material, made it possible to construct 
a gradient-type theory of physicomechanical processes in solid elastic and thermoelastic bodies, which was 
called the local gradient theory [4, 10].  In this theory, the phase space of the parameters of state was additional-
ly extended by a pair of conjugate parameters: the gradient of chemical potential ∇∇µ   and the vector of local 
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mass displacements [10]: 

 Πi
m = ∂W

∂µ, i
. 

The list of works carried out within the framework of this approach was presented in [10].  
The continuum-thermodynamic approach to the construction of local gradient models of the continuum  

mechanics was additionally developed in [6, 7, 14].  In these works, for the description of the process of local 
mass displacements, the authors introduced two more objective physical quantities.  These are the density of in-
duced mass  ρmπ = −∇∇ ⋅ΠΠm   and the potential  µπ   introduced as a measure of influence of local mass displace-
ments on the internal energy of the system.  In electroelasticity, the density of induced electric charge serves as 
an analog of density of the induced mass.  For these physical quantities, we get the following balance equation 
[11]:  

 ∂ρmπ
∂t

+ ∇∇ ⋅Jms = 0 . (14) 

In this model description, the stressed state of the body is determined by the modified stress tensor  

 
⌢σσ∗ = {σij

∗ }   expressed via the Cauchy stress tensor   
⌢σσ   by the formula  

  
⌢σσ∗ = ⌢σσ − ρmπ ′µπ − ΠΠm ⋅∇∇ ′µπ( ) ⌢I . 

Here,  ′µπ = µπ −µ   is a modified chemical potential.  In this mathematical model, parallel with the stress tensor  

 
⌢σσ*   and strain tensor    

⌢e ,  two additional pairs of conjugate parameters connected with the influence of local 
mass displacements are introduced in the space of parameters of state.  The modified chemical potential  ′µπ   
and the specific density of induced mass  ρm   form one pair of parameters, whereas the second pair is formed by 
the specific vector of local mass displacements  ππm = {πmi}   and the gradient of modified chemical potential  
∇∇ ′µπ = { ′µπ,i} .  The equations of state of this model have the form [11] 

 σij
∗ = ρ ∂W

∂eij
,      ′µπ = ∂W

∂ρm
,      πi

m = ∂W
∂ ′µπ,i

,  

where  ρ   is the mass density,   ππm = ΠΠm/ρ ,   ρm = ρmπ/ρ ,   ππm = {πi
m},  and   

⌢e   is the Green strain tensor.  In 
the linear approximation, the function  W   is represented by the following bilinear form:  

 W (eij ,ρm , ′µπ, i ) = ′µπ0ρm + λ
2ρ0

eiiejj +
µ
ρ0

I2 +
dρ
2
ρm
2  

  – 
αρ

ρ0
λ + 2

3
µ⎛

⎝
⎞
⎠ eiiρm − χm

2
( ′µπ,i )

2 , 

where  λ   and  µ   are the Lamé constants,  dρ ,  αρ,  and  χm   are higher-order elastic constants, and  ′µπ0   are 
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the values of the modified chemical potential  ′µπ   in the infinite medium.  
The balance equations of the model include the balance equation for the induced mass (11) and the balance 

equation for the mechanical momentum 

  ∇∇ ⋅ ⌢σσ* + F + ρ ′F* = ρ""u . (15) 

 Parallel with the mass force  F ,  Eq. (15) contains an additional nonlinear mass force   

 ′F* = ρm∇∇ ′µπ − ππm ⋅∇∇⊗∇∇ ′µπ  

caused by the changes in the microstructure of the material (local mass displacements).  
The key system of equations of local gradient elasticity includes a second-order vector differential equation 

for the vector of displacements (equation of motion) and a second-order scalar differential equation for the mod-
ified chemical potential [11].  If the mathematical model of this medium does not take into account the irreversi-
bility and inertia of local mass displacements, then we get a dynamically uncoupled key system of equations of 
local gradient elasticity.  This theory made it possible to explain numerous phenomena that were not covered by 
the classical theory of elasticity.  In particular, the indicated theory describes the near-surface inhomogeneities 
of the stress-strain state of solid bodies [12], the dispersion of short mechanical waves [12], the size effect of the 
moduli of elasticity [66, 92], the process of propagation of SH waves in a homogeneous isotropic half space [9], 
the appearance of wedging pressure in thin solid films [12], the effect of hardening of elastic nanobeams [67], 
and other effects.  

The relations of the local gradient theory were used to determine the levels of surface tension and surface 
strain energy in solid elastic bodies [8, 12].  The analysis of effect of irreversibility of local mass displacements 
made it possible to describe transient processes of formation of the near-surface inhomogeneity of fields in sol-
ids with plane boundaries [15], which was not done within the framework of the other theories.  

The relationship between the local gradient elasticity and other nonclassical theories of elastic continua was 
studied in a series of works.  Note that it is possible to exclude the parameters connected with local mass dis-
placements from the equations of state for the stress tensor   

⌢σσ*   [11].  As a final result, we obtain a more general 
relationship between the tensors   

⌢σσ*   and   ê :  

 
   (1− ℓ∗

2Δ)σ̂σ = 2µ(1− ℓ∗
2Δ) ê + λ(1− ℓ1∗

2 Δ)eÎ ,  

than the formula predicted by the Aifantis theory [see the equation of state (4)].  Here,   ℓ∗   is the characteristic 

length of the material,     ℓ1∗
2 = ℓ∗

2M/(1+M) ,  where   M   is the parameter of correlation between the processes 
of deformation and local mass displacements [11].  

In [11], by analyzing an example of infinite medium, it was shown that the effect exerted by the local mass 
displacements in the model description is, in a certain sense, equivalent to the use of space-type integral deter-
mining relations with exponential relaxation kernels. 

The present work was financially supported by the Slovak Science and Technology Assistance Agency 
(Project No. SK-CN-RD-18–0005) and by the National Academy of Sciences of Ukraine (Project No. 0117 
U004156).  
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