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AXISYMMETRIC RESONANT VIBRATIONS AND VIBRATION HEATING OF  
AN INELASTIC CYLINDRICAL SHELL COMPLIANT TO SHEAR WITH  
PIEZOELECTRIC ACTUATORS AND RIGIDLY FIXED END FACES 

I. F. Kyrychok,1  Ya. O. Zhuk,2,3  O. A. Chernyushok,4  and  A. P. Tarasov2 UDC 539.374 

We consider the problem of axisymmetric resonance vibrations of an inelastic cylindrical shell compli-
ant to shear with piezoelectric actuators under the action of electromechanical monoharmonic loading.  
We take into account transverse shear strains, rotation inertia of a normal element, and temperature de-
pendence of complex modules of piezopassive and piezoactive materials.  The nonlinear problem is 
solved by using the iterative approach with respect to time within the framework of which the system of 
ordinary differential equations for vibrations is reduced to the integration of nonstationary heat-
conduction equation by the finite-difference method.  By using piezoelectric actuators, we analyze the 
influence of shear strains and the temperature of vibration heating on the amplitude and temperature-
frequency characteristics and active damping of the resonance vibrations of the shell.  

Keywords: resonance vibrations, dissipative heating, cylindrical shell, piezoactuator, shear strains.  

Introduction  

In the contemporary engineering, for the purposes of damping of forced vibrations of thin-walled structur-
al elements, parallel with passive methods, it is also customary to use the methods of active damping with       
the help of piezoelectric actuators [11, 15, 16].  In order to increase or decrease the amplitude of mechanical vi-
brations of the most power-consuming modes, the difference of electric potentials with the corresponding ampli-
tude and phase and a frequency of mechanical loading is applied to the electrodes of these actuators.  In the 
course of operation of thin-walled elements, in particular, made of viscoelastic polymeric and composite materi-
als with low shear stiffness, vibration processes are accompanied by dissipative heating caused by the hysteresis 
losses.   

As important factors that may strongly affect the characteristics of damping of vibrations of thin-walled    
elements, we can mention the susceptibility of structural materials to transverse shear strains, the tempera-
ture dependences of their viscoelastic characteristics, and the conditions of mechanical fastening and heat ex-
change.  

The electrothermomechanical models are constructed within the framework of nonclassical and refined 
statements, the solutions of specific problems of forced vibrations and dissipative vibration heating of thin-
walled layered beams, plates, and shells are found, and their damping with the help of piezoactive components  
is analyzed in the monographs [3, 6] and numerous works [7–10, 14, 15, etc.].  The results of major part of the-
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se works are presented in the surveys [4, 5, 13].  In particular, the problems of axisymmetric resonance vibra-
tions of viscoelastic cylindrical shells with piezoelectric actuators in the classical statement were studied in [7–
9].  

In the present paper, within the framework of the refined statement, we solve the problem of forced vibra-
tions and dissipative heating of a viscoelastic shell compliant to shear with piezoactive actuators and rigidly 
fixed end faces.  We analyze the influence of transverse shear strains, temperature dependences of the electro-
mechanical properties of piezopassive and piezoactive materials, and the sizes of actuators on the amplitude and 
temperature frequency characteristics of vibrations of the shell.  

1.  Statement of the Problem.  Main Equations  

Consider a three-layer cylindrical shell formed by a passive (without piezoeffect) transversely isotropic vis-
coelastic layer of thickness  h0   and piezoelectric layers of thickness  h1  rigidly fastened to its surface.  The 
shell of length   ℓ   is referred to an orthogonal coordinate system  α, θ, z   with coordinate  z = 0   on the middle 
surface of passive layer of radius  R .  The piezolayers (actuators) are made of viscoelastic piezoelectric ceramics 
with the same properties oppositely polarized across the thickness, except the piezoelectric moduli of the oppo-
site signs.  Assume that the inner piezolayer  z ≤ −h0 /2   has the piezoelectric modulus  +d31  and that the outer 
piezolayer  z ≥ −h0 /2   is characterized by the piezoelectric modulus  −d31.  Solid electrodes are applied to the 
surfaces of the piezolayers.  These electrodes are separated into sections by infinitely thin circular cuts with lon-
gitudinal coordinates  α1  and  α2 .  The electrodes operating in contact with surfaces of the passive layer are 
kept at the electric potential equal to zero:  ϕ(±h0 /2) = 0 .  

The shell is loaded by the surface pressure  qz = q0 (α)cosωt   varying as a harmonic function of time  t   
with an  angular frequency  ω   close to the resonance frequency.  To neutralize the action of this load, the volt-
age with an amplitude  ±Va ,  the same frequency  ω ,  and the opposite phase is applied  to the circular sections 
of the electrode-containing surfaces  z = ± (h1 + h0 /2)   whose width is equal to  Δα = α2 − α1.  In the sections  
α < α1   and  α > α2 ,  the electrodes are grounded  (Va = 0) .  The ends of the shell are free in the tangential di-
rection and rigidly fixed in the transverse direction.  On the boundary surfaces of the shell, we impose the condi-
tions of convective heat transfer with the ambient medium whose temperature is  Tc .  We simulate the viscoelas-
tic behavior of passive and piezoactive materials with the help of the concept of complex moduli whose compo-
nents depend on the temperature of vibration heating.   

We describe the electromechanical behavior of the analyzed shell by using the Timoshenko-type theory of 
layered shells that takes into account the transverse shear strains and inertia of rotation of the normal element.  
As for the electric characteristics of piezolayers, we assume that the components of the vector of induction  Dα   
and  Dθ  can be neglected.  Moreover, it follows from the equations of electrostatics that the normal component 
in the piezolayers is independent of the thickness coordinate  z ,  i.e.,  Dz = const   [3].  The components  Eα   
and  Eθ   of the vector of electric-field strength are determined from the trivial determining equations  Dα = 0   
and  Dθ = 0   for the piezoceramics polarized along the thickness.  Assume that the temperature of dissipative 
heating of the shell is constant across the thickness of the entire set of layers.  

In view of the accepted assumptions imposed on the complex electromechanical characteristics, the problem 
of forced harmonic vibrations of the analyzed shell is reduced to: 

 – the following equations of motion (the factor  eiωt   is omitted):  
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dNα
dα +ρ ω2u = 0,

dQα
dα −

Nθ
R +ρ ω2w + qz = 0 , 

   (1) 

 
dMα
dα −Qα +ρ ω2ψα = 0 ; 

 – determining relations for the forces and moments:  

 Nα = C11εα +C12εθ , Nθ = C12εα +C11εθ , Qα = ksC44εαz, 
   (2) 
 Mα = D11κα +ME , Mθ = D12κα +ME ; 

 – relationships between the amplitudes of strains and displacements:  

 εα = du
dα , εθ = w

R , κα =
dψα
dα , ϑα = − dw

dα , εαz = ψα − ϑα ; (3) 

 – expressions for the electric induction in the inner and outer piezolayers:  

 
 
1,2Dz = −b33

Va
h1

± b31(ε ∓ h1κα ), z ≤ −
h0
2 , z ≥

h0
2 ; (4) 

 – heat-conduction equation averaged over the period of vibrations and across the thickness of the 
shell:  

 
 
1
a
∂T
∂t = ∂2T

∂α2 −
2 !α s
λH (T −Tc )+

ω
2λH W  (5) 

  with a dissipative function  

 W = ′′Nα ′εα − ′Nα ′′εα + ′′Nθ ′εθ − ′Nθ ′′εθ + ′′Mα ′κα − ′Mα ′′κα  

   + ′′Qα ′εαz − ′Qα ′′εαz + (1 ′′Dz +
2 ′′Dz ) ′Vα − (1 ′Dz +

2 ′Dz ) ′′Vα . (6) 

The mechanical boundary conditions have the form  

 Nα = 0, w = 0, ψα = 0 . (7) 

We represent the boundary and initial conditions for the heat-conduction equation in the form   

 
  
λ ∂T
∂α = ± !α0,ℓ (T −Tc ), α = 0,ℓ, 

   (8) 
 T = T0 , t = 0 . 
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In relations (1)–(8), we introduce the following notation:  

 C1n = c1nh0 + 2c1n
E h1, C44 = Gαzh0 + 2c44

E h1 , 

 D1n =
c1nh0

3 + 2c1n
E h13 + 2γ 33h1

3

12 , c11 = E
1− ν2 , c12 = νc11 , 

 
 
c11
E = 1

s11
E (1− νE

2 )
, c12

E = νEc11
E , νE = −

s12
E

s11
E , 

 c44
E = 1

s44
E − d15

2 /ε11
T , b31 =

d31

s11
E (1− νE )

, b33 = ε33
T (1− kp

2 ), 

 kp
2 =

2d31b31
ε33
T , γ 33 =

b31
2

b33
, ρ = 2ρ1h1 +ρ0h0 , 

 ρ =
2ρ1h13 +ρ h0

3

12 , h13 = 4h1
3 + 6h1

2h0 + 3h1h0
2 , h1 =

h0 + h1
2 , 

 H = 2h1 + h0 , ME = − 2h1b31Vα , ε = εα + εθ .  

Here,   skk
E = ′skk(1− iδkk

s ),   dik = ′dik(1− iδik
d ),  and   εkk

T = ′εkk(1− iδkk
ε )   are, respectively, the temperature-

dependent complex compliances, piezoelectric moduli, and dielectric permittivities of piezoceramics;  ν = const   
is Poisson’s ratio,  E = ′E + i ′′E   and  Gαz = ′Gαz + i ′′Gαz   are, respectively, temperature-dependent complex 
Young’s modulus and the transverse-shear modulus of the passive material;  ks   is the transverse shear coeffi-
cient;  w = ′w + i ′′w ,  u = ′u + i ′′u ,  and  ψα = ′ψα + i ′′ψα   are, respectively, the complex amplitudes of deflec-
tions, longitudinal displacements, and the angle of rotation of the nondeformed normal element;  Nα ,  Nθ ,  Qα   
and  Mα ,  Mθ   are the similar amplitudes of forces and bending moments;  ρ0   and  ρ1  are the specific densities 
of the passive layer and piezoactuators;  λ   and  a   are, respectively, the averaged thermal conductivity and 
thermal diffusivity coefficients;   

 
 
!α s =

!α+ + !α−
2 ;   

 !α±   and   
!α0,ℓ   are the heat-exchange coefficients on the corresponding surfaces and ends of the shell, and  T0   is 

the initial temperature of the shell.  Here and in what follows, we use the standard notation of complex quanti-
ties, i.e.,   a = ′a + i ′′a ,   a = ( ′a 2 + ′′a 2 )1/2 ,  i = −1 . 

2. Solution of the Problem   

After necessary transformations, we represent the equations of harmonic vibrations (1)–(3) for the numeri-
cal solution of the posed problem in the form of ordinary differential equations of the normal form for the com-
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plex quantities  Nα ,  Qα ,  Mα ,  u ,  w ,  and  ψα :  

 
 

dNα
dα = −ρ ω2u,

dQα
dα = 1

R
!C12Nα − !C11

W
R

⎛
⎝⎜

⎞
⎠⎟ − qz −ρ ω2w, 

 
dMα
dα = Qα − ρ ω2ψα ,

du
dα = JCNα − !C12

W
R , (9) 

 
dψα
dα = JD (Mα −ME ), dw

dα = −ψα + JSDQα , 

where  

 
 
JC = 1

C11
, JD = 1

D11
, νC =

C12
C11

, !C11 = C(1− ν2 ), JSD = 1
ksC44

. 

In view of the dependence of electromechanical properties of materials on the temperature of dissipative 
heating, equation (9) of forced vibrations of the shell and the heat-conduction equation (5), (6) are coupled and 
nonlinear.  For the solution of these equations, we use the method of step-by-step time integration [3, 6].  In each 
time step  Δt ,  we integrate the complex-valued system of equations of electromechanics (9) with the boundary 
conditions (7) by the numerical method of discrete orthogonalization [2] with the  help of typical software in-
tended for the solution of ordinary differential equations.  In the first step, we solve the problem for isothermal 
characteristics of the materials  (T = T0 ).  In the second step, we compute the dissipative function (6) and solve 
the heat conduction problem (5), (8) by the finite-difference method according to the explicit scheme.  Further, 
on the basis of the obtained temperature distribution, we determine the stiffness characteristics and repeat the 
outlined procedure in the next time step.  In the numerical realization of the proposed approach, we use the di-
mensionless space   x = α /ℓ   and time   τ = at /ℓ2   coordinates and the Biot parameters of heat exchange  

 (γ s )0,ℓ = ( "α s )0,ℓ /λ .  

3.  Numerical Results and Their Analysis  

In our numerical calculations, we restrict ourselves to the case of harmonic loading of the shell by a con-
stant pressure with amplitude  qz (α) = q0 .  The amplitude of electric potential used for the compensation of 
pressure  q0   is given by the formula [7]  

 Vα = κα (Δα )q0 , (10) 

where  κα   is a control coefficient.  
The value of  κα   corresponding to the maximal value of the amplitude of mechanical vibrations is deter-

mined as follows:  

 κα =
wqmax
1

wEmax
1 ,   
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where  wqmax
1   and  wEmax

1   are the maximum amplitudes of deflections at the frequency of linear resonance 
computed on the basis of the solution of standard problems for  q0 = 1 Pa,  Vα =0  and  q0 =0,  Vα = 1 V,  re-
spectively.  The opposite phases of the electric potential applied to the electrodes of the actuator is taken into 
account by the formula  Vα cos(ωt + π) = −Vα cosωt .  Note that, under the analyzed loading, we observe the 
realization mainly of bending vibrations.  Therefore, the numerical analysis is performed in the vicinity of the 
first frequency of the most power-consuming mode of bending vibrations of the shell.  The passive layer is made 
of a polymeric composite [8], while the piezoactuators are made of the TsTStBS-2 viscoelastic piezoelectric ce-
ramics [1].  The experimental temperature dependences of their electromechanical characteristics are approxi-
mated by the following expressions:  

 ′E = (1672 −118.6T ) ⋅106   [Pa],     ′′E = (15.01−1.205T ) ⋅106   [Pa], 

 Gαz = E
2(1+ ν) ,     T = T −T0 ,     νE = 0.37 ,     ν = 0.3636 , 

 ′s11 = 12.5(1+ 0.377 ⋅10−3T ) ⋅10−12   [m2 /N ], 

  ′s44 = 39.7(1+ 0.5458 ⋅10−3T )⋅10−12   [m2 /N ], 

  δ11
s = 0.16(1+ 0.6155 ⋅10−3T + 0.4158 ⋅10−4T 2 ), 

  δ44
s = 0.14(1+ 8.33 ⋅10−3T )⋅10−2 , 

  ′d31 = −1.6(1+ 0.219 ⋅10−3T )⋅10−10   [K/m], 

  δ31
d = 0.4(1+1.198 ⋅102T +1.823 ⋅10−4T 2 )⋅10−2 ,  

  ′d15 = 4.5(1+ 0.9722 ⋅10−3T )⋅10−10   [K/m], 

  δ15
d = 0.35(1+ 0.3571⋅10−2T )⋅10−2 , 

  ′ε11 = 18.5ε0(1+ 0.4505 ⋅10−2T )⋅102 , 

  δ11
ε = 0.5(1+ 0.015T )⋅10−2 , 

  ′ε33 = 21ε0(1+ 0.111⋅10−3T + 0.8426 ⋅10−4T 2 )⋅102 , 

 ε0 = 8.854 ⋅10−12   F/m, 

  ′δ33 = 0.35(1+ 0.0119 ⋅T + 0.119 ⋅10−3T 2 )⋅10−2 ,  
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Fig. 1 

  

Fig. 2 

  

Fig. 3 
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 (a) (b) 

Fig. 4 

 ρ0 = 929 kg/m3 ,    ρ1 = 7520  kg/m3 ,     λ = 0.45  W/(m · °C). 

The coefficient of transverse shear ks = 5/6 [2].  The shell has the following geometric parameters: 

 R = ℓ = 0.2 m, h0 = 0.04 m, and h1 = 0.1⋅10−4 m. 
In curves 1 and 2 (Fig. 1), we present the dependences of the maximal amplitudes of deflections on the 

width   Δ = Δ x /ℓ   of a ring actuator.  The dash-dotted lines correspond to the deflection   !wq = wq
1 (0.5) ⋅108 m  

attained under mechanical loading with an amplitude  q0 = 1 Pa  for  Vα = 0 ,  whereas the dashed lines illustrate 
the deflection   !wE = wE

1 (0.5) ⋅106 m  realized in the case where the electric potential  ′Vα = 1 V,  ′′Vα = 0   with  
q0 = 0   is applied to the actuator.  The solid lines correspond to the control coefficient  κα = 10κα .  Curves 1 
correspond to the resonance frequency  ωp = 0.132 ⋅105 sec−1  in the classical statement of the problem.  Curves 

2 describe the results obtained at a frequency ωp = 0.113 ⋅105 sec−1 with regard for transverse shear strains.  
The width of the actuator  Δ   is such that its midpoint coincides with the coordinate  x = 0.5   of the maximum 
normal deflections of the shell.  

The frequency dependences of the maximum values of amplitudes of deflections   !w = w(0.5) ⋅105  m  and 
the temperature of vibration heating  Tm = T (0.5)  (dashed lines) and the plots obtained with regard for tempera-
ture dependences of the properties of materials (solid lines) in the neighborhood of the resonance frequency of 
the most power-consuming mode of bending vibrations of the shell are depicted in Figs. 2 and 3, respectively.  
Curves 1 correspond to the solution of the problem in the classical statement.  At the same time, curves 2 corre-
spond to the statement of the problem with regard for the transverse shear strains for the shell mechanically 
loaded with an amplitude  q0 = 0.4 ⋅104  Pa  and the of heat-conduction coefficient  γ 3 = 0.4 .  

The distributions of the amplitude of deflections   !w = w ⋅105  m  along the generatrix of the shell for the in-
dicated load are depicted in Fig. 4a and Fig. 4b for the classical and refined statements, respectively.  In these 
figures, the dashed curves correspond to the isothermal electromechanical characteristics, while the solid lines 
take into account the temperature dependences of these characteristics.  The dash-dotted lines correspond to the 
joint antiphase action of the mechanical loading  q0 = 0.4 ⋅104  Pa  and the electric potentials  Va = 16.7  V  



 
AXISYMMETRIC RESONANT VIBRATIONS AND VIBRATION HEATING OF AN INELASTIC CYLINDRICAL SHELL  25 

(Fig. 4a) and  Va = 28  V  (Fig. 4b).  

The analysis of the curves presented in Figs. 1–4 and the data of numerical analyses enable us to conclude 
that, for the investigated shell with rigidly fixed ends, there exists an actuator with the optimal sizes  Δ = 0.5 ,  
 α1 = 0.215ℓ ,  and   α2 = 0.785ℓ  for which the deflections of the bending mode of vibrations are maximum for 
the minimum drop of electric potentials on the electrodes of the actuator.  This actuator proves to be most effi-
cient for the compensation of forced mechanical vibrations of the shell.  The influence of transverse shear strains 
and temperature dependences of the electromechanical characteristics of piezopassive and piezoactive materials 
(curves 2) results in a shift of the amplitude and temperature (Fig. 3) frequency characteristics toward lower res-
onance frequencies and also to an increase in deflections and temperature of vibration heating at the correspond-
ing refined resonance frequency of bending mechanical vibrations of the shell.  As a result of the joint antiphase 
action of the surface pressure and the compensating drop of electric potentials at the frequencies of classical 
(Fig. 4a) and refined (Fig. 4b) resonances, the amplitudes of mechanical deflections of an undamped shell de-
crease by about two orders of magnitude.  Moreover, the temperature of vibration heating remains close to the 
initial temperature.  

CONCLUSIONS 

We consider the coupled problem of forced axisymmetric vibrations and dissipative heating of a rigidly 
fixed viscoelastic cylindrical shell with piezoactuators subjected to electromechanical monoharmonic loading.  
We take into account the transverse shear strains and temperature dependences of the complex characteristics of 
piezopassive and piezoactive materials.  The nonlinear problem is solved by the method of step-by-step time 
integration with the help of the procedure of discrete orthogonalization for the integration of the equations of 
mechanics and the explicit scheme of the finite-difference method for the solution of the heat-conduction equa-
tion.  We study the influence of transverse shear strains, geometric sizes of the actuator, and temperature de-
pendences of the properties of materials on the frequency characteristics of the amplitudes of deflections and the 
temperature of vibration heating and on the active damping of forced vibrations of the shell. 
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