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A METHOD FOR SOLVING THE FREDHOLM
INTEGRAL EQUATION OF THE FIRST KIND

E. K. Kulikov∗ and A. A. Makarov† UDC 519.6

The paper considers a numerical method for solving the Fredholm integral equation of the first
kind. The essence of the method is to replace the original equation with the corresponding regu-
larized equation of the second kind, which is then solved by the modified spline collocation method.
The solution in this case is represented as a linear combination of minimal splines. The coeffi-
cients at the splines are computed using local approximation (in some cases, quasi-interpolation)
methods. Results of numerical experiments are presented and show that on model problems, the
method proposed yields sufficiently accurate approximations, and the approximation accuracy can
be improved by using minimal nonpolynomial splines and related functionals. Bibliography: 24
titles.

1. Introduction

In the last few decades, local approximation methods have actively been studied. Their main
feature is that the coefficients at the basis functions are determined as values of approximation
functionals, which are, for example, linear combinations of values of the function itself and its
derivatives at certain points (see [1–6] for more detail). Local methods allowing one to obtain
the highest order of accuracy are called quasi-interpolation methods, and the functionals used
in constructing them are called quasi-interpolation functionals, or quasi-interpolants.

Methods based on quasi-interpolation have repeatedly been used in constructing algorithms
for solving some integral equations. In particular, in [7, 8] it is shown that replacement of
the solution of the Fredholm integral equation of the second kind with a linear combination
of B-splines allows one to obtain accurate approximations, provided that the coefficients at
the spline functions are constructed as quasi-interpolants. This approach is used in a number
of solution methods (the Galerkin and Kantorovich methods, Sloan iterations [9], Kulkarni
method [10], wavelet-Galerkin method [11], etc.). Construction of approximation functionals
for minimal splines [12,13] (spline functions with minimal support obtained from approxima-
tion relations with a complete chain of vectors and a generating vector function) makes it
possible to construct the modified spline-collocation method for solving the Fredholm integral
equation of the second kind [14].

The Fredholm integral equation of the first kind is an example of an ill-posed problem, and
its solution cannot be obtained by applying an approach similar to the one used for equations
of the second kind. The standard solution method is to reduce the original problem to a system
of linear algebraic equations and to apply Tikhonov’s regularization [15] or its more accurate
version (see, e.g., [16,17] and the references therein). An alternative approach is to regularize
the original equation of the first kind, i.e., to replace it with a specially constructed equation
of the second kind. This approach was suggested and tested on several model problems in [18],
where it was recommended to solve the resulting equation of the second kind by an arbitrary
known numerical method. This approach was mentioned as a perspective one in the survey [19].
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In this paper, we consider a method for solving the Fredholm integral equation of the first
kind that combines the above-mentioned regularization approach and the modified spline-
collocation method, suggested by the authors earlier. The results of numerical experiments
presented demonstrate that the combined approach is quite accurate on several model prob-
lems; moreover, using the minimal splines instead of the polynomial B-splines allows one to
improve the accuracy of the method.

2. The space of quadratic minimal splines

Let Z be the set of integers, R3 be the linear space of three-dimensional column vectors with
components from the set of reals R1. The vector components are denoted by square brackets
with integer subscripts, e.g., a = ([a]0, [a]1, [a]2)

T , where a ∈ R
3 and T means transposition.

On an interval [a, b] ⊂ R
1, consider a grid X,

a = x−2 = x−1 = x0 < x1 < . . . < xn−1 < xn = xn+1 = xn+2 = b. (1)

Introduce the following notation:

Ji,k := {i, i+ 1, . . . , k}, i, k ∈ Z, i < k; M := ∪j∈J0,n−1(xj , xj+1);

Sj := [xj, xj+3], j ∈ J−2,n−1.

An ordered set A := {aj}j∈J−2,n−1 of vectors aj ∈ R
3 is called a vector chain. Assume that

the square matrices (aj−2,aj−1,aj) formed of the vectors aj−2,aj−1,aj ∈ R
3 are invertible,

i.e.,

det(aj−2,aj−1,aj) �= 0, j ∈ J0,n−1. (2)

Consider a three-component (column) vector function ϕ : [a, b] → R
3 with components in

the space C2[a, b] and nonzero Wronskian determinant

det(ϕ(t),ϕ′(t),ϕ′′(t)) �= 0, t ∈ [a, b]. (3)

The linear space of real-valued functions defined on M is denoted by X(M).
Assume that functions ωj ∈ X(M), j ∈ J−2,n−1, satisfy the identities

k∑

j′=k−2

aj′ ωj′(t) ≡ ϕ(t), t ∈ (xk, xk+1), k ∈ J0,n−1;

ωj(t) ≡ 0, t ∈ M\Sj , j ∈ J−2,n−1.

(4)

For any fixed t ∈ (xk, xk+1), where k ∈ J0,n−1, relations (4) can be regarded as a system of
linear algebraic equations with respect to the unknowns ωj(t). By assumption (2), system (4)
has a unique solution, and supp ωj ⊂ Sj.

The linear span of the functions ωj(t) is called the space of quadratic minimal coordinate
(A,ϕ)-splines. Identities (4) are called the approximation relations. The vector function ϕ is
said to be generating.

Let ϕj := ϕ(xj), ϕ
′
j := ϕ′(xj), ϕ′′

j := ϕ′′(xj), j ∈ J−2,n+2, and consider the chain of vectors

{aNj }j∈J−2,n−1 defined by the formula

aNj := ϕj+1 −
dT
j+2ϕj+1

dT
j+2ϕ

′
j+1

ϕ′
j+1, (5)

where the vectors dj ∈ R
3 are determined by the identity

dT
j x ≡ det(ϕj,ϕ

′
j ,ϕ

′′
j , x), x ∈ R

3.
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As is known [20], if condition (3) is fulfilled for a chain of vectors AN := {aNj }, j ∈ J0,n−1,

then inequality (2) holds, and the functions satisfy the condition ωj ∈ C1[a, b] for all j ∈
J−2,n−1. The possibility of using multiple nodes in the grid (1) was studied in [21].

If a vector function ϕN is such that ϕN = ϕ, where [ϕ(t)]0 ≡ 1, then the partition of unity
property is valid, i.e.,

n−1∑

j=−2

ωj(t) = 1, t ∈ [a, b].

In this case, the functions ωj(t) are called the normalized quadratic minimal coordinate
Bϕ-splines, and they can be represented as follows:

ωj(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT
j ϕ

N (t)

dT
j a

N
j

, t ∈ [xj, xj+1),

dT
j ϕ

N (t)

dT
j a

N
j

− dT
j a

N
j+1

dT
j a

N
j

dT
j+1ϕ

N (t)

dT
j+1a

N
j+1

, t ∈ [xj+1, xj+2),

dT
j+3ϕ

N (t)

dT
j+3a

N
j

, t ∈ [xj+2, xj+3).

(6)

Their linear span is denoted by

S(X,AN ,ϕN ) :=

⎧
⎨

⎩u(t) =

n−1∑

j=−2

cj ωj(t), cj ∈ R
1, t ∈ [a, b]

⎫
⎬

⎭ .

3. Averaging approximation functionals

In this section, we consider different grids. For convenience, all the necessary objects defined
on a grid X are supplied, if necessary, with the superscript X, e.g., we write ωX

j .

Let ϕ(t) := (1, ρ(t), σ(t))T , where ρ, σ ∈ C2[a, b]. Introduce the notation (see [22] for more
detail)

Δj(ρ, σ) :=

∣∣∣∣
ρj ρ′j
σj σ′

j

∣∣∣∣ , SX
j (ρ, σ, τ) := −

∣∣∣∣
Δj(ρ, σ) Δj+1(ρ, σ)

τj τj+1

∣∣∣∣
∣∣∣∣
ρj ρj+1

σj σj+1

∣∣∣∣
,

where ρj := ρ(xj), σj := σ(xj), τj := τ(xj).
Consider another grid Y with the nodes

yj :=

⎧
⎪⎨

⎪⎩

x0, j = −2;

xj+1 + θ(xj+2 − xj+1), θ ∈ [0, 1], j = −1, . . . , n− 2;

xn, j = n− 1.

(7)

We construct an approximation Qf of a given function f in the form

Qf =

n−1∑

j=−2

μY
j (f)ω

X
j , (8)

where the approximation functionals μY
j (f) are defined as follows:

μY
j (f) :=

⎧
⎪⎨

⎪⎩

f(y−2), j = −2;

ajf(yj−1) + bjf(yj) + cjf(yj+1), j = −1, . . . , n − 2;

f(yn−1), j = n− 1.

(9)
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As is shown in [13], the approximation (8) reproduces all the functions f ∈ {[ϕ]i | i = 0, 1, 2},
provided that the values of the coefficients aj , bj , cj in (9) are determined by the formulas

aj = 1− bj − cj ,

bj =
Nj(yj+1)

Dj
,

cj = −Nj(yj)

Dj
,

where

Nj(y) :=

∣∣∣∣∣
ρ(y)− ρ(yj−1) SX

j+1(ρ, σ, ρ
′)− ρ(yj−1)

σ(y)− σ(yj−1) SX
j+1(ρ, σ, σ

′)− σ(yj−1)

∣∣∣∣∣ ,

Dj :=

∣∣∣∣
ρ(yj+1)− ρ(yj−1) ρ(yj)− ρ(yj−1)

σ(yj+1)− σ(yj−1) σ(yj)− σ(yj−1)

∣∣∣∣ .

If ϕ(t) = (1, t, t2)T and θ = 1
2 , then, on a uniform grid, the functional (9) takes the form

μY
j (f) = −1

8
(f(yj−1)− 10f(yj) + f(yj+1)) (10)

and coincides with the well-known functional for the quadratic B-splines (see [23]).

4. Regularization and solution of integral equations

Consider the Fredholm integral equation of the first kind

b∫

a

K(t, x)u(x) dx = f(t). (11)

In order to solve it, we are going to use regularization, which replaces solution of the original
equation (11) by solving the following auxiliary Fredholm integral equation of the second kind:

αuα(t) +

b∫

a

K(t, x)uα(x) dx = f(t). (12)

Equation (12) is parametrized by a real small parameter α > 0. As is known [15, 18], the
solution uα(t) of Eq. (12) tends to the solution u(t) of the original equation (11) as α → 0.

We solve Eq. (12) using the modified spline-collocation approach, suggested by the authors
in [14], assuming that the Fredholm kernel K(t, x) and the function f(t) satisfy the correspond-
ing requirements. Note that the Fredholm equation of the first kind is an ill-posed problem,
whence it can happen that it has no solutions or a few of them.

Let t ∈ [a, b]. We write the Fredholm integral equation of the second kind as

u(t)−Ku(t) = f(t). (13)

Assume that f ∈ C[a, b] and the operator I−K is invertible; here, I is the identity operator.
The Fredholm integral equation of the second kind is a well-posed problem, whence, for any
function f ∈ C[a, b], Eq. (13) has a unique solution u ∈ C[a, b].

If K ∈ C([a, b]× [a, b]), then we define the linear compact operator K as follows:

Ku(t) :=

b∫

a

K(t, x)u(x) dx, t ∈ [a, b].
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An approximate solution of Eq. (13) on the grid (1) is constructed in the form

uh(t) =

n−1∑

j=−2

cj ωj(t), (14)

where K and f are replaced with their approximations QK and Qf , respectively, which are
constructed by approximating them in accordance with formulas (8) and (9). Thus, the original
equation (13) is written as

uh = Qf +QKuh, (15)

or, in the notation ω̃j := Kωj, as

n−1∑

j=−2

cj ωj(t) =

n−1∑

j=−2

μY
j (f)ωj(t) +Q

n−1∑

i=−2

ci ω̃i(t),

which implies that

cj = μY
j (f) +

n−1∑

i=−2

ci μ
Y
j (ω̃i), j ∈ J−2,n−1. (16)

Compose the vector c := (c−2, c−1, . . . , cn−1)
T of the coefficients cj , the vector μ :=

(μY−2(f), μ
Y−1(f), . . . , μ

Y
n−1(f))

T of the functionals μY
j (f), and the matrix M := (Mj,i) =(

μY
j (ω̃i)

)
of the functionals μY

j (ω̃i). where j, i ∈ J−2,...,n−1. Then we obtain the system

of linear algebraic equations

(I −M) c = μ,

where I is the identity matrix. By solving this system, we obtain the coefficients cj in the
approximation (14).

Note [9] that using representation (15), the solution (14) can be refined by performing the
following iterations:

ũh := Kuh + f.

Thus, an approximate solution of the Fredholm integral equation of the second kind can
ultimately be represented in the form

ũh(t) = f(t) +

n−1∑

j=−2

cj ω̃j(t). (17)

Note that

ω̃j(t) = Kωj(t) =

b∫

a

K(t, x)ωj(x) dx,

and this integral can be computed by replacing the function K(t, x) with its approximation,
whereas the integral

Wij :=

b∫

a

ωi(t)ωj(t) dt

is computed either exactly or using an arbitrary standard method of numerical integration.
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5. Numerical experiments

Below, in all the numerical experiments, approximations are constructed on the interval
[a, b] = [0, 1] and on a grid of the type (1). Auxiliary grids are considered on the same interval.

For ϕB(t) := (1, t, t2)T , the functions (6) coincide with the well-known quadratic polynomial
B-splines of the third order

ωB
j (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(t− xj)
2

(xj+1 − xj)(xj+2 − xj)
, t ∈ [xj , xj+1),

1

xj+1 − xj

(
(t− xj)

2

xj+2 − xj
− (t− xj+1)

2(xj+3 − xj)

(xj+2 − xj+1)(xj+3 − xj+1)

)
, t ∈ [xj+1, xj+2),

(t− xj+3)
2

(xj+3 − xj+1) (xj+3 − xj+2)
, t ∈ [xj+2, xj+3),

and for ϕH(t) := (1, sinh t, cosh t)T the functions (6) are of the following form (see [24] for
detail):

ωH
j (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sinh2
(

t−xj

2

)
cosh

xj+2−xj+1

2

sinh
xj+1−xj

2 sinh
xj+2−xj

2

, t ∈ [xj , xj+1);

cosh
xj+2−xj+1

2

sinh
xj+1−xj

2

⎛

⎝
sinh2

(
t−xj

2

)

sinh
xj+2−xj

2

−
sinh2

(
t−xj+1

2

)
sinh

xj+3−xj

2

sinh
xj+3−xj+1

2 sinh
xj+2−xj+1

2

⎞

⎠ , t ∈ [xj+1, xj+2);

sinh2
(

xj+3−t
2

)
cosh

xj+2−xj+1

2

sinh
xj+3−xj+1

2 sinh
xj+3−xj+2

2

, t ∈ [xj+2, xj+3).

In our numerical experiments, given an original function g, we construct an approximation
g̃ ∈ S(X,AN ,ϕN ) in accordance with (8), which is written in the form

g̃ =

n−1∑

j=−2

cj ωj, (18)

where the functions ωj are constructed on the uniform grid (1), and the coefficients cj are
computed on the grid (7) and are determined by the choice of the generating vector function
ϕ(t) and the approximation functional. The three variants considered are as follows:

(1) ϕ(t) = ϕB(t), ωj(t) = ωB
j (t), and the coefficients cj are determined by the values of g

at Greville’s points;
(2) ϕ(t) = ϕB(t), ωj(t) = ωB

j (t), and cj are determined by relation (10);

(3) ϕ(t) = ϕH(t), ωj(t) = ωH
j (t), and cj are determined by relation (9).

The error E is estimated by the absolute value of the largest deviation of the approximation
ũh constructed using (17) from the value of the function u at the nodes of the ten times finer
auxiliary grid, i.e.,

E = max
t∈[a,b]

|ũh(t)− u(t)|.
The following experiments show how the error depends on the choice of the generating

vector function and approximation functional in (18).

Example 1. Consider the Fredholm integral equation of the first kind

1∫

0

t x u(x) dx = 2t. (19)
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The function u(t) = 6t is known to be one of its solutions.

An approximate solution of Eq. (19) is constructed in the form (17). A preliminary regu-
larization is performed with the parameter value α = 10−10. The results of computations are
presented in Table 1.

Table 1. Approximation error for Eq. (19) as a function of the number n of grid points.

type n = 16 n = 32 n = 64
1 0.0139 0.0043 0.0013
2 0.0069 0.0024 0.0008

We see that the method suggested for solving the Fredholm integral equation of the first
kind allows one to construct a sufficiently accurate approximation of the solution function.

Now we are going to study how the approximation accuracy can be improved by using the
same approximation approach but replacing the polynomial B-splines with the nonpolynomial
minimal splines.

Example 2. Consider the Fredholm integral equation of the first kind

1∫

0

e3t−4x u(x) dx = (e− 1)e3t. (20)

One of its solutions is the function u(t) = e3t+1. We approximate Eq. (20) as in the previous
example. The results of the numerical experiments are presented in Table 2.

Table 2. Approximation error for Eq. (20) as a function of the number n of grid points.

type n = 32 n = 64
2 0.00514 0.00110
3 0.00067 0.00036

Note that the model problems (19) and (20) are borrowed from [18], where some iterative
methods for solving the regularized equations are used but no numerical data characterizing
the convergence to the solution function are provided.

This work was supported by the Ministry of Science and Higher Education of the Russian
Federation (grant No. FSEE-2021-0015).

Translated by the authors.
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