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ANALYSIS OF CRITICAL PHENOMENA
IN A DYNAMIC SYSTEM UNDER THE INFLUENCE
OF RANDOM PERTURBATIONS

N. M. Firstova UDC 517.951

Abstract. The paper is devoted to the study of stochastic models of an electrochemical reaction with
a perturbation described by a generalized white-noise random process. Noise-induced transitions are
analyzed, the influence of external perturbations on limit cycles is examined, and the sensitivity of the
cycle to noise was found. The dependence of the threshold value of the noise intensity on the control
parameter of the system is established. The critical value of the noise intensity at which small-amplitude
oscillations turn into mixed-type oscillations is obtained. The critical value of noise corresponding to
the transition from canard trajectories to relaxation oscillations in the model is found. It is shown that
an increase in the intensity of random perturbations can lead to significant changes of oscillation modes
of the model up to their destruction.
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1. Introduction. Analysis of changes in the behavior of dynamic systems under the influence of
random perturbations is of great interest to researchers in various fields of natural science. Stochastic
models are used for studying various physical, chemical, and biological processes that are characterized
by the presence of random deviations (errors, noise, instability of factors influencing the process).
Stochastic fluctuations often cause unexpected results in the operation of electronic generators and
lasers, lead to a change in the dynamic modes of functioning of the chemical and biological system.

As a rule, unstable operation of any industrial unit is accompanied by some losses. In some cases,
the unstable behavior of an electrochemical reactor leads to its shutdown or reduction in productivity,
product defects, or various accidents. Therefore, the search for stability conditions is an important
part of the complex problem concerning the reliability and efficiency of technological processes.

Even small random perturbations can lead to qualitative changes in the nonlinear dynamics of the
system. The situation can become unstable not only due to incorrect actions, but also due to small
changes of some parameters. In chemical systems, the role of such random perturbations can be played
by various impurities, thermal fluctuations, and many other external factors.

In this paper, we study the effect of noise (see [5, 13]) on the critical mode of the dynamic model
of the Koper–Sluyters electrochemical reaction (see [6]) in electrochemical reactors. Electrochemical
reactors are used for the electrochemical conversion of various liquids (milk, vegetable and mineral oils,
solutions of carbohydrates, ammonia, alcohols, organic and inorganic fertilizers, and many others).

2. Deterministic model. Consider a model of an electrochemical reaction of the Koper–Sluyters
type (see [14]) without random fluctuations. In the dimensionless form, the dynamic model of an
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electrochemical reaction is the following system of differential equations:

du

dt
= −kae

γθ/2u(1− θ) + kde
−γθ/2θ + 1− u = f(u, θ), (1)

β
dθ

dt
= kae

γθ/2u(1− θ)− kde
−γθ/2θ − kee

α0ζEθ = g(u, θ), (2)

where u is the dimensionless surface concentration of the electrolyte X and β is the dimensionless
volume concentration of X. The dimensionless variable θ is the amount of the substance X adsorbed
on the electrode surface, E is the electrode potential, β is the adsorbate coverage coefficient, α0 is the
symmetry coefficient for the electron transfer, ka, kd, and ke are the rates of adsorption, desorption, and
electron transfer, respectively. The parameter γ is called the interaction parameter; positive (negative)
values of γ correspond to the attractive (repulsive) adsorption interaction. The dimensionless current
density is J = kee

α0ζEθ, where ζ = F/(RT ), R is the universal gas constant, F is the Faraday constant
and T is the temperature.

Since the parameter β is small, the system (1)–(2) is a singularly perturbed system.
In [8–11], a detailed analysis of the deterministic model was performed by methods of the theory of

singular perturbations and numerical methods. It was shown that the critical modes is modeled by a
duck trajectory; this mode separates two main types of reaction modes: stable cycles and relaxation
oscillations (see [12, 15–18]).

3. Critical mode in the model. It was shown in [8] that there are several locations for a singular
point of the system. In the first case, singular point is located on the stable part of the zero approxi-
mation of the slow invariant manifold (see [20]); the type of the singular point is a stable ficus. In the
second case, the singular point lies in the unstable part of the zero approximation of the slow invari-
ant manifold. If it is removed from the breakdown points at a considerable distance, then relaxation
oscillations are observed in the system.

With further minor changes in the control parameter (the values of all other parameters are fixed),
the singular point moves to the unstable part of the zero approximation of the slow invariant manifold
but remains in a small neighborhood (of order O(β) as β → 0) of the breakdown point. The singular
point becomes an unstable focus, and a closed trajectory is separated from it; the amplitude of this
closed trajectory grows proportionally to the square root of the increment of the control parameter,
i.e., the Andronov–Hopf bifurcation appears. The Andronov–Hopf bifurcation establishes a connection
between the loss of stability of equilibrium positions and the occurrence of periodic solutions in the
system. In experiments where values of the parameter are close to the bifurcation value, the periodic
solution appeared differs little from the stationary solution since its amplitude is very small and can be
lost in the experimental noise. However, when the parameter reaches the “duck” value, the situation
changes dramatically: a small change in the parameter leads to the so-called duck explosion, when the
amplitude of concentration fluctuations almost instantly takes sufficiently large values. This means
that the “duck” value of the parameter should be considered as the boundary of the safe flow of the
process (see [12, 15–18]).

The duck trajectory and the value of the control parameter k∗e can be represented in the form of an
asymptotic decomposition in powers of a small parameter β (see [19]):

u = Φ(θ, β) = u0(θ) + βu1(θ) + β2u2(θ) + . . . , (3)

k∗e = χ(β) = χ0 + βχ1 + β2χ2 + . . . . (4)

To find an asymptotic representation of the duck trajectory, we substitute Eqs. (3) and (4) into the
invariance equation

du

dθ
g(u, θ) = βf(u, θ)
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obtained from the system (1)–(2). After the substitution we obtain

u0(θ) =
kde

−γθ/2 + χ0e
α0ζE

kaeγθ/2(1− θ)
θ, (5)

u1(θ) =
−kau0(θ)(1− θ)eγθ/2 + kde

−γθ/2θ + 1− u0(θ) + χ1e
α0ζEθu′0(θ)

kaeγθ/2u′0(θ)
, (6)

χ0 =
ka(1− θ̄)eγθ̄/2 − kde

−γθ̄/2θ̄

(ka(1− θ̄)eγθ̄/2 − 1)eα0ζE θ̄
, (7)

χ1 = −kau1(θ̄)(1− θ̄)eγθ̄/2 + u1(θ̄) + kau1(θ̄)u
′
1(θ̄)(1− θ̄)eγθ̄/2

eα0ζE θ̄u′1(θ̄)
, (8)

where θ = θ̄ is the value at the breakdown point. Equations (5)–(8) determine the first approximation
for the duck trajectory passing through the breakdown point (u(θ̄), θ̄) of the system (1)–(2).

During the study, we encountered the problem of the influence of external noises on the critical
mode of the model. Since this mode is modeled by a duck trajectory, it is necessary to study how
its shape, size, and the possibility of existence change under the influence of external perturbations
(see [7, 13]).

4. Stochastic model. Let us modify the model considered in the previous section from the point
of view of the influence of medium fluctuations on the chemical reaction. Since these fluctuations are
random, their inclusion in the modification proposed leads to the fact that the new model will be
considered stochastic. Naturally, such a perturbation must be introduced as an additive term to the
stationary process. Assume that the system is also affected by a white noise of low intensity:

du

dt
= −kae

γθ/2u(1− θ) + kde
−γθ/2θ + 1− u+ εξ1 = f(u, θ), (9)

β
dθ

dt
= kae

γθ/2u(1− θ)− kde
−γθ/2θ − kee

α0ζEθ + εξ2 = g(u, θ). (10)

The scalar random process ξ(t, ω), t ∈ T = [0,∞], is a stationary white noise; its spectral density ε ∈
[0, 1] (called the intensity of the white noise) is constant.

The study of the influence of external noises on the behavior of the system was performed with
the following values of the parameters proposed in [6]: ε = 0.2, γ = 8.99, ka = 10, kd = 100,
ke = 0.85, α0 = 0.5, ζ = 38.7, E = 0.207 (unless other values are indicated in captions).

We start the study with an analysis of the stochastic sensitivity of the equilibrium depending on
the control parameter ke.

5. Theoretical noise sensitivity. For noise sensitivity analysis of a stochastic equilibrium of the
dynamic system, the method of stochastic sensitivity functions was used in [3, 4]. It is based on the
calculation of the stochastic sensitivity matrix W , which is a positive definite matrix characterizing
the spread of random trajectories of system around the equilibrium position. The eigenvalues of the
matrix W are theoretical characteristics of the noise sensitivity.

The matrix W is the solution of the matrix equation

FW +WF T + S = 0, (11)

where

F =

⎛
⎜⎜⎝

∂f

∂u

∂f

∂θ

∂g

∂u

∂g

∂θ

⎞
⎟⎟⎠

(ū,θ̄)

, S =

(
1 0
0 1

)
, W =

(
w11 w12

w12 w22

)
. (12)
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Fig. 1. Theoretical noise sensitivity

The elements of the matrix W can be found from (11):

w11 =
−1− 2fθw12

2fu
, w22 =

−1− 2guw12

2gθ
, w12 =

fufθ + gugθ
2(f2

θ gθ + g2θfu − fufθgu − fugugθ)
;

its eigenvalues are

λ1,2 =
1

2

(
w11 + w22 ±

√
(w11 + w12)2 − 4(w11w22 − w2

12)

)
. (13)

where

fu =
∂f

∂u
(ū, θ̄), fθ =

∂f

∂θ
(ū, θ̄), gu =

∂g

∂u
(ū, θ̄), gθ =

∂g

∂θ
(ū, θ̄).

Results obtaining by the theoretical method are presented in Fig. 1.
Note that one of the eigenvalues (13) is very small (see Fig. 1, dashed line); thus, the stochastic

sensitivity is defined by the largest eigenvalues. The graph shows that the stochastic equilibrium
becomes more sensitive to noise as the control parameter ke increases.

6. Noise-induced transitions. In the stochastic model, under the influence of noise, qualitative
changes are possible: if of the noise intensity εcr reaches a certain critical value, a transition occurs
from one deterministic attractor (rest point) to another (limit cycle). Such qualitative changes in
the system are called noise-induced transitions. Consider the change in the stochastic phase portrait
depending on the noise intensity.

At low noise, random states always lie in a neighborhood of the equilibrium. As the noise inten-
sity grows, rare transitions through the unstable cycle to the limit cycle and vice versa appear, i.e.,
mixed-type oscillations are observed (see Fig. 2). However, if the bifurcation parameter increases and
approximates the zone where the rest point loses its stability, the amplitude of oscillations becomes
large (see Fig. 3). As the noise intensity increases further, transitions become more frequent.
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Fig. 2. Noise-induced transition for ke = 0.85 and ε = 0.0098

Fig. 3. Noise-induced transition for ke = 0.85 and ε = 0.02

Thus, applying the techniques of stochastic sensitivity functions, we can predict the value of the noise
intensity εcr corresponding to the appearance of transitions. For example, for the control parameter
ke = 0.85, at which noise-induced transitions were demonstrated, the critical value of the noise intensity
is approximately equal to εcr ≈ 0.009495.

Having searched for the critical values of the noise intensity for the values of the parameter ke from
the stable zone, we obtained the dependence of εcr on the control parameter. Figure 4 shows that as
the value of the bifurcation parameter increases, the value of the noise intensity, at which transitions
between attractors appear, decreases.

7. Study of stochastic cycles. We are interested in the stochastic dynamics of the system con-
sidered in the zone of critical cycles. Under the action of random perturbations, trajectories leave
the deterministic cycle and form a certain bundle around it, called a stochastic cycle. Figure (5)
shows stochastic cycles for the fixed noise intensity ε = 0.00225 and three values of the parameter ke,
namely, ke = 0.92, ke = 0.92053, and ke = 0.93. Note that the spread of random trajectories changes
significantly along the cycle. To an even greater extent, this spread depends on the parameter ke.

A convenient quantitative characterization of the spread of random trajectories around a determin-
istic cycle at low noise is the stochastic sensitivity function (see [1–3]).

If the intensity of noise in the system increases, in addition to quantitative changes, new effects can
occur.
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Fig. 4. Dependence of the critical noise value on the control parameter ke

Now we study in more detail the distribution of trajectories of the stochastically perturbed critical
cycle for ke = 0.92053 for various values of the noise intensity ε. The corresponding graphs are presented
in Fig. (6).

Note that the distribution of random trajectories changes as the noise intensity increases, namely,
the spread of trajectories expands and the range of amplitudes of stochastic oscillations grows. At
ε = 10−5, two concentration zones appear in the bundle of random trajectories. Thus, a qualitative
change in the phase portrait of the stochastic system—a stochastic bifurcation—is observed. The
bifurcation point lies between ε = 10−8 and ε = 10−5.

The changes in the dynamics of the stochastic system can be illustrated by time series. In Fig. (7),
the graphs of the coordinate θ(t) are presented.
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